Supporting Information

AcylRadicalsfromα-KetoAcidsUsingaCarbonyl-Photocatalyst:Photoredox-CatalyzedSynthesisofKetones

Da-Liang Zhu,[†] Qi Wu,[†] David James Young,[‡] Hao Wang,[†] Zhi-Gang Ren,[†] and Hong-Xi Li^{†,*}

[†]College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

[‡]College of Engineering, Information Technology and Environment, Charles Darwin University, Northern Territory 0909, Australia

Table of Contents

General information
General procedure for decarboxylative arylation of α-oxo acids
General procedure for hydroacylation of olefins
Radical trapping experiment
Gram scale reaction
Table S1. Optimization of decarboxylative arylation reaction conditions. S5
Scheme S1. Scope of aryl iodides
Figure S1. Cyclic voltammograms of 2a/Li ₂ CO ₃ (a), Cl-TXO (b) using (n-Bu) ₄ NPF ₆ as the
electrolyte (0.05 M) in DMF at 100 mV/s scan rate. Working electrode: glassy carbon electrode
tip (3 mm diameter); Counter electrode: platinum wire; Reference electrode: Saturated Calomet
Electrode (SCE). Upon excitation at $\lambda_{ex} = 374$ nm, the emission maxima of Cl-TXO (Figure S2) is
at $\lambda_{em} = 417$ nm, which translates into the excited-state energy E_{00} (Cl-TXO*/Cl-TXO) of -2.974 V
The reduction potential of Cl-TXO* is calculated to be 1.468 V employing the equation: E_{red}^{*} =
E _{red} - E ₀₀
Figure S2. The emission spectrum ($\lambda_{ex} = 374$ nm, $\lambda_{em} = 417$ nm) (a) and absorbance spectrum (b)
of Cl-TXO in DMF (10 ⁻⁴ M)S7
Figure S3. The reaction set-up with 45 W CFL (the power density is about 0.81 mW cm^{-2}) (a), the
output spectrum of 45 W CFL (b), the reaction set-up under sunlight (c) and gram scale reaction
set-up under sunlight (d)
Figure S4. (a) Emission spectra of Cl-TXO in DMF (10^{-4} M) in the presence of increasing 1a
concentrations excited at $\lambda = 374$ nm. (b) Stern-Volmer plot of I ₀ /I versus 1a concentration in
Cl-TXO DMF solution (I ₀ and I represent the intensities of the emission in the absence and
presence of the quencher)
Figure S5. (a) Emission spectra of Cl-TXO in DMF (10^{-4} M) in the presence of increasing 2a with
excess Li_2CO_3 in DMF excited at $\lambda = 374$ nm. (b) Stern-Volmer plot of I_0/I versus 2a in Cl-TXC
DMF solution (I ₀ and I represent the intensities of the emission in the absence and presence of the
quencher)S8
Photocatalytic CO ₂ evolution reaction
Figure S6. Time-dependent photocatalytic CO ₂ productionS8
Table S2. Optimization of photoredox-catalyzed hydroacylation of olefins S9
Scheme S2. The mechanism of photoredox-catalyzed hydroacylation of olefins
NMR data of products
References
NMR spectra

General information: α -Keto acids were synthesized by adapting the reported procedure.^{S1} All reagents were used as purchased without further purification. All solvents were obtained from commercial sources and were purified according to standard procedures. Photochemical reactions were carried with 45 W CFL (Philips), made by Philips Lighting investment (China) Co., Ltd. Column chromatography was performed on silica gel. ¹H, ¹³C and ¹⁹F NMR spectra were recorded at ambient temperature on a Varian UNITY plus-400 spectrometer. UV-vis absorption spectra were obtained on a Shimadzu UV-2600 Spectrophotometer. Photoluminescence spectra were measured on a Hitachi F2500 apparatus. High-performance liquid chromatography (HPLC) was conducted on a LC-20AT with MeOH and H₂O as the mobile phase. High resolution mass spectra (HRMS) were obtained with a MICRO TOF-Q III. Infrared (IR) spectra were recorded on a Varian 1000 spectrometer using KBr disks (4000-400 cm⁻¹).

General procedure for decarboxylative arylation of α -keto acids: A 10 mL test tube was charged with α -keto acid (0.4 mmol, 2.0 equiv), bromoarene (0.2 mmol, 1.0 equiv), NiCl₂ glyme (4.38 mg, 0.02 mmol, 10 mol%), dtbbpy (6.43 mg, 0.024 mmol, 12 mol%), Cl-TXO (9.8 mg, 0.04 mmol, 20 mol%), Li₂CO₃ (29.6 mg, 0.4 mmol, 2.0 equiv) and H₂O (54.0 mg, 3.0 mmol, 15 equiv) in 6 mL degased DMF. The reaction was stirred under a nitrogen atmosphere and irradiated with a household 45 W CFL for 24 h with a fan cooling. The pure product was obtained by column chromatography on silica gel or thin-layer chromatography (TLC) using petroleum ether (PE) and ethyl acetate (EA) as the eluent.

General procedure for hydroacylation of olefins: A 10 mL test tube was charged with α -keto acid (0.4 mmol, 2.0 equiv), Michael acceptor (0.2 mmol, 1.0 equiv), Cl-TXO (9.8 mg, 0.04 mmol, 20 mol%), Cs₂CO₃ (130 mg, 0.4 mmol, 2.0 equiv) and H₂O (0.3 mL) in 6 mL degased DMF. The reaction was stirred under a nitrogen atmosphere and irradiated with a household 45 W CFL for 24 h with a fan cooling. The pure product was obtained by column chromatography on silica gel or TLC using PE and EA as the eluent.

Radical trapping experiment

A 10 mL test tube was charged with phenylglyoxylic acid (30.0 mg, 0.2 mmol, 1.0 equiv), Cl-TXO (9.8 mg, 0.04 mmol, 20 mol%), TEMPO (62.4 mg, 0.4 mmol, 2.0 equiv), Cs_2CO_3 (130 mg, 0.4 mmol, 2.0 equiv) and degased, dried DMF (6 mL). The reaction was stirred under a 45 W CFL for 24 h. The pure 2,2,6,6-tetramethylpiperidin-1-yl benzoate was obtained by column chromatography on silica gel using PE/EA = 50/1 (v/v) as the eluent.^{S2}

Yield: 9.23 mg (18%). ¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.07 (d, *J* = 7.4, 2H), 7.57 (t, *J* = 7.1, 1H), 7.46 (t, *J* = 7.4, 2H), 1.84–1.73 (m, 2H), 1.68 (d, *J* = 13.3, 1H), 1.58 (d, *J* = 12.2, 2H), 1.46 (d, *J* = 12.3, 1H), 1.27 (s, 6H), 1.12 (s, 6H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 166.5, 132.9, 129.8, 129.6, 128.5, 60.5, 39.1, 32.0, 20.9, 17.1. QTOF-MS m/z [M + H]⁺ Calcd for C₁₆H₂₄NO₂⁺ 262.1801; Found 262.1796.

Gram scale reaction: A 100 mL flask was charged with 4-bromobenzonitrile (1.09 g, 6 mmol, 1.0 equiv), phenylglyoxylic acid (1.80 g, 12 mmol, 2.0 equiv), NiCl₂ glyme (0.132 g, 0.6 mmol, 10 mol%), dtbbpy (0.193 g, 0.72 mmol, 12 mol%), Cl-TXO (0.295 g, 1.2 mmol, 20 mol%), Li_2CO_3 (0.887 g, 12 mmol, 2.0 equiv), H_2O (1.62 g, 90 mmol, 15 equiv) and 80 mL degased DMF. The reaction was stirred under a nitrogen atmosphere and irradiated with 2 × 45 W CFLs for 72 h with a fan cooling or sunlight for 8 h. Biphenyl (0.924 g, 6 mmol) as an internal standard was added into the reaction mixture. After stirring for 30 min, the mixture was partitioned between water and ethyl acetate. The organic layer was analyzed by HPLC. Yield: 0.820 g (66% HPLC yield under 2 × 45 W CFLs) or 0.956 g (77% HPLC yield under sunlight).

Table S1. Optimization of decarboxylative arylation reaction conditions

Entry ^a	Base	Ligand	Ni cat.	H ₂ O	Solvent	Conversion	Yield
	(equiv)	(12 mol%)	(10 mol%)	(equiv)	(mL)		
1	$Li_2CO_3(2)$	dtbbpy	NiCl ₂ ·glyme	H ₂ O (15) DMF (6)		>99%	90%
2	$Li_2CO_3(2)$	dtbbpy	NiCl ₂ ·glyme	H ₂ O (15)	DMF (4)	>99%	87%
3	$Li_2CO_3(2)$	dtbbpy	NiCl ₂ ·glyme	H ₂ O (15)	DMF (2)	89%	73%
4	$Li_2CO_3(2)$	dtbbpy	Ni(OAc) ₂ ·4H ₂ O	H ₂ O (15)	DMF (6)	69%	48%
5	$Li_{2}CO_{3}(2)$	dtbbpy	NiSO ₄ ·6H ₂ O	H ₂ O (15)	DMF (6)	79%	53%
6	$Li_{2}CO_{3}(2)$	dtbbpy	NiBr ₂ ·3H ₂ O	H ₂ O (15)	DMF (6)	78%	49%
7	$Li_{2}CO_{3}(2)$	dtbbpy	Ni(acac) ₂	H ₂ O (15)	DMF (6)	44%	40%
8	$Li_2CO_3(2)$	dtbbpy	NiBr ₂	H ₂ O (15)	DMF (6)	59%	56%
9	Li ₂ CO ₃ (1.5)	dtbbpy	NiCl ₂ ·glyme	H ₂ O (15)	DMF (6)	>99%	73%
10	Li ₂ CO ₃ (1.0)	dtbbpy	NiCl ₂ ·glyme	H ₂ O (15)	DMF (6)	58%	47%
11	Li ₂ CO ₃ (0.5)	dtbbpy	NiCl ₂ ·glyme	H ₂ O (15)	DMF (6)	49%	41%
12	NaF (2)	dtbbpy	NiCl ₂ ·glyme	H ₂ O (15)	DMF (6)	20%	5%
13	$K_2HPO_4(2)$	dtbbpy	NiCl ₂ ·glyme	H ₂ O (15)	DMF (6)	35%	26%
14	$Cs_2CO_3(2)$	dtbbpy	NiCl ₂ ·glyme	H ₂ O (15)	DMF (6)	45%	33%
15	K ₂ CO ₃ (2)	dtbbpy	NiCl ₂ ·glyme	H ₂ O (15)	DMF (6)	60%	43%
16	$Na_2CO_3(2)$	dtbbpy	NiCl ₂ ·glyme	H ₂ O (15)	DMF (6)	81%	69%
17	NaOAc (2)	dtbbpy	NiCl ₂ ·glyme	H ₂ O (15)	DMF (6)	23%	17%
18	K ₃ PO ₄ (2)	dtbbpy	NiCl ₂ ·glyme	H ₂ O (15)	DMF (6)	36%	30%
19	$Li_{2}CO_{3}(2)$	dtbbpy	NiCl ₂ ·glyme	H ₂ O (15)	DMSO (6)	87%	18%
20	$Li_{2}CO_{3}(2)$	dtbbpy	NiCl ₂ ·glyme	H ₂ O (15)	MeCN (6)	19%	10%
21	$Li_{2}CO_{3}(2)$	dtbbpy	NiCl ₂ ·glyme	H ₂ O (15)	dioxane (6)	30%	21%
22	$Li_{2}CO_{3}(2)$	dtbbpy	NiCl ₂ ·glyme	H ₂ O (15)	$CH_2Cl_2(6)$	10%	7%
23	$Li_{2}CO_{3}(2)$	dtbbpy	NiCl ₂ ·glyme	H ₂ O (15)	THF (6)	42%	24%
24	$Li_{2}CO_{3}(2)$	dOMebpy	NiCl ₂ ·glyme	H ₂ O (15)	DMF (6)	>99%	76%
25	$Li_2CO_3(2)$	dMebpy	NiCl ₂ ·glyme	H ₂ O (15)	DMF (6)	>99%	75%
26	$Li_2CO_3(2)$	bpy	NiCl ₂ ·glyme	H ₂ O (15)	DMF (6)	>99%	75%
27	$Li_2CO_3(2)$	dtbbpy	NiCl ₂ ·glyme	H ₂ O (20)	DMF (6)	>99%	84%
28	$Li_2CO_3(2)$	dtbbpy	NiCl ₂ ·glyme	H ₂ O (10)	DMF (6)	73%	65%

^{*a*} **1a** (0.2 mmol, 1 equiv), **2a** (0.4 mmol, 2 equiv), NiCl₂ gylme (0.02 mmol, 10 mol%), dtbbpy (0.024 mmol, 12 mol%), Li₂CO₃ (0.4 mmol, 2.0 equiv), H₂O (3.0 mmol, 15 equiv), Cl-TXO (20 mol%), in 6 mL DMF under N₂ atmosphere, irradiation under 45 W CFL for 24 h with a fan cooling, HPLC conversion and yield. dOMebpy = 4,4'-di-methoxy-2,2'-bipyridine, dMebpy = 4,4'-di-methyl-2,2'-bipyridine, bpy = 2,2'-bipyridine.

Scheme S1. Scope of aryl iodides^a

^{*a*}**1** (0.2 mmol, 1 equiv), **2a** (0.4 mmol, 2 equiv), NiCl₂ gylme (0.02 mmol, 10 mol%), dtbbpy (0.024 mmol, 12 mol%), Li₂CO₃ (0.4 mmol, 2.0 equiv), H₂O (3.0 mmol, 15 equiv), Cl-TXO (20 mol%), in 6 mL DMF under N₂ atmosphere, irradiation under 45 W CFL with a fan cooling.

Figure S1. Cyclic voltammograms of **2a**/Li₂CO₃ (a), Cl-TXO (b) using (n-Bu)₄NPF₆ as the electrolyte (0.05 M) in DMF at 100 mV/s scan rate. Working electrode: glassy carbon electrode tip (3 mm diameter); Counter electrode: platinum wire; Reference electrode: Saturated Calomel Electrode (SCE). Upon excitation at $\lambda_{ex} = 374$ nm, the emission maxima of Cl-TXO (Figure S2) is at $\lambda_{em} = 417$ nm, which translates into the excited-state energy E_{00} (Cl-TXO*/Cl-TXO) of -2.974 V. The reduction potential of Cl-TXO* was calculated to be 1.468 V employing the equation: $E_{red}^{*} = E_{red} - E_{00}$.

Figure S2. The emission spectrum ($\lambda_{ex} = 374 \text{ nm}$, $\lambda_{em} = 417 \text{ nm}$) (a) and absorbance spectrum (b) of Cl-TXO in DMF (10^{-4} M)

Figure S3. The reaction set-up with 45 W CFL (the power density is about 0.81 mW cm⁻²) (a), the output spectrum of 45 W CFL (b), the reaction set-up under sunlight (c) and gram scale reaction set-up under sunlight (d)

Figure S4. (a) Emission spectra of Cl-TXO in DMF (10^{-4} M) in the presence of increasing **1a** concentrations excited at $\lambda = 374$ nm. (b) Stern-Volmer plot of I₀/I versus **1a** concentration in Cl-TXO DMF solution (I₀ and I represent the intensities of the emission in the absence and presence of the quencher)

Figure S5. (a) Emission spectra of Cl-TXO in DMF (10^{-4} M) in the presence of increasing **2a** with excess Li₂CO₃ in DMF excited at $\lambda = 374$ nm. (b) Stern-Volmer plot of I₀/I versus **2a** concentration in Cl-TXO DMF solution (I₀ and I represent the intensities of the emission in the absence and presence of the quencher)

Photocatalytic CO₂ evolution reaction. In a top-irradiation Pyrex vessel was added phenylglyoxylic acid (600 mg, 4 mmol, 2.0 equiv), 4-bromobenzonitrile (362 mg, 2 mmol, 1.0 equiv), NiCl₂ glyme (43.8 mg, 0.2 mmol, 10 mol%), dtbbpy (64.3 mg, 0.24 mmol, 12 mol%), Cl-TXO (98 mg, 0.4 mmol, 20 mol%), Li₂CO₃ (296 mg, 4 mmol, 2.0 equiv) and H₂O (540 mg, 30 mmol, 15 equiv) in 60 mL degased DMF. This dispersion was ultrasonicated for 30 min and the resulting suspension purged with nitrogen for 30 min to remove air. The reaction vessel was linked to a full glass automatic on-line trace gas analysis system (Labsolar-6A, Beijing Perfect Light Technology Co., Ltd, China) and the amount of CO₂ was determined using online gas chromatography (GC7900, Tianmei, China) with a TCD detector using argon as carrier gas. The photocatalytic experiments involved direct irradiation of the solution by a 300 W Xe-lamp with a cut-off filter ($\lambda > 400$ nm). The reaction temperature was maintained at 25 °C using a water-cooling system.

Figure S6. Time-dependent photocatalytic CO₂ production

~	о Ј. он	∕O ^t Bu	CI-TXO (20 m	ol%)		∠O ^t Bu
$\left[\right]$	Ϋ́ς, Ϋ́Ϋ́ς, Ϋ́Ϋ́ς, Ϋ́Ϋ́Υ`, Ϋ́Υ`, Ϋ̈́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ̈Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ̈Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ̈Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, ΫΥ`, ΫΥ`, ΫΥ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, ΫΥ``, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ`, Ϋ́Υ``, Ϋ̈Υ`, Ϋ́Υ	+ 0	base, H ₂ O		۲ مر	_
\checkmark	2a	4a			5aa	
	Entry ^a	Base	H_2O	Solvent	Vield	
		(equiv.)	(mL)	(mL)	Tielu	
	1	$Li_2CO_3(2)$	H ₂ O (0.3)	DMF (6)	27%	
	2	$Cs_2CO_3(2)$	H ₂ O (0.3)	DMF (6)	71%	
	3	$K_2HPO_4(2)$	H ₂ O (0.3)	DMF (6)	34%	
	4	$K_2CO_3(2)$	H ₂ O (0.3)	DMF (6)	57%	
	5	$Na_2CO_3(2)$	H ₂ O (0.3)	DMF (6)	37%	
	6	$K_{3}PO_{4}(2)$	H ₂ O (0.3)	DMF (6)	44%	
	7	NaF (2)	H ₂ O (0.3)	DMF (6)	7%	
	8	$Cs_2CO_3(2)$	H ₂ O (0.1)	DMF (6)	42%	
	9	$Cs_2CO_3(2)$	H ₂ O (0.2)	DMF (6)	64%	
	10	$Cs_2CO_3(2)$	H ₂ O (0.4)	DMF (6)	54%	
	11	$Cs_2CO_3(2)$	H ₂ O (0.5)	DMF (6)	50%	
	12	$Cs_2CO_3(2)$	H ₂ O (0.3)	DMSO (6)	24%	
	13	$Cs_2CO_3(2)$	H ₂ O (0.3)	MeCN (6)	32%	
	14	$Cs_2CO_3(2)$	H ₂ O (0.3)	CHCl ₃ (6)	2%	
	15	$Cs_2CO_3(2)$	H ₂ O (0.3)	MeOH (6)	11%	
	16	$Cs_2CO_3(2)$	H ₂ O (0.3)	THF (6)	6%	
	17	$Cs_2CO_3(2)$	H ₂ O (0.3)	DME (6)	53%	
	18	$Cs_2CO_3(2)$	-	DMF (6)	40%	
	19	-	H ₂ O (0.3)	DMF (6)	0	
	20^b	$Cs_2CO_3(2)$	H ₂ O (0.3)	DMF (6)	<1%	
	21 ^c	$Cs_2CO_3(2)$	H ₂ O (0.3)	DMF (6)	0	

Table S2. Optimization of photoredox-catalyzed hydroacylation of olefins

^{*a*} **2a** (0.4 mmol, 2 equiv), **4a** (0.2 mmol, 1 equiv), Cs_2CO_3 (0.4 mmol, 2.0 equiv), H_2O (0.3 mL), Cl-TXO (20 mol%), in 6 mL DMF under N₂ atmosphere, irradiation under 45 W CFL for 24 h with a fan cooling, HPLC yield. ^{*b*} Without Cl-TXO. ^{*c*} In the dark.

Scheme S2. The mechanism of photoredox-catalyzed hydroacylation of olefins

NMR data of products

4-benzoylbenzonitrile (3aa)^{S3}

Following the General Procedure with 4-bromobenzonitrile or 4-iodobenzonitrile (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3aa** (36.4 mg, 88% for 4-bromobenzonitrile; 38.5 mg, 93% for 4-iodobenzonitrile).

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.88 (d, *J* = 8.0 Hz, 2H), 7.79 (dd, *J* = 7.8, 2.8 Hz, 4H), 7.65 (t, *J* = 7.3 Hz, 1H), 7.52 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 195.3, 141.5, 136.6, 133.6, 132.4, 130.5, 130.3, 128.9, 118.3, 115.9. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₄H₁₀NO⁺ 208.0757; Found 208.0741.

phenyl(4-(trifluoromethyl)phenyl)methanone (3ba)^{S3}

Following the General Procedure with 1-bromo-4-(trifluoromethyl)benzene (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3ba** (43.0 mg) in 86% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.90 (d, *J* = 8.0 Hz, 2H), 7.81 (d, *J* = 7.5 Hz, 2H), 7.76 (d, *J* = 8.1 Hz, 2H), 7.63 (t, *J* = 7.3 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 195.8, 140.9, 136.9, 134.4 (q, *J* = 32.7 Hz), 133.3, 130.4, 130.3, 128.8, 125.6(q, *J* = 3.7 Hz), 123.9 (q, *J* = 272.6 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ = -63.01. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₄H₁₀F₃O⁺ 251.0678; Found 251.0682.

1-(4-benzoylphenyl)ethan-1-one (3ca)^{S4}

Following the General Procedure with 1-(4-bromophenyl)ethan-1-one (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3ca** (37.6 mg) in 84% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.05 (d, *J* = 8.1 Hz, 2H), 7.86 (d, *J* = 8.1 Hz, 2H), 7.80 (d, *J* = 7.5 Hz, 2H), 7.61 (t, *J* = 7.3 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 2.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 197.7, 196.1, 141.5, 139.7, 137.1, 133.2, 130.3, 130.2, 128.7, 128.4, 27.1. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₅H₁₃O₂⁺ 225.0910; Found 225.0926.

methyl 4-benzoylbenzoate (3da)^{S4}

Following the General Procedure with methyl 4-bromobenzoate (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3da** (40.8 mg) in 85% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.14 (d, *J* = 8.1 Hz, 2H), 7.81 (dd, *J* = 14.7, 7.8 Hz, 4H), 7.61 (t, *J* = 7.3 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 3.95 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 196.2, 166.5, 141.5, 137.1, 133.4, 133.1, 130.3, 129.9, 129.7, 128.6, 52.6, 1.2. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₅H₁₃O₃⁺ 241.0859; Found 241.0831.

ethyl 4-benzoylbenzoate (3ea)^{S3}

Following the General Procedure with the corresponding ethyl 4-bromobenzoate (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the yellow solid **3ea** (44.2 mg) in 87% yield.

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.15$ (d, J = 8.0 Hz, 2H), 7.81 (dd, J = 13.5, 7.9 Hz, 4H), 7.61 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.4 Hz, 2H), 4.42 (q, J = 7.0 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 196.3$, 166.0, 141.4, 137.2, 133.8, 133.1, 130.3, 129.9, 129.6, 128.6, 61.6, 14.5. QTOF-MS m/z [M + H]⁺ Calcd for C₁₆H₁₅O₃⁺ 255.1016; Found 255.1033.

4-benzoylbenzaldehyde (3fa)^{S3}

Following the General Procedure with 4-bromobenzaldehyde (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3fa** (25.6 mg) in 61% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 10.14 (s, 1H), 8.01 (d, *J* = 7.8 Hz, 2H), 7.93 (d, *J* = 7.9 Hz, 2H), 7.81 (d, *J* = 7.6 Hz, 2H), 7.64 (t, *J* = 7.2 Hz, 1H), 7.51 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 196.1, 191.9, 142.8, 138.7, 136.9, 133.4, 130.6, 130.4, 129.7, 128.7. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₄H₁₁O₂⁺ 211.0754; Found 211.0748.

3-benzoylbenzonitrile (**3ga**)^{S5}

Following the General Procedure with 3-bromobenzonitrile (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3ga** (29.4 mg) in 71% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.10–8.00 (m, 2H), 7.86 (d, *J* = 7.7 Hz, 1H), 7.77 (d, *J* = 7.5 Hz, 2H), 7.68–7.59 (m, 2H), 7.51 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 194.6, 138.8, 136.5, 135.5, 134.0, 133.6, 133.5, 130.2, 129.6, 128.9, 118.1, 113.0. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₄H₁₀NO⁺ 208.0757; Found 208.0758.

2-benzoylbenzonitrile (3ha)^{S6}

Following the General Procedure with 2-bromobenzonitrile (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3ha** (24.0 mg) in 58% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.82 (dd, *J* = 12.7, 7.6 Hz, 3H), 7.74–7.60 (m, 4H), 7.50 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 194.0, 141.7, 136.2, 134.4, 134.1, 132.3, 131.6, 130.5, 130.2, 128.8, 117.2, 112.1, 76.9. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₄H₁₀NO⁺ 208.0757; Found 208.0764.

methyl 2-benzoylbenzoate (3ia)^{S7}

Following the General Procedure with methyl 2-bromobenzoate (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3ia** (23.5 mg) in 49% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.05 (d, *J* = 7.6 Hz, 1H), 7.75 (d, *J* = 7.5 Hz, 2H), 7.65 (t, *J* = 7.3 Hz, 1H), 7.56 (dd, *J* = 16.0, 7.7 Hz, 2H), 7.43 (t, *J* = 8.5 Hz, 3H), 3.61 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 197.2, 166.6, 141.9, 137.4, 133.3, 132.6, 130.3, 129.9, 129.5, 128.7, 128.0, 52.4. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₅H₁₃O₃⁺ 241.0859; Found 241.0868.

1,2-phenylenebis(phenylmethanone) (3ja)^{S8}

Following the General Procedure with (2-bromophenyl)(phenyl)methanone (0.2 mmol) and

phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the yellow solid **3ja** (23.5 mg) in 41% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.70 (d, *J* = 7.6 Hz, 4H), 7.62 (s, 4H), 7.52 (t, *J* = 7.3 Hz, 2H), 7.38 (t, *J* = 7.6 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 196.8, 140.3, 137.4, 133.2, 130.6, 130.1, 129.9, 128.6, 53.6. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₂₀H₁₅O₂⁺ 287.1067; Found 287.1052.

4-benzoyl-2-(trifluoromethyl)benzonitrile (3ka)

Following the General Procedure with 4-bromo-2-(trifluoromethyl)benzonitrile (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3ka** (46.2 mg) in 84% yield.

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.19$ (s, 1H), 8.05 (d, J = 7.8 Hz, 1H), 7.99 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 7.6 Hz, 2H), 7.69 (t, J = 7.2 Hz, 1H), 7.55 (t, J = 7.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 193.7$, 141.7, 135.8, 135.1, 134.1, 133.5 (d, J = 33.4 Hz), 133.2, 130.3, 129.1, 127.8 (q, J = 4.6 Hz), 122.2 (q, J = 274.4 Hz), 114.9, 113.3 (q, J = 1.8 Hz). ¹⁹F NMR (377 MHz, CDCl₃) $\delta = -61.98$. m.p. = 92.8–93.5 °C. IR (KBr disc, cm⁻¹): 2962, 2927, 2856, 2229, 1746, 1668, 1598, 1498, 1450, 1429, 1319, 1262, 1205, 1176, 1098, 1049, 1023, 963, 924, 863, 798, 747, 719, 698, 666, 585, 559. QTOF-MS m/z [M + H]⁺ Calcd for C₁₅H₉F₃NO⁺ 276.0631; Found 276.0656.

(3,5-bis(trifluoromethyl)phenyl)(phenyl)methanone (3la)^{S4}

Following the General Procedure with 1-bromo-3,5-bis(trifluoromethyl)benzene (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the colorless solid **3la** (54.7 mg) in 86% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.24 (s, 2H), 8.10 (s, 1H), 7.79 (d, *J* = 7.5 Hz, 2H), 7.68 (t, *J* = 7.4 Hz, 1H), 7.56 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 193.8, 139.6, 136.1, 133.9, 132.3 (q, *J* = 34.0 Hz), 130.2, 130.0 (q, *J* = 3.3 Hz), 129.1, 125.9 (dt, *J* = 7.4, 3.7 Hz), 123.1 (q, *J* = 273.1 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ = -62.90. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₅H₉F₆O⁺ 319.0552; Found 319.0548.

3-benzoyl-5-(trifluoromethyl)benzonitrile (3ma)

Following the General Procedure with 3-bromo-5-(trifluoromethyl)benzonitrile (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3ma** (42.9 mg) in 78% yield. ¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.28 (s, 1H), 8.23 (s, 1H), 8.12 (s, 1H), 7.78 (d, *J* = 7.5 Hz, 2H), 7.70 (t, *J* = 7.2 Hz, 1H), 7.56 (t, *J* = 7.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 193.0, 139.9, 136.5, 135.7, 134.1, 132.8 (q, *J* = 34.4 Hz), 132.1 (q, *J* = 3.7 Hz), 130.6 (q, *J* = 3.5 Hz), 130.2, 129.2, 122.7 (q, *J* = 273.3 Hz), 116.8, 114.2. ¹⁹F NMR (377 MHz, CDCl₃) δ = -63.08. m.p. = 78.1–78.7 °C. IR (KBr disc, cm⁻¹): 3073, 2956, 2924, 2851, 2239, 1732, 1658, 1599, 1579, 1451, 1353, 1323, 1311, 1277, 1262, 1199, 1182, 1164, 1152, 1138, 1109, 1082, 983, 913, 888, 801, 725, 706, 692, 664, 639, 615. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₅H₉F₃NO⁺ 276.0631; Found 276.0639.

(3,5-difluorophenyl)(phenyl)methanone (3na)^{S9}

Following the General Procedure with 1-bromo-3,5-difluorobenzene (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3na** (38.8 mg) in 89% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.79 (d, *J* = 7.5 Hz, 2H), 7.64 (t, *J* = 7.3 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 2H), 7.32 (d, *J* = 5.7 Hz, 2H), 7.05 (t, *J* = 8.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 194.1, 164.2 (d, *J* = 11.7 Hz), 161.7 (d, *J* = 11.6 Hz), 136.6, 133.4, 130.2, 128.8, 113.2 (q, *J* = 6.4 Hz), 107.9 (t, *J* = 24.5 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ = -108.14. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₃H₉F₂O⁺ 219.0616; Found 219.0631.

naphthalen-2-yl(phenyl)methanone (30a)⁸⁵

Following the General Procedure with 2-bromonaphthalene (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **30a** (32.9 mg) in 71% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.27 (s, 1H), 8.00–7.89 (m, 4H), 7.87 (d, *J* = 7.5 Hz, 2H), 7.62 (d, *J* = 4.4 Hz, 2H), 7.54 (dt, *J* = 14.8, 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 197.0, 138.1, 135.5, 135.0, 132.6, 132.5, 132.1, 130.3, 129.6, 128.6, 128.5, 128.5, 128.0, 127.0, 126.0. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₇H₁₃O⁺ 233.0961; Found 233.0945.

phenyl(quinolin-3-yl)methanone (3pa)^{S10}

Following the General Procedure with 3-bromoquinoline (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 10/1 (v/v) as the eluent, to yield the white solid **3pa** (28.0 mg) in 60% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 9.33 (s, 1H), 8.56 (s, 1H), 8.19 (d, *J* = 8.4 Hz, 1H), 7.92 (d, *J* = 8.1 Hz, 1H), 7.86 (t, *J* = 8.0 Hz, 3H), 7.65 (q, *J* = 7.4 Hz, 2H), 7.54 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 195.1, 150.5, 149.7, 139.0, 137.2, 133.3, 132.1, 130.3, 130.2, 129.7, 129.4, 128.9, 127.8, 126.8. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₆H₁₂NO⁺ 234.0913; Found 234.0916.

phenyl(6-(trifluoromethyl)pyridin-2-yl)methanone (3qa)

Following the General Procedure with 2-bromo-6-(trifluoromethyl)pyridine or 2-chloro-6-(trifluoromethyl)pyridine (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 10/1 (v/v) as the eluent, to yield the yellow oil **3qa** (39.2 mg, 78% for 2-bromo-6-(trifluoromethyl)pyridine; 25.6 mg, 51% for 2-chloro-6-(trifluoromethyl)pyridine).

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.24 (d, *J* = 7.8 Hz, 1H), 8.19 (d, *J* = 7.6 Hz, 2H), 8.10 (t, *J* = 7.8 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 1H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 191.9, 155.4, 147.2 (q, *J* = 35.4 Hz), 141.1, 138.9, 135.6, 134.4, 133.6, 131.5, 130.7, 128.9, 128.5, 127.3, 122.9 (q, *J* = 2.5 Hz), 121.4 (q, *J* = 274.5 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ = -67.89. IR (KBr disc, cm⁻¹): 2958, 2924, 2853, 1735, 1638, 1495, 1459, 1394, 1378, 1347, 1314, 1252, 1189, 1157, 1079, 1066, 1057, 969, 878, 816, 712, 585. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₃H₉F₃NO⁺ 252.0631; Found 252.0650.

1-(6-benzoylpyridin-2-yl)ethan-1-one (3ra)

Following the General Procedure with 1-(6-bromopyridin-2-yl)ethan-1-one (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 10/1 (v/v) as the eluent, to yield the yellow oil **3ra** (36.0 mg) in 80% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.22 (dd, *J* = 13.1, 7.8 Hz, 2H), 8.16 (d, *J* = 7.7 Hz, 2H), 8.04 (t, *J* = 7.7 Hz, 1H), 7.61 (t, *J* = 7.3 Hz, 1H), 7.50 (t, *J* = 7.5 Hz, 2H), 2.67 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 199.6, 192.7, 154.3, 152.2, 138.3, 136.1, 133.2, 131.3, 128.2, 127.9, 124.0, 25.9. IR (KBr disc, cm⁻¹): 3061, 1702, 1666, 1597, 1577, 1447, 1418, 1358, 1322, 1309,

1238, 1166, 1107, 1080, 995, 952, 836, 814, 786, 739, 716, 692, 642, 628, 594. QTOF-MS m/z [M + H]⁺ Calcd for C₁₄H₁₂NO₂⁺ 226.0862; Found 226.0868.

(4-bromophenyl)(phenyl)methanone (3sa)^{S3}

Following the General Procedure with 1-bromo-4-iodobenzene (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3sa** (38.9 mg) in 75% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.77 (d, *J* = 7.5 Hz, 2H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.61 (dd, *J* = 12.9, 7.8 Hz, 3H), 7.49 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 195.9, 137.4, 136.5, 132.9, 131.8, 131.8, 130.2, 128.6, 127.7. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₃H₁₀BrO⁺ 260.9910; Found 260.9912.

benzophenone (3ta)^{S7}

Following the General Procedure with iodobenzene (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3ta** (26.6 mg) in 73% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.81 (d, *J* = 7.5 Hz, 4H), 7.59 (t, *J* = 7.3 Hz, 2H), 7.49 (t, *J* = 7.5 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 197.0, 137.8, 132.6, 130.3, 128.5. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₃H₁₁O⁺ 183.0804; Found 183.0812.

phenyl(p-tolyl)methanone (3ua)^{S3}

Following the General Procedure with 1-iodo-4-methylbenzene (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3ua** (20.0 mg) in 51% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.78 (d, *J* = 7.5 Hz, 2H), 7.72 (d, *J* = 7.7 Hz, 2H), 7.58 (t, *J* = 7.2 Hz, 1H), 7.47 (t, *J* = 7.3 Hz, 2H), 7.28 (d, *J* = 7.7 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 196.8, 143.5, 138.2, 135.1, 132.4, 130.5, 130.2, 129.2, 128.4, 21.9. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₄H₁₃O⁺ 197.0961; Found 197.0946.

(4-methoxyphenyl)(phenyl)methanone (3va)^{S3}

Following the General Procedure with 1-iodo-4-methoxybenzene (0.2 mmol) phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3va** (22.0 mg) in 52% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.82 (d, *J* = 8.6 Hz, 2H), 7.75 (d, *J* = 7.4 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 6.96 (d, *J* = 8.6 Hz, 2H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 195.8, 163.4, 138.5, 132.8, 132.1, 130.4, 129.9, 128.4, 113.8, 55.7. QTOF-MS *m*/*z* m/*z* [M + H]⁺ Calcd for C₁₄H₁₃O₂⁺ 213.0910; Found 213.0911.

(4-(tert-butyl)phenyl)(phenyl)methanone (3wa)^{S5}

Following the General Procedure with 1-(tert-butyl)-4-iodobenzene (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the yellow oil **3wa** (24.3 mg) in 51% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.85 (dd, *J* = 15.8, 7.8 Hz, 4H), 7.65 (t, *J* = 7.2 Hz, 1H), 7.60–7.49 (m, 4H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 196.7, 156.4, 138.2, 135.0, 132.4, 130.4, 130.2, 128.4, 125.5, 35.3, 31.4. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₇H₁₉O⁺ 239.1430; Found 239.1438.

phenyl(m-tolyl)methanone (3xa)^{S3}

Following the General Procedure with 1-iodo-3-methylbenzene (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3xa** (17.6 mg) in 45% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.79 (d, *J* = 7.6 Hz, 2H), 7.62 (s, 1H), 7.56 (d, *J* = 6.1 Hz, 2H), 7.45 (t, *J* = 7.4 Hz, 2H), 7.35 (dt, *J* = 15.0, 7.3 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 197.0, 138.2, 137.8, 137.7, 133.3, 132.4, 130.5, 130.1, 128.3, 128.2, 127.5, 21.4. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₄H₁₃O⁺ 197.0961; Found 197.0973.

phenyl(pyridin-4-yl)methanone (3ya)^{S11}

Following the General Procedure with 4-iodopyridine (0.2 mmol) and phenylglyoxylic acid (0.4

mmol). The crude product was purified by preparative TLC, using PE/EA = 10/1 (v/v) as the eluent, to yield the white solid **3ya** (22.3 mg) in 61% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.80 (d, *J* = 4.5 Hz, 2H), 7.81 (d, *J* = 7.5 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.57 (d, *J* = 5.2 Hz, 2H), 7.51 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 195.4, 150.6, 144.6, 136.1, 133.7, 130.3, 128.9, 123.1. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₂H₁₀NO⁺ 184.0757; Found 184.0736.

benzo[d][1,3]dioxol-5-yl(phenyl)methanone (3za)^{S3}

Following the General Procedure with 5-iodobenzo[*d*][1,3]dioxole (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3za** (20.3 mg) in 45% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.74 (d, *J* = 7.4 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.37 (d, *J* = 7.7 Hz, 2H), 6.86 (d, *J* = 8.1 Hz, 1H), 6.06 (s, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 195.3, 151.7, 148.1, 138.3, 132.2, 132.1, 129.9, 128.4, 127.1, 110.1, 107.9, 102.0. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₄H₁₁O₃⁺ 227.0703; Found 227.0698.

4-(4-methylbenzoyl)benzonitrile (3ab)^{S12}

Following the General Procedure with 4-bromobenzonitrile (0.2 mmol) and 2-oxo-2-(p-tolyl)acetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3ab** (40.7 mg) in 92% yield. ¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.84 (d, *J* = 7.9 Hz, 2H), 7.77 (d, *J* = 8.0 Hz, 2H), 7.69 (d, *J* = 7.8 Hz, 2H), 7.30 (d, *J* = 7.8 Hz, 2H), 2.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 194.9, 144.6, 141.8, 133.8, 132.3, 130.5, 130.3, 129.5, 118.3, 115.6, 21.9. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₅H₁₂NO⁺ 222.0913; Found 222.0913.

4-(4-methoxybenzoyl)benzonitrile (3ac)^{S5}

Following the General Procedure with 4-bromobenzonitrile (0.2 mmol) and 2-(4-methoxyphenyl)-2-oxoacetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3ac** (44.1 mg) in 93% yield. ¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.79 (q, *J* = 8.0 Hz, 6H), 6.98 (d, *J* = 8.6 Hz, 2H), 3.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 193.9, 164.1, 142.3, 132.8, 132.3, 130.1, 129.1, 118.3, 115.3, 114.1, 55.8. QTOF-MS *m/z* [M + H]⁺ Calcd for C₁₅H₁₂NO₂⁺ 238.0863; Found 238.0867.

4-(4-pentylbenzoyl)benzonitrile (3ad)

General and Following the Procedure with 4-bromobenzonitrile (0.2)mmol) 2-oxo-2-(4-pentylphenyl)acetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the yellow oil **3ad** (49.9 mg) in 90% yield. ¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 7.88 - 7.84$ (m, 2H), 7.80 - 7.76 (m, 2H), 7.73 - 7.69 (m, 2H), 7.31 (d, J = 8.3 Hz, 2H), 2.74–2.65 (m, 2H), 1.66 (dt, J = 15.1, 7.5 Hz, 2H), 1.35 (dd, J = 7.2, 3.8 Hz, 4H), 0.90 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 195.0, 149.6, 141.9,$ 134.0, 132.3, 130.5, 130.3, 128.9, 118.3, 115.6, 36.2, 31.6, 31.0, 22.7, 14.2. IR (KBr disc, cm⁻¹): 2956, 2929, 2858, 2231, 1741, 1661, 1606, 1557, 1466, 1413, 1403, 1310, 1277, 1177, 1144, 1110, 1019, 930, 861, 763, 684, 634, 585, 543. QTOF-MS m/z [M + H]⁺ Calcd for C₁₉H₂₀NO⁺ 278.1539; Found 278.1540.

4-(4-(dimethylamino)benzoyl)benzonitrile (3ae)^{S13}

Following the General Procedure with 4-bromobenzonitrile (0.2 mmol) and 2-(4-(dimethylamino)phenyl)-2-oxoacetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 10/1 (v/v) as the eluent, to yield the yellow solid **3ae** (41.0 mg) in 82% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.76 (dt, *J* = 8.9, 6.9 Hz, 6H), 6.68 (d, *J* = 9.0 Hz, 2H), 3.10 (s, 6H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 193.3, 154.0, 143.6, 133.0, 132.2, 129.9, 123.7, 118.6, 114.6, 110.9, 40.3. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₆H₁₅N₂O⁺ 251.1179; Found 251.1172.

4-(4-fluorobenzoyl)benzonitrile (3af)^{S14}

Following the General Procedure with 4-bromobenzonitrile (0.2 mmol) and 2-(4-fluorophenyl)-2-oxoacetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3af** (23.4 mg) in 52% yield. ¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.82 (q, *J* = 8.1 Hz, 6H), 7.19 (t, *J* = 8.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 193.7, 166.1 (d, *J* = 256.0 Hz), 141.3, 133.0 (d, *J* = 9.3 Hz), 132.8 (d, *J* = 2.9 Hz), 132.5, 130.3, 117.0 (d, *J* = 217.2 Hz), 116.2, 116.0. ¹⁹F NMR (377 MHz, CDCl₃) δ = -104.00. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₄H₉FNO⁺ 226.0663; Found 226.0675.

4-(3-methylbenzoyl)benzonitrile (3ag)^{S15}

the General Following Procedure with 4-bromobenzonitrile (0.2)mmol) and 2-oxo-2-(m-tolyl)acetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3ag** (36.2 mg) in 82% yield. ¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.86 (d, J = 7.9 Hz, 2H), 7.78 (d, J = 8.0 Hz, 2H), 7.60 (s, 1H), 7.54 (d, J = 7.4 Hz, 1H), 7.44 (d, J = 7.3 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 195.4, 141.6, 138.8, 136.6, 134.3, 132.3, 130.6, 130.4, 128.6, 127.6, 118.2, 115.7, 21.5. QTOF-MS m/z [M + H]⁺ Calcd for C₁₅H₁₂NO⁺ 222.0913; Found 222.0919.

4-(3-(tert-butyl)benzoyl)benzonitrile (3ah)

Following the General Procedure with 4-bromobenzonitrile (0.2 mmol) and 2-(3-(tert-butyl)phenyl)-2-oxoacetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3ah** (42.1 mg) in 80% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.87 (t, *J* = 6.8 Hz, 3H), 7.79 (d, *J* = 8.3 Hz, 2H), 7.68 (d, *J* = 7.8 Hz, 1H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.7 Hz, 1H), 1.35 (s, 9H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 195.6, 152.2, 141.7, 136.3, 132.3, 130.7, 130.4, 128.4, 127.8, 127.0, 118.3, 115.8, 35.1, 31.4. m.p. = 97.3–98.0 °C. IR (KBr disc, cm⁻¹): 2960, 2924, 2869, 2229, 1733, 1656, 1605, 1458, 1395, 1379, 1364, 1315, 1298, 1248, 1081, 952, 855, 816, 766, 745, 712, 605, 547. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₈H₁₈NO⁺ 264.1383; Found 264.1366.

4-(3,5-dimethylbenzoyl)benzonitrile (3ai)

Following the General Procedure with 4-bromobenzonitrile (0.2 mmol) and 2-(3,5-dimethylphenyl)-2-oxoacetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3ai** (39.5 mg) in 84% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.86 (d, J = 8.0 Hz, 2H), 7.78 (d, J = 8.0 Hz, 2H), 7.37 (s, 2H), 7.26 (s, 1H), 2.38 (s, 6H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 195.7, 141.8, 138.6, 136.7, 135.2, 132.3, 130.4, 128.0, 118.3, 115.7, 21.4. m.p. = 104.1–104.9 °C. IR (KBr disc, cm⁻¹): 2958,

2923, 2229, 1732, 1668, 1632, 1457, 1382, 1317, 1228, 1066, 1050, 866, 851, 763, 716, 605, 549. QTOF-MS m/z [M + H]⁺ Calcd for C₁₆H₁₄NO⁺ 236.1070; Found 236.1073.

4-(2,4,6-trimethylbenzoyl)benzonitrile (3aj)

Following the General Procedure with 4-bromobenzonitrile (0.2 mmol) and 2-mesityl-2-oxoacetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3aj** (36.4 mg) in 73% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.88 (d, *J* = 7.8 Hz, 2H), 7.75 (d, *J* = 7.9 Hz, 2H), 6.91 (s, 2H), 2.33 (s, 3H), 2.05 (s, 6H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 199.5, 140.4, 139.5, 135.8, 134.4, 132.9, 129.8, 128.8, 118.1, 116.9, 21.4, 19.6. m.p. = 127.5–128.2 °C. IR (KBr disc, cm⁻¹): 2954, 2923, 2229, 1670, 1608, 1568, 1455, 1406, 1378, 1313, 1292, 1265, 1171, 1034, 959, 911, 861, 848, 769, 740, 692, 561, 549, 534. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₇H₁₆NO⁺ 250.1226; Found 250.1234.

4-(2-methylbenzoyl)benzonitrile (3ak)^{S16}

Following the General Procedure with 4-bromobenzonitrile (0.2 mmol) and 2-oxo-2-(o-tolyl)acetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the colorless oil **3ak** (33.2 mg) in 75% yield. ¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.89 (d, *J* = 8.0 Hz, 2H), 7.77 (d, *J* = 8.0 Hz, 2H), 7.45 (t, *J* = 6.7 Hz, 1H), 7.34 (d, *J* = 7.6 Hz, 1H), 7.31–7.24 (m, 2H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 197.0, 141.3, 137.7, 137.2, 132.5, 131.6, 131.4, 130.5, 129.1, 125.6, 118.2, 116.4, 20.3. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₅H₁₂NO⁺ 222.0913; Found 222.0906.

4-(2-methoxybenzoyl)benzonitrile (3al)^{S17}

Following the General Procedure with 4-bromobenzonitrile (0.2)mmol) and 2-(2-methoxyphenyl)-2-oxoacetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the yellow solid **3al** (36.5 mg) in 77% yield. ¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.85 (d, J = 8.3 Hz, 2H), 7.72 (d, J = 8.3 Hz, 2H), 7.54– 7.50 (m, 1H), 7.43 (dd, J = 7.5, 1.6 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 3.68 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 195.2, 157.8, 141.7, 133.3, 132.3, 130.4, 129.9, 127.6, 121.1, 118.41, 115.9, 111.7, 55.7. QTOF-MS m/z [M + H]⁺ Calcd for C₁₅H₁₂NO₂⁺ 238.0863; Found 238.0879.

4-(2,5-dimethoxybenzoyl)benzonitrile (3am)

Following the General Procedure with 4-bromobenzonitrile (0.2 mmol) and 2-(2,5-dimethylphenyl)-2-oxoacetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the yellow solid **3am** (38.4 mg) in 72% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.86 (d, *J* = 7.9 Hz, 2H), 7.73 (d, *J* = 7.9 Hz, 2H), 7.06 (d, *J* = 8.9 Hz, 1H), 6.98 (s, 1H), 6.93 (d, *J* = 9.0 Hz, 1H), 3.80 (s, 3H), 3.62 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 195.0, 154.0, 152.0, 141.6, 132.3, 130.0, 128.1, 119.0, 118.4, 116.0, 114.9, 113.3, 56.3, 56.1. m.p. = 72.8–73.4 °C. IR (KBr disc, cm⁻¹): 2957, 2924, 2852, 2229, 1734, 1676, 1605, 1587, 1495, 1467, 1422, 1316, 1287, 1265, 1221, 1185, 1153, 1081, 1049, 1022, 967, 865, 850, 811, 771, 721, 693. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₆H₁₄NO₃⁺ 268.0968; Found 268.0981.

4-(furan-2-carbonyl)benzonitrile (3an)^{S18}

Following the General Procedure with 4-bromobenzonitrile (0.2 mmol) and 2-(furan-2-yl)-2-oxoacetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the yellow solid **3an** (20.1 mg) in 51% yield. ¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.08 (d, *J* = 8.6 Hz, 2H), 7.80 (d, *J* = 8.6 Hz, 2H), 7.74 (d, *J* = 1.0 Hz, 1H), 7.31 (d, *J* = 3.6 Hz, 1H), 6.65 (dd, *J* = 3.6, 1.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 180.8, 152.1, 148.0, 140.8, 132.5, 129.9, 121.5, 118.2, 116.1, 112.9. QTOF-MS m/z [M + H]⁺ Calcd for C₁₂H₈NO₂⁺ 198.0550; Found 198.0538.

4-acetylbenzonitrile (3ao)^{S19}

Following the General Procedure with 4-bromobenzonitrile (0.2 mmol) and 2-oxopropanoic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **3ao** (12.8 mg) in 44% yield.

¹H NMR (400 MHz, CDCl₃, ppm) $\delta = 8.04$ (d, J = 8.0 Hz, 2H), 7.77 (d, J = 8.0 Hz, 2H), 2.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 196.7$, 140.1, 132.7, 128.9, 118.1, 116.6, 26.9. QTOF-MS m/z [M + H]⁺ Calcd for C₉H₈NO⁺ 146.0600; Found 146.0612.

4-(3-methylbutanoyl)benzonitrile (3ap)^{S20}

Following the General Procedure with 4-bromobenzonitrile (0.2 mmol) and 4-methyl-2-oxopentanoic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the colorless oil **3ap** (17.2 mg) in 46% yield. ¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.02 (d, *J* = 8.1 Hz, 2H), 7.75 (d, *J* = 8.1 Hz, 2H), 2.84 (d, *J* = 6.8 Hz, 2H), 2.36–2.20 (m, 1H), 0.99 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 198.9, 140.5, 132.7, 128.7, 118.2, 116.3, 47.9, 25.1, 22.8. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₂H₁₄NO⁺ 188.1070; Found 188.1073.

4-cyano-N-methyl-N-phenylbenzamide (3aq)^{S21}

Following the General Procedure with 4-bromobenzonitrile (0.2 mmol) and 2-(methyl(phenyl)amino)-2-oxoacetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 10/1 (v/v) as the eluent, to yield the yellow solid **3aq** (29.3 mg) in 62% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.46 (d, *J* = 7.9 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.26–7.23 (m, 2H), 7.22–7.17 (m, 1H), 7.02 (d, *J* = 7.4 Hz, 2H), 3.51 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 168.8, 144.1, 140.5, 131.8, 129.7, 129.4, 127.5, 127.1, 118.3, 113.4, 38.5. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₅H₁₃N₂O⁺ 237.1022; Found 237.1018.

tert-butyl 4-oxo-4-phenylbutanoate (5aa)^{S22}

Following the General Procedure with *tert*-butyl acrylate (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the yellow oil **5aa** (31.4 mg) in 67% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.97 (d, *J* = 8.2 Hz, 2H), 7.54 (t, *J* = 7.9 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 2H), 3.24 (t, *J* = 6.7 Hz, 2H), 2.67 (t, *J* = 6.7 Hz, 2H), 1.44 (s, 9H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 198.5, 172.3, 136.9, 133.2, 128.7, 128.2, 80.7, 33.6, 29.6, 28.2. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₄H₁₉O₃⁺ 235.1329; Found 235.1335.

tert-butyl 4-oxo-4-(p-tolyl)butanoate (5ab)^{S22}

Following the General Procedure with *tert*-butyl acrylate (0.2 mmol) and 2-oxo-2-(p-tolyl)acetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the yellow solid **5ab** (33.7 mg) in 68% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.88 (d, *J* = 7.8 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 3.23 (t, *J* = 6.6 Hz, 2H), 2.67 (t, *J* = 6.6 Hz, 2H), 2.41 (s, 3H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 198.2, 172.4, 144.0, 134.5, 129.4, 128.3, 80.7, 33.5, 29.7, 28.3, 21.8. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₅H₂₁O₃⁺ 249.1485; Found 249.1482.

tert-butyl 4-(4-methoxyphenyl)-4-oxobutanoate (5ac)^{S22}

Following the General with Procedure *tert*-butyl acrylate (0.2)mmol) and 2-(4-methoxyphenyl)-2-oxoacetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the yellow solid **5ac** (37.5 mg) in 71% yield. ¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.96 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 8.7 Hz, 2H), 3.85 (s, 3H), 3.20 (t, J = 6.7 Hz, 2H), 2.65 (t, J = 6.7 Hz, 2H), 1.44 (s, 9H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 197.1, 172.5, 163.7, 130.5, 130.1, 113.9, 80.7, 55.6, 33.3, 29.8, 28.3. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₅H₂₁O₄⁺ 265.1434; Found 265.1430.

tert-butyl 4-(4-(dimethylamino)phenyl)-4-oxobutanoate (5ad)

Following the General Procedure with *tert*-butyl acrylate (0.2 mmol) and 2-(4-(dimethylamino)phenyl)-2-oxoacetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the yellow oil **5ad** (38.8 mg) in 70% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.89 (d, *J* = 8.6 Hz, 2H), 6.65 (d, *J* = 8.6 Hz, 2H), 3.17 (t, *J* = 6.8 Hz, 2H), 3.05 (s, 6H), 2.65 (t, *J* = 6.8 Hz, 2H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 196.6, 172.8, 153.6, 130.4, 125.1, 110.9, 80.6, 40.3, 32.9, 30.1, 28.3. IR (KBr disc, cm⁻¹): 2957, 2924, 2853, 1726, 1663, 1601, 1554, 1529, 1457, 1366, 1259, 1232, 1188, 1152, 1081, 945, 852, 817, 807. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₆H₂₄NO₃⁺ 278.1751; Found 278.1746.

tert-butyl 4-(4-fluorophenyl)-4-oxobutanoate (5ae)^{S22}

Following the General Procedure with *tert*-butyl acrylate (0.2 mmol) and 2-(4-fluorophenyl)-2-oxoacetic acid (0.4 mmol). The crude product was purified by preparative

TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **5ae** (21.2 mg) in 42% yield. ¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.05–7.95 (m, 2H), 7.12 (t, *J* = 8.5 Hz, 2H), 3.22 (t, *J* = 6.5 Hz, 2H), 2.67 (t, *J* = 6.5 Hz, 2H), 1.44 (s, 9H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 196.9, 172.3, 165.9 (d, *J* = 254.4 Hz), 133.4 (d, *J* = 3.2 Hz), 130.9 (d, *J* = 9.2 Hz), 115.9 (d, *J* = 21.9 Hz), 80.9, 33.6, 29.6, 28.3. ¹⁹F NMR (377 MHz, CDCl₃, ppm) δ = -105.31. QTOF-MS *m/z* [M + H]⁺ Calcd for C₁₄H₁₈FO₃⁺ 253.1234; Found 253.1245.

tert-butyl 4-(4-chlorophenyl)-4-oxobutanoate (5af)^{S22}

Following the General Procedure with *tert*-butyl acrylate (0.2 mmol) and 2-(4-chlorophenyl)-2-oxoacetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the yellow solid **5af** (23.6 mg) in 44% yield. ¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.92 (d, *J* = 7.9 Hz, 2H), 7.43 (d, *J* = 7.9 Hz, 2H), 3.22 (t, *J* = 6.4 Hz, 2H), 2.67 (t, *J* = 6.4 Hz, 2H), 1.44 (s, 9H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 197.4, 172.2, 139.8, 135.3, 129.7, 129.1, 80.9, 33.6, 29.6, 28.3. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₄H₁₈ClO₃⁺ 269.0939; Found 269.0946.

tert-butyl 4-oxo-4-(m-tolyl)butanoate (5ag)^{S22}

Following the General Procedure with *tert*-butyl acrylate (0.2 mmol) and 2-oxo-2-(m-tolyl)acetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the yellow oil **5ag** (31.2 mg) in 63% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.77 (d, *J* = 8.8 Hz, 2H), 7.41–7.29 (m, 2H), 3.24 (t, *J* = 6.6 Hz, 2H), 2.67 (t, *J* = 6.6 Hz, 2H), 2.40 (s, 3H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 198.8, 172.4, 138.5, 136.9, 134.0, 128.8, 128.6, 125.4, 80.8, 33.7, 29.7, 28.3, 21.5. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₅H₂₁O₃⁺ 249.1485; Found 249.1473.

tert-butyl 4-oxo-4-(o-tolyl)butanoate (5ah)^{S22}

Following the General Procedure with *tert*-butyl acrylate (0.2 mmol) and 2-oxo-2-(o-tolyl)acetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the yellow oil **5ah** (29.8 mg) in 60% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.70 (d, *J* = 7.6 Hz, 1H), 7.37 (t, *J* = 7.3 Hz, 1H), 7.26 (dd, *J* = 12.7, 6.6 Hz, 2H), 3.16 (t, *J* = 6.5 Hz, 2H), 2.66 (t, *J* = 6.5 Hz, 2H), 2.49 (s, 3H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 202.6, 172.4, 138.2, 137.9, 132.1, 131.5, 128.6, 125.9, 80.8, 36.5, 29.9, 28.3, 21.4. QTOF-MS $m/z [M + H]^+$ Calcd for $C_{15}H_{21}O_3^+$ 249.1485; Found 249.1490.

tert-butyl 4-(2,5-dimethylphenyl)-4-oxobutanoate (5ai)

Following the General Procedure with *tert*-butyl acrylate (0.2 mmol) and 2-(2,5-dimethylphenyl)-2-oxoacetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the colorless oil **5ai** (32.0 mg) in 61% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.49 (s, 1H), 7.17 (d, *J* = 7.8 Hz, 1H), 7.12 (d, *J* = 7.8 Hz, 1H), 3.15 (t, *J* = 6.6 Hz, 2H), 2.65 (t, *J* = 6.6 Hz, 2H), 2.43 (s, 3H), 2.35 (s, 3H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 202.7, 172.4, 137.9, 135.4, 135.0, 132.2, 132.0, 129.2, 80.8, 36.5, 29.9, 28.3, 21.1, 20.9. IR (KBr disc, cm⁻¹): 2961, 2925, 1731, 1689, 1638, 1571, 1496, 1457, 1393, 1367, 1290, 1259, 1236, 1154, 1081, 1038, 971, 848, 814. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₆H₂₃O₃⁺ 263.1642; Found 263.1638.

tert-butyl 4-(2,5-dimethoxyphenyl)-4-oxobutanoate (5aj)^{S23}

Following the General Procedure with *tert*-butyl acrylate (0.2 mmol) and 2-(2,5-dimethoxyphenyl)-2-oxoacetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the yellow solid **5aj** (36.5 mg) in 62% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.29 (d, *J* = 3.2 Hz, 1H), 7.01 (dd, *J* = 9.0, 3.2 Hz, 1H), 6.90 (d, *J* = 9.0 Hz, 1H), 3.86 (s, 3H), 3.77 (s, 3H), 3.26 (t, *J* = 6.7 Hz, 2H), 2.61 (t, *J* = 6.7 Hz, 2H), 1.44 (s, 9H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 200.1, 172.6, 153.6, 153.6, 128.0, 120.5, 114.1, 113.3, 80.5, 56.2, 56.0, 39.1, 30.1, 28.3. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₆H₂₃O₅⁺ 295.1540; Found 295.1540.

tert-butyl 4-(naphthalen-2-yl)-4-oxobutanoate (5ak)^{S22}

Following the General Procedure with *tert*-butyl acrylate (0.2 mmol) and 2-(naphthalen-2-yl)-2-oxoacetic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the yellow solid **5ak** (29.0 mg) in 51% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.52 (s, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 7.97 (d, *J* = 7.9 Hz,

1H), 7.89 (t, J = 8.1 Hz, 2H), 7.58 (dt, J = 14.7, 6.9 Hz, 2H), 3.41 (t, J = 6.7 Hz, 2H), 2.74 (t, J = 6.7 Hz, 2H), 1.46 (s, 9H). ¹³C NMR (101 MHz, CDCl₃, ppm) $\delta = 198.5$, 172.5, 135.8, 134.3, 132.8, 129.9, 129.8, 128.7, 128.0, 127.0, 124.0, 80.9, 33.8, 29.8, 28.3. QTOF-MS m/z [M + H]⁺ Calcd for C₁₈H₂₁O₃⁺ 285.1485; Found 285.1480.

ethyl 4-oxo-4-phenylbutanoate (5ba)^{S22}

Following the General Procedure with ethyl acrylate (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the yellow oil **5ba** (27.6 mg) in 67% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.98 (d, *J* = 7.5 Hz, 2H), 7.57 (t, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.31 (t, *J* = 6.6 Hz, 2H), 2.76 (t, *J* = 6.6 Hz, 2H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 198.4, 173.1, 136.8, 133.4, 128.8, 128.2, 60.9, 33.6, 28.5, 14.4. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₂H₁₅O₃⁺ 207.1016; Found 207.1023.

ethyl 2-methyl-4-oxo-4-phenylbutanoate (5ca)^{S24}

Following the General Procedure with ethyl methacrylate (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the yellow oil **5ca** (28.2 mg) in 64% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.97 (d, *J* = 7.6 Hz, 2H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 2H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.48 (dd, *J* = 17.5, 7.8 Hz, 1H), 3.20 – 3.06 (m, 1H), 3.01 (dd, *J* = 17.5, 5.4 Hz, 1H), 1.26 (dd, *J* = 15.1, 7.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 198.3, 176.2, 136.9, 133.4, 128.8, 128.2, 77.6, 77.2, 76.9, 60.8, 42.1, 35.2, 17.5, 14.4. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₃H₁₇O₃⁺ 221.1172; Found 221.1170.

cyclohexyl 4-oxo-4-phenylbutanoate (5da)^{S25}

Following the General Procedure with cyclohexyl acrylate (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the colorless oil **5da** (34.8 mg) in 67% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.98 (d, *J* = 7.7 Hz, 2H), 7.56 (t, *J* = 7.1 Hz, 1H), 7.46 (t, *J* = 7.4 Hz, 2H), 4.77 (dd, *J* = 10.0, 6.4 Hz, 1H), 3.30 (t, *J* = 6.5 Hz, 2H), 2.74 (t, *J* = 6.4 Hz, 2H), 1.83 (d, *J* = 5.1 Hz, 2H), 1.71 (d, *J* = 10.7 Hz, 2H), 1.58–1.48 (m, 1H), 1.46–1.29 (m, 4H), 1.24 (t, *J* = 10.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 198.4, 172.5, 136.9, 133.3, 128.8, 128.2,

73.1, 33.6, 31.8, 28.9, 25.6, 23.9. QTOF-MS $m/z [M + H]^+$ Calcd for $C_{16}H_{21}O_3^+$ 261.1485; Found 261.1470.

dimethyl 2-benzoylsuccinate (5ea)^{S26}

Following the General Procedure with dimethyl fumarate (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the yellow oil **5ea** (36.0 mg) in 72% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.04 (d, *J* = 7.6 Hz, 2H), 7.60 (t, *J* = 7.3 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 4.89 (t, *J* = 7.2 Hz, 1H), 3.68 (d, *J* = 1.7 Hz, 6H), 3.07 (qd, *J* = 17.4, 7.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 194.2, 171.9, 169.4, 135.9, 134.0, 129.1, 129.0, 53.1, 52.3, 49.5, 33.3. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₃H₁₅O₅⁺ 251.0914; Found 251.0929.

diethyl 2-(1-oxo-1-phenylpropan-2-yl)malonate (5fa)^{S27}

Following the General Procedure with diethyl 2-ethylidenemalonate (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the colorless oil **5fa** (42.6 mg) in 73% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.00 (d, *J* = 7.7 Hz, 2H), 7.57 (t, *J* = 7.2 Hz, 1H), 7.48 (t, *J* = 7.4 Hz, 2H), 4.26 (dd, *J* = 13.9, 6.9 Hz, 2H), 4.22–4.15 (m, 1H), 4.15–4.03 (m, 2H), 3.99 (d, *J* = 10.8 Hz, 1H), 1.31 (t, *J* = 7.0 Hz, 3H), 1.17 (dd, *J* = 15.2, 7.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 201.8, 169.0, 168.6, 135.8, 133.4, 128.9, 128.7, 61.9, 61.9, 55.1, 40.7, 16.1, 14.4, 14.1. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₁₆H₂₁O₅⁺ 293.1384; Found 293.1383.

1,2,4-triphenylbutane-1,4-dione (5ga)^{S28}

Following the General Procedure with chalcone (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **5ga** (38.3 mg) in 61% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.04 (d, *J* = 7.6 Hz, 2H), 7.98 (d, *J* = 7.6 Hz, 2H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.43 (ddd, *J* = 32.6, 16.7, 7.5 Hz, 7H), 7.31 (t, *J* = 7.3 Hz, 2H), 7.26–7.20 (m, 1H), 5.33 (dd, *J* = 9.8, 2.6 Hz, 1H), 4.22 (dd, *J* = 18.0, 10.1 Hz, 1H), 3.30 (dd, *J* = 18.0, 2.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 199.1, 198.3, 138.8, 136.7, 133.4, 133.1, 129.4, 129.1, 128.8, 128.7, 128.4, 128.4, 127.6, 48.9, 44.1. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₂₂H₁₉O₂⁺ 315.1380; Found 315.1369. 2-(4-fluorophenyl)-1,4-diphenylbutane-1,4-dione (5ha)

Following the General Procedure with 3-(4-fluorophenyl)-1-phenylprop-2-en-1-one (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **5ha** (48.5mg) in 73% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.00 (dd, *J* = 15.5, 7.6 Hz, 4H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.51 (t, *J* = 7.3 Hz, 1H), 7.43 (dt, *J* = 14.8, 7.6 Hz, 4H), 7.33 (dd, *J* = 7.9, 5.6 Hz, 2H), 7.00 (t, *J* = 8.5 Hz, 2H), 5.32 (dd, *J* = 9.8, 3.7 Hz, 1H), 4.17 (dd, *J* = 18.0, 9.8 Hz, 1H), 3.31 (dd, *J* = 18.0, 3.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 199.1, 198.1, 162.3 (d, *J* = 246.4 Hz), 136.6 (d, *J* = 9.2 Hz), 134.5 (d, *J* = 3.4 Hz), 133.6, 133.3, 130.0 (d, *J* = 8.0 Hz), 129.1, 128.8 (d, *J* = 3.5 Hz), 128.4, 116.4, 116.2, 48.0, 44.0. ¹⁹F NMR (377 MHz, CDCl₃) δ = -114.96. m.p. = 115.6-116.2 °C. IR (KBr disc, cm⁻¹): 1684, 1672, 1596, 1509, 1447, 1382, 1338, 1314, 1232, 1205, 1185, 1160, 1003, 951, 842, 794, 780, 746, 739, 716, 688, 551, 503. QTOF-MS *m*/*z* [M + H]⁺ Calcd for $C_{22}H_{18}FO_2^+$ 333.1285; Found 333.1292.

2-(4-methoxyphenyl)-1,4-diphenylbutane-1,4-dione (5ia)^{S28}

Following the General Procedure with 3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (0.2 mmol) and phenylglyoxylic acid (0.4 mmol). The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **5ia** (37.2 mg) in 54% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.03 (d, *J* = 7.6 Hz, 2H), 7.98 (d, *J* = 7.6 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.52–7.36 (m, 5H), 7.28 (d, *J* = 8.0 Hz, 2H), 6.84 (d, *J* = 8.4 Hz, 2H), 5.28 (dd, *J* = 9.9, 3.5 Hz, 1H), 4.18 (dd, *J* = 18.0, 10.0 Hz, 1H), 3.75 (s, 3H), 3.29 (dd, *J* = 18.0, 3.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 199.4, 198.5, 159.1, 136.7, 136.7, 133.4, 133.0, 130.7, 129.5, 129.1, 128.8, 128.7, 128.4, 114.8, 55.5, 48.0, 44.1. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₂₃H₂₁O₃⁺ 345.1485; Found 345.1482.

naphthylphenstatin^{S29}

Following the General Procedure with 2-bromonaphthalene (0.2 mmol) and 2-oxo-2-(3,4,5-trimethoxyphenyl)acetic acid (0.4 mmol). The crude product was purified by

preparative TLC, using PE/EA = 10/1 (v/v) as the eluent, to yield the white solid naphthylphenstatin (31.6 mg) in 49% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 8.29 (s, 1H), 7.99–7.89 (m, 4H), 7.60 (dt, *J* = 14.6, 7.0 Hz, 2H), 7.12 (s, 2H), 3.96 (s, 3H), 3.88 (s, 6H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 196.1, 153.1, 142.2, 135.4, 135.3, 133.1, 132.5, 131.7, 129.6, 128.5, 128.7, 128.1, 127.1, 126.1, 108.0, 61.2, 56.6. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₂₀H₁₉O₄⁺ 323.1278; Found 323.1254.

1,2,3,5-tetraphenyl-1*H*-pyrrole (6)^{S28}

A solution of **5ga** (62.8 mg, 0.2mmol), aniline (50 mg, 0.54 mmol) in ionic liquid [bmim]HSO₄ (1.6 mL) was stirred at 150 °C for 3h in oil bath. After cooling to room temperature, water (10 mL) was added and the aqueous solution extracted with ethyl acetate (3 × 10 mL). The combined extracts were dried over anhydrous Na₂SO₄, concentrated *in vacuo*. The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **6** (70.5 mg) in 95% yield.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.26 (d, *J* = 7.4 Hz, 2H), 7.21 (d, *J* = 7.4 Hz, 2H), 7.13 (dd, *J* = 13.2, 7.9 Hz, 12H), 7.04 (d, *J* = 6.1 Hz, 2H), 6.98 (d, *J* = 4.5 Hz, 2H), 6.71 (s, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 139.0, 136.3, 135.0, 133.1, 132.9, 132.4, 131.7, 129.3, 128.8, 128.7, 128.4, 128.3, 128.2, 128.1, 127.3, 127.2, 126.6, 125.7, 123.7, 110.2. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₂₈H₂₂N⁺ 372.1747; Found 372.1773.

2,3,5-triphenylfuran (7)^{S28}

A solution of **5ga** (62.8 mg, 0.2mmol) in ionic liquid [bmim]HSO₄ (0.4mL) was stirred at 150 °C for 4h in oil bath. After cooling to room temperature, water (10 mL) was added and the aqueous solution extracted with ethyl acetate (3 × 10 mL). The combined extracts were dried over anhydrous Na₂SO₄, concentrated *in vacuo*. The crude product was purified by preparative TLC, using PE/EA = 50/1 (v/v) as the eluent, to yield the white solid **7** (56.8 mg) in 96%.

¹H NMR (400 MHz, CDCl₃, ppm) δ = 7.75 (d, *J* = 7.7 Hz, 2H), 7.60 (d, *J* = 7.5 Hz, 2H), 7.46 (d, *J* = 7.3 Hz, 2H), 7.43 – 7.34 (m, 4H), 7.30 (dd, *J* = 15.3, 7.6 Hz, 4H), 7.25 – 7.18 (m, 1H), 6.80 (s, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ = 152.7, 148.1, 134.5, 131.3, 130.7, 128.9, 128.9, 128.6, 127.7, 127.7, 127.5, 126.3, 124.7, 124.0, 109.7. QTOF-MS *m*/*z* [M + H]⁺ Calcd for C₂₂H₁₇O⁺ 297.1274; Found 297.1303.

References

- S1 Gong, W.-J.; Liu, D.-X.; Li, F.-L.; Gao, J.; Li, H.-X.; Lang, J.-P. Palladium-Catalyzed Decarboxylative C3-acylation of Benzofurans and Benzothiophenes with α -Oxocarboxylic Acids via Direct sp² C-H Bond Activation. *Tetrahedron* **2015**, *71*, 1269–1275.
- S2 Liu, J.; Liu, O.; Yi, H.; Qin, C.; Bai, R.; Qi, X.; Lan, Y.; Lei, A. Visible-Light-Mediated Decarboxylation/Oxidative Amidation of a-Keto Acids with Amines under Mild Reaction Conditions Using O₂. Angew. Chem. Int. Ed. 2014, 53, 502–506.
- S3 Cheng, W.-M.; Shang, R.; Yu, H.-Z.; Fu, Y. Room-Temperature Decarboxylative Couplings of α-Oxocarboxylates with Aryl Halides by Merging Photoredox with Palladium Catalysis. Chem. Eur. J. 2015, 21, 13191-13195.
- S4 Chu, L.; Lipshultz, J. M.; MacMillan, D. W. C. Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones by the Decarboxylative Arylation of α-Oxo Acids. Angew. Chem. Int. Ed. 2015, 54, 7929–7933.
- S5 Meng, G.; Szostak, M. Palladium-Catalyzed Suzuki-Miyaura Coupling of Amides by Carbon-Nitrogen Cleavage: General Strategy for Amide N-C Bond Activation. Org. Biomol. Chem. 2016, 14, 5690-5707.
- S6 Chang, S.; Jin, Y.; Zhang, X. R.; Sun, Y. B. Carbonylative Hiyama Coupling of Aryl Halides with Arylsilanes under Balloon Pressure of CO. Tetrahedron Lett. 2016, 57, 2017–2020.
- S7 Hao, W.; Liu, H.; Yin, L.; Cai, M. Phosphine-Free, Heterogeneous Palladium-Catalyzed Atom-Efficient Carbonylative Cross-Coupling of Triarylbismuths with Aryl Iodides: Synthesis of Biaryl Ketones. J. Org. Chem. 2016, 81, 4244-4251.
- S8 Lee, P.-Y.; Liang, P.; Yu, W.-Y. Pd(II)-Catalyzed Direct ortho-C-H Acylation of Aromatic Ketones by Oxidative Decarboxylation of a-Oxocarboxylic Acids. Org. Lett. 2017, 19, 2082-2085.
- S9 Liu, C.; Liu, Y.; Liu, R.; Lalancette, R.; Szostak, R.; Szostak, M. Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling of N-Mesylamides by N-C Cleavage: Electronic Effect of the Mesyl Group. Org. Lett. 2017, 19, 1434-1437.
- S10 Wakade, S. B.; Tiwari, D. K.; Ganesh, P. S. K. P.; Phanindrudu, M.; Likhar, P. R.; Tiwari, D. K. Transition-Metal-Free Quinoline Synthesis from Acetophenones and Anthranils via Sequential One-Carbon Homologation/Conjugate Addition/Annulation Cascade. Org. Lett. **2017**, 19, 4948–4951.
- S11 Ren, L.; Wang, L.; Lv, Y.; Li, G.; Gao, S. Synergistic H₄NI-AcOH Catalyzed Oxidation of the Csp3-H Bonds of Benzylpyridines with Molecular Oxygen. Org. Lett. 2015, 17, 2078-2081.
- S12 Sun, N.; Sun, Q.; Zhao, W.; Jin, L.; Hu, B.; Shen, Z.; Hu, X. Ligand-free S32

Palladium-Catalyzed Carbonylative Suzuki Coupling of Aryl Iodides in Aqueous CH_3CN with Sub-stoichiometric Amount of $Mo(CO)_6$ as CO Source. *Adv. Synth. Catal.* **2019**, *361*, 2117–2123.

- S13 Humphreys, R. W. R.; Arnold, D. R. Substituent Effects on the Zero-Field Splitting Parameters of Diarylmethylene. Evidence for Merostabilization in Appropriately Substituted Diphenylmethylenes. *Can. J. Chem.* **1979**, *57*, 2652–2661.
- S14 Zhong, Y.; Han, W. Iron-Catalyzed Carbonylative Suzuki Reactions under Atmospheric
 Pressure of Carbon Monoxide. *Chem. Commun.* 2014, *50*, 3874–3877.
- S15 Gautam, P.; Dhiman, M.; Polshettiwar, V.; Bhanage, B. M. KCC-1 Supported Palladium Nanoparticles as an Efficient and Sustainable Nanocatalyst for Carbonylative Suzuki–Miyaura Cross-Coupling. *Green Chem.* 2016, 18, 5890–5899.
- S16 Heinz, B.; Djukanovic, D.; Ganiek, M. A.; Martin, B.; Schenkel, B.; Knochel, P. Selective Acylation of Aryl- and Heteroarylmagnesium Reagents with Esters in Continuous Flow. Org. Lett. 2020, 22, 493–496.
- S17 Karthikeyan, J.; Parthasarathy, K.; Cheng, C.-H. Synthesis of Biarylketones and Phthalides from Organoboronic Acids and Aldehydes Catalyzed by Cobalt Complexes. *Chem. Commun.* 2011, 47, 10461–10463.
- S18 Lerebours, R.; Camacho-Soto, A.; Wolf, C. Palladium-Catalyzed Chemoselective Cross-Coupling of Acyl Chlorides and Organostannanes. *J. Org. Chem.* **2005**, *70*, 8601-8604.
- S19 Zhang, X.; Xia, A.; Chen, H.; Liu, Y. General and Mild Nickel-Catalyzed Cyanation of Aryl/Heteroaryl Chlorides with Zn(CN)₂: Key Roles of DMAP. Org. Lett. 2017, 19, 2118–2121.
- S20 Chen, B.; Wu, X.-F. Palladium-Catalyzed Carbonylative Coupling of Aryl Iodides with Alkenylaluminum Reagents. *Org. Lett.* **2019**, *21*, 7624–7629.
- S21 Martinelli, J. R.; Watson, D. A.; Freckmann, D. M. M.; Barder, T. E.; Buchwald, S. L. Palladium-Catalyzed Carbonylation Reactions of Aryl Bromides at Atmospheric Pressure: A General System Based on Xantphos. J. Org. Chem. 2008, 73, 7102–7107.
- S22 Shi, Y.; Tan, X.; Gao, S.; Zhang, Y.; Wang, J.; Zhang, X.; Yin, Q. Direct Synthesis of Chiral NH Lactams via Ru-Catalyzed Asymmetric Reductive Amination/Cyclization Cascade of Keto Acids/Esters. Org. Lett. 2020, 22, 2707–2713.
- S23 Ireland, D. S.; Brown, J. R. Novel Tetracycline Analogues. Part 1. Development of a Potential Synthetic Route. J. Chem. Soc., Perkin Trans. 1 1977, 467–470.
- S24 Hu, B.; Chen, H.; Liu, Y.; Dong, W.; Ren, K.; Xie, X.; Xu, H.; Zhang, Z. Visible
 Light-Induced Intermolecular Radical Addition: Facile Access to γ-Ketoesters from

Alkyl-Bromocarboxylates and Enamines. Chem. Commun. 2014, 50, 13547-13550.

- S25 Zhao, J.; Li, P.; Xu, Y.; Shi, Y.; Li, F. Nickel-Catalyzed Transformation of Diazoacetates to Alkyl Radicals Using Alcohol as a Hydrogen Source. *Org. Lett.* **2019**, *21*, 9386–9390.
- Rohe, S.; Morris, A. O.; McCallum, T.; Barriault, L. Hydrogen Atom Transfer Reactions via Photoredox Catalyzed Chlorine Atom Generation. *Angew. Chem. Int. Ed.* 2018, *57*, 15664 –15669.
- S27 Wang, G.-Z.; Shang, R.; Cheng, W-M.; Fu, Y. Decarboxylative 1,4-Addition of α-Oxocarboxylic Acids with Michael Acceptors Enabled by Photoredox Catalysis. *Org. Lett.* 2015, 17, 4830–4833.
- S28 Zhao, X.; Li, B.; Xia, W. Visible-Light-Promoted Photocatalyst-Free Hydroacylation and Diacylation of Alkenes Tuned by NiCl₂ DME. *Org. Lett.* **2020**, *22*, 1056–1061.
- S29 Ghosh, P.; Ganguly, B.; Perl, E.; Das, S. A Synthesis of Biaryl Ketones via the C–S Bond Cleavage of Thiol Ester by a Cu/Ag Salt. *Tetrahedron Lett.* **2017**, *58*, 2751–2756.

NMR spectra

Figure S7. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)benzonitrile in CDCl₃

Figure S8. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 4-benzoylbenzonitrile (**3aa**) in $CDCl_3$

7.89 7.87 7.87 7.80 7.78 7.65 7.65 7.65 7.54 7.55 7.52 7.52
Figure S9. The ¹H (400 MHz), ¹³C (101 MHz) and ¹⁹F (377 MHz) NMR spectra for phenyl(4-(trifluoromethyl)phenyl)methanone (**3ba**) in $CDCl_3$

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

Figure S11. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for methyl 4-benzoylbenzoate (**3da**) in $CDCl_3$

Figure S12. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for ethyl 4-benzoylbenzoate (**3ea**) in $CDCl_3$

Figure S13. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 4-benzoylbenzaldehyde (**3fa**) in $CDCl_3$

Figure S14. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 3-benzoylbenzonitrile (**3ga**) in $CDCl_3$

Figure S15. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 2-benzoylbenzonitrile (**3ha**) in $CDCl_3$

Figure S16. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for methyl 2-benzoylbenzoate (**3ia**) in $CDCl_3$

Figure S17. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 1,2-phenylenebis(phenylmethanone) (**3ja**) in $CDCl_3$

Figure S18. The ¹H (400 MHz), ¹³C (101 MHz) and ¹⁹F (377 MHz) NMR spectra for 4-benzoyl-2-(trifluoromethyl)benzonitrile (**3ka**) in CDCl₃

) 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

Figure S19. The ¹H (400 MHz), ¹³C (101 MHz) and ¹⁹F (377 MHz) NMR spectra for (3,5-bis(trifluoromethyl)phenyl)(phenyl)methanone (**3la**) in CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Figure S20. The ¹H (400 MHz), ¹³C (101 MHz) and ¹⁹F (377 MHz) NMR spectra for 3-benzoyl-5-(trifluoromethyl)benzonitrile (**3ma**) in CDCl₃

 0
 -10
 -20
 -30
 -40
 -50
 -60
 -70
 -80
 -90
 -100
 -110
 -120
 -130
 -140
 -150
 -160
 -170
 -190
 -200
 -210

 fl
 (ppm)
 -100
 -110
 -120
 -130
 -140
 -150
 -160
 -170
 -190
 -200
 -210

Figure S21. The ¹H (400 MHz), ¹³C (101 MHz) and ¹⁹F (377 MHz) NMR spectra for (3,5-difluorophenyl)(phenyl)methanone (**3na**) in $CDCl_3$

Figure S22. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for naphthalen-2-yl(phenyl)methanone (**30a**) in CDCl₃

Figure S23. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for phenyl(quinolin-3-yl)methanone (**3pa**) in $CDCl_3$

Figure S24. The ¹H (400 MHz), ¹³C (101 MHz) and ¹⁹F (377 MHz) NMR spectra for phenyl(6-(trifluoromethyl)pyridin-2-yl)methanone (**3qa**) in $CDCl_3$

) 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

Figure S25. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 1-(6-benzoylpyridin-2-yl)ethan-1-one (**3ra**) in $CDCl_3$

Figure S26. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for (4-bromophenyl)(phenyl)methanone (**3sa**) in $CDCl_3$

7.75 7.76 7.76 7.64 7.64 7.61 7.61 7.55 7.49 7.49 7.47

~7.78 ~7.76 ~7.69 ~7.61 ~7.61 ~7.61 ~7.50 ~7.51 ~7.51

7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35 fl (ppm)

Figure S27. The 1 H (400 MHz) and 13 C (101 MHz) NMR spectra for benzophenone (3ta) in CDCl₃

Figure S28. The 1 H (400 MHz) and 13 C (101 MHz) NMR spectra for phenyl(p-tolyl)methanone (3ua) in CDCl₃

Figure S29. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for (4-methoxyphenyl)(phenyl)methanone (**3va**) in $CDCl_3$

Figure S30. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for (4-(tert-butyl)phenyl)(phenyl)methanone (**3wa**) in $CDCl_3$

Figure S31. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for phenyl(m-tolyl)methanone (**3xa**) in $CDCl_3$

Figure S32. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for phenyl(pyridin-4-yl)methanone (**3ya**) in $CDCl_3$

Figure S33. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for benzo[d][1,3]dioxol-5-yl(phenyl)methanone (**3za**) in CDCl₃

Figure S34. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 4-(4-methylbenzoyl)benzonitrile (**3ab**) in $CDCl_3$

Figure S35. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 4-(4-methoxybenzoyl)benzonitrile (**3ac**) in $CDCl_3$

Figure S36. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 4-(4-pentylbenzoyl)benzonitrile (**3ad**) in $CDCl_3$

Figure S37. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 4-(4-(dimethylamino)benzoyl)benzonitrile (**3ae**) in $CDCl_3$

) 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Figure S39. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 4-(3-methylbenzoyl)benzonitrile (**3ag**) in $CDCl_3$

Figure S40. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 4-(3-(tert-butyl)benzoyl)benzonitrile (**3ah**) in $CDCl_3$

Figure S41. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 4-(3,5-dimethylbenzoyl)benzonitrile (**3ai**) in $CDCl_3$

Figure S42. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 4-(2,4,6-trimethylbenzoyl)benzonitrile (**3aj**) in CDCl₃

Figure S43. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 4-(2-methylbenzoyl)benzonitrile (**3ak**) in $CDCl_3$

Figure S44. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 4-(2-methoxybenzoyl)benzonitrile (**3al**) in $CDCl_3$

Figure S45. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 4-(2,5-dimethoxybenzoyl)benzonitrile (**3am**) in $CDCl_3$

Figure S46. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 4-(furan-2-carbonyl)benzonitrile (**3an**) in $CDCl_3$

Figure S47. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 4-acetylbenzonitrile (**3ao**) in $CDCl_3$

Figure S48. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 4-(3-methylbutanoyl)benzonitrile (**3ap**) in $CDCl_3$

Figure S50. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for *tert*-butyl 4-oxo-4-phenylbutanoate (**5aa**) in $CDCl_3$

Figure S51. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for *tert*-butyl 4-oxo-4-(p-tolyl)butanoate (**5ab**) in CDCl₃

Figure S52. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for *tert*-butyl 4-(4-methoxyphenyl)-4-oxobutanoate (**5ac**) in CDCl₃

Figure S53. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for *tert*-butyl 4-(4-(dimethylamino)phenyl)-4-oxobutanoate (**5ad**) in CDCl₃

Figure S54. The ¹H (400 MHz), ¹³C (101 MHz) and ¹⁹F (377 MHz) NMR spectra for *tert*-butyl 4-(4-fluorophenyl)-4-oxobutanoate (**5ae**) in $CDCl_3$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Figure S55. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for *tert*-butyl 4-(4-chlorophenyl)-4-oxobutanoate (**5af**) in CDCl₃

Figure S56. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for *tert*-butyl 4-oxo-4-(m-tolyl)butanoate (**5ag**) in CDCl₃

Figure S57. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for *tert*-butyl 4-oxo-4-(o-tolyl)butanoate (**5ah**) in CDCl₃

Figure S58. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for *tert*-butyl 4-(2,5-dimethylphenyl)-4-oxobutanoate (**5ai**) in CDCl₃

Figure S59. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for *tert*-butyl 4-(2,5-dimethoxyphenyl)-4-oxobutanoate (**5aj**) in $CDCl_3$

Figure S60. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for *tert*-butyl 4-(naphthalen-2-yl)-4-oxobutanoate (**5ak**) in $CDCl_3$

Figure S61. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for ethyl 4-oxo-4-phenylbutanoate (**5ba**) in $CDCl_3$

Figure S62. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for ethyl 2-methyl-4-oxo-4-phenylbutanoate (**5ca**) in $CDCl_3$

Figure S63. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for cyclohexyl 4-oxo-4-phenylbutanoate (**5da**) in $CDCl_3$

Figure S64. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for dimethyl 2-benzoylsuccinate (**5ea**) in $CDCl_3$

Figure S65. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for diethyl 2-(1-oxo-1-phenylpropan-2-yl)malonate (**5fa**) in $CDCl_3$

Figure S66. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 1,2,4-triphenylbutane-1,4-dione (**5ga**) in $CDCl_3$

8.04 8.03 8.04 8.03 8.04 1.7.25 8.03 1.7.25 8.03 1.7.25 1.7.25 8.03 1.7.25

Figure S67. The ¹H (400 MHz), ¹³C (101 MHz) and ¹⁹F (377 MHz) NMR spectra for 2-(4-fluorophenyl)-1,4-diphenylbutane-1,4-dione (**5ha**) in $CDCl_3$

- 0	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
												fl (ppm)											

Figure S68. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 2-(4-methoxyphenyl)-1,4-diphenylbutane-1,4-dione (**5ia**) in $CDCl_3$

8.04 7.99 7.99 8.04 7.99 6.83 6.83 6.83 6.83 5.26 5.29 5.29 5.29 5.29 5.29 5.29 5.29 5.29 5.20

Figure S69. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for naphthylphenstatin in CDCl₃

Figure S70. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 1,2,3,5-tetraphenyl-1H-pyrrole (**6**) in CDCl₃

-7.25 -7.25 -7.25 -7.25 -7.25 -7.25 -7.15 -7.15 -6.71 -6.71

Figure S71. The ¹H (400 MHz) and ¹³C (101 MHz) NMR spectra for 2,3,5-triphenylfuran (7) in $CDCl_3$

