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Computational methods 

To investigate the catalytic activities of the NiCu alloys, five specific compositions were 

selected and studied in this project in accordance with the experiments.  Overpotentials during the 

process of HER, OER and ORR were determined through first-principles calculations by 

calculating the Gibbs free energy of H*, OH* and OOH* on the surfaces of different catalysts. 

These first-principles calculations were executed on the basis of DFT and were performed using 

the Vienna ab initio simulation package (VASP)S1, S2. The core electrons were treated using 

projected augmented wave (PAW) pseudopotentialsS3, while the exchange correlation energies 

were evaluated by the formulations of Perdew−Burke−Ernzerhof (PBE) and ultra-soft potentials 

within the generalized gradient approximation (GGA)S4, S5. The cut-off energy for the plane wave 

was set to be 400 eV, which was found to be sufficient for convergence of the adsorption energies. 

The FCC structures for each NiCu alloys (Cu, Ni0.25Cu0.75, Ni0.50Cu0.50, Ni0.75 Cu0.25 and Ni) were 

generated according to the experiment observation and tested with the VASP calculations. After 

relaxation the alloys showed a steady FCC structure, which matches the experimental observation. 

To simulate the free surface, a slab model with 2 × 2 × 2 supercells of the five alloys was employed 

(Figure S2). A relatively large vacuum gap of 20 Å was set in the slab model to prevent its 

interaction with the periodic image of the lower layer. The bottom lattice of the model was fixed 

at the ground-state bulk distances, while the top lattice was set to be free to move in all directions. 

k-point meshes of 5 × 3 × 1 were found to be sufficient to give a self-consistent field (SCF) 

convergence criterion of 1 × 10−5 eV. For each structure, atomic positions were relaxed first to 

reach their equilibrium. Thereafter, the adsorbate ion was placed on the top of the active sites (on 

the relaxed free surface) at a certain distance to calculate the total formation energy. The internal 

energy of the isolated adsorbates was also calculated. The adsorption energy 𝐸𝑎𝑑 was then 

calculated using Eq S1.S6, S7 
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𝐸𝑎𝑑 = 𝐸𝑠𝑢𝑏+𝑎𝑑𝑎𝑡𝑜𝑚 − 𝐸𝑠𝑢𝑏 − 𝐸𝑎𝑑𝑎𝑡𝑜𝑚                                                          (S1) 

Where 𝐸𝑠𝑢𝑏+𝑎𝑑𝑎𝑡𝑜𝑚 , 𝐸𝑠𝑢𝑏 , and 𝐸𝑎𝑑𝑎𝑡𝑜𝑚  refer to the total energy of the NiCu alloy and adsorbate, 

the energy of the NiCu substrate and the energy of the isolated adsorbate, respectively. Based on 

this definition, the more negative value of 𝐸𝑎𝑑 represents a higher thermodynamic stability of the 

system.  The Gibbs free energy difference ∆𝐺 was then calculated to describe the catalytic property 

by additional calculations. For HER, the Gibbs free energy difference ∆𝐺𝐻 is S6, S7 

∆𝐺𝐻  = 𝐸𝑎𝑑−𝐻 − ∆𝐸𝑍𝑃𝐸 − 𝑇∆𝑆𝐻                                                         (S2) 

Where 𝐸𝑎𝑑−𝐻  refers to the adsorption energy of H* (* denotes the uncertain ion state) on the NiCu 

surface. ∆𝐸𝑍𝑃𝐸  refers to the difference of zero-point energy, which can be obtained from vibration 

frequency calculations. 𝑇 is temperature and ∆𝑆𝐻 is the difference of entropy for the adsorbate, 

here is described as half of 𝑆𝐻, which is known thermodynamic properties for each adsorbate.  

For OER and ORR, the Gibbs free energy difference ∆𝐺 also contains electron transfer and can be 

described asS6, S7 

∆𝐺 = 𝐸𝑎𝑑 − ∆𝐸𝑍𝑃𝐸 − 𝑇∆𝑆 + ∆𝐺𝑈 + ∆𝐺𝑝𝐻                                                       (S3) 

Where ∆𝐺𝑈 = −𝑒𝑈, and 𝑈 refers to the potential based on the standard hydrogen electrode. ∆𝐺𝑝𝐻 

represents the Gibbs free energy corrected by the 𝐻+ concentration. ∆𝐺𝑝𝐻 = −𝑘𝑇𝑙𝑛10 ∗ 𝑝𝐻. For 

the four OER processes, the free energy changes can be described as S6, S7 

Δ𝐺1 = Δ𝐺𝑂𝐻∗    Δ𝐺2 = Δ𝐺𝑂∗ − Δ𝐺𝑂𝐻∗   Δ𝐺3 = Δ𝐺𝑂𝑂𝐻∗ − Δ𝐺𝑂∗   Δ𝐺4 = 4.92 − Δ𝐺𝑂𝑂𝐻∗        (S4) 

Δ𝐺𝑎 = Δ𝐺𝑂𝑂𝐻∗ − 4.92      Δ𝐺𝑏 = Δ𝐺𝑂∗ − Δ𝐺𝑂𝑂𝐻∗  Δ𝐺𝑐 = Δ𝐺𝑂𝐻∗ − Δ𝐺𝑂∗  Δ𝐺𝑑 = −Δ𝐺𝑂𝐻∗     (S5) 

The subscript numbers and letters in Eq. (S4) and (S5) indicate the free energy changes during 

OER and ORR, respectively. To evaluate the catalytic performance, the overpotential (𝜂) of OER 

and ORR processes can be obtained by the following equations S6, S7 
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𝜂𝑂𝐸𝑅 = max{Δ𝐺1, Δ𝐺2, Δ𝐺3, Δ𝐺4} − 1.23                                                     (S6) 

𝜂𝑂𝑅𝑅 = max{Δ𝐺𝑎 , Δ𝐺𝑏, Δ𝐺𝑐 , Δ𝐺𝑑} + 1.23                                                    (S7) 

 

Lattice constant for the prepared electrocatalysts: 

The lattice constants for the Cu/C, Ni/C, Ni0.50Cu0.50/C, Ni0.75Cu0.25/C and Ni0.25Cu0.75/C 

electrocatalysts can be calculated according to the relationship between the d-spacing and lattice 

constants for a face centered cubic (FCC) crystal system: 

dhkl =  
λ

2Sin(θhkl)
 =  [

h2 + k2 + l2 +

a2
]−1/2 

Solving the above equation for the (111) peak gives the lattice constants as shown in Table S1. 

The lattice constants for the bimetallic electrocatalysts are in between of the monometallics. 

Table S1: (111) peak positions and lattice constants for Cu/C, Ni/C, Ni0.50Cu0.50/C, Ni0.75Cu0.25/C 

and Ni0.25Cu0.75/C as determined by the XRD. 

 

 

 

Catalyst 2θ111 [
o] a [Ao] Unit cell 

volume [Ao 3] 

Atoms per 

unit cell 

# Surface sites 

[atoms cm-2
real] 

Cu/C 43.40 3.607 46.93 4 1.94 × 1015 

Ni/C 44.50 3.522 43.68 4 2.03 × 1015 

Ni0.50Cu0.50/C 43.8 3.575 45.69 4 1.97 × 1015 

Ni0.75Cu0.25/C 44.05 3.556 44.97 4 1.99 × 1015 

Ni0.25Cu0.75/C 44.17 3.547 44.62 4 2.00 × 1015 
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Turnover frequency (TOF) calculations:  

To calculate the per-site turnover frequency, we have used the following formula as 

reported by Jaramillo et al.S8 

TOF =  
# number of total hydrogen turnover per cm2

# number of active sites per cm2
 =  

# H2 × |j|

active sites
 

The total number of hydrogen turn overs (#H2) was calculated from the current density according 

to the following equation.  

#H2 = (j
mA

cm2
)(

1 Cs−1

1000 mA
)(

1 mol e−

96485.3 C
)(

1 mol H2

2 mol e−
)(

6.022 × 1023 H2 molecules

1 mol H2
)     

=  3.12 × 1015  
H2 /s

cm2
 per 

mA

cm2
 

#O2 = (j
mA

cm2
)(

1 Cs−1

1000 mA
)(

1 mol e−

96485.3 C
)(

1 mol O2

4 mol e−
)(

6.022 × 1023 O2 molecules

1 mol O2
)     

=  1.56 × 1015  
O2 /s

cm2
 per 

mA

cm2
 

#H2O = (j
mA

cm2
)(

1 Cs−1

1000 mA
)(

1 mol e−

96485.3 C
)(

1 mol H2O

4 mol e−
)(

6.022 × 1023 H2O molecules

1 mol H2O
)     

=  1.56 × 1015  
H2O/s

cm2
 per 

mA

cm2
 

 

As the exact hydrogen binding sites are unknown, we predictably estimate the total 

number of surface sites or active sites by using the following equation. A similar 

approach was applied to estimate the TOF for Ni2P and CoP.S9, S10 

# number of active sites per real surface area (here calculated for Ni0.25Cu0.75/C): 

# number of active sites = (
number of atoms/unit cell

unit cell volume/unit cell
)

2
3

   

                                           =  (
4 atoms/unit cell

44.62 Ao3/unit cell
)

2

3
 

Fig. S1: FCC unit cell of Ni0.25Cu0.75  
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                                            =  2.00 × 1015 atoms cmreal
−2  

We have demonstrated the TOF calculations for the best Ni0.25Cu0.75/C electrocatalyst in case of 

HER, OER and ORR processes. The other TOF values for the other electrocatalysts were also 

calculated accordingly. 

For HER process: The current density at an overpotential of 0.15 V (vs RHE) is 5.76 mA‧cm-2 

for the Ni0.25Cu0.75/C electrocatalyst. 

𝐓𝐎𝐅 =
3.12 × 1015  

H2 /s
cm2  per 

mA
cm2 × 20 

mA
cm2

2.00 × 1015sites cm−2
= 8.98 s−1  

For OER process: The current density at an overpotential of 1.65 V (vs RHE) is 12.40 mA‧cm-2 

for the Ni0.25Cu0.75/C electrocatalyst. 

𝐓𝐎𝐅 =
1.56 × 1015  

O2 /s
cm2  per 

mA
cm2 × 12.40 

mA
cm2

2.00 × 1015sites cm−2
= 9.67 s−1 

For ORR process: The current density at an overpotential of 0.75 V (vs RHE) is 0.80 mA‧cm-2 

for the Ni0.25Cu0.75/C electrocatalyst. 

𝐓𝐎𝐅 =
1.56 × 1015  

H2O/s
cm2  per 

mA
cm2 × 0.80 

mA
cm2

2.00 × 1015sites cm−2
= 0.62 s−1 

Finally, the plot of current density can be converted into a TOF plot based on the following 

equation: 

For HER Process: 

𝐓𝐎𝐅 =  
(3.12 × 1015 ) × |j|

# number of active sites × AECSA
 

For OER Process: 

𝐓𝐎𝐅 =  
(1.56 × 1015 ) × |j|

# number of active sites × AECSA
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Table S2: The surface composition of the electrocatalysts obtained by the XPS measurements. 

 

Table S3: Comparison of OER electrocatalytic performance of Cu/C, Ni/C, Ni0.50Cu0.50/C, 

Ni0.75Cu0.25/C and Ni0.25Cu0.75/C electrocatalysts in 0.5 M NaOH solution. 

 

 

Electrocatalysts C (wt%) O (wt%) Cu (wt%) Ni (wt%) 

Cu/C 62.52 18.22 19.26 / 

Ni/C 53.64 16.12 / 30.24 

Ni0.50Cu0.50/C 59.62 16.65 13.76 9.97 

Ni0.75Cu0.25/C 65.88 13.77 10.90 9.45 

Ni0.25Cu0.75/C 62.34 15.67 16.73 5.27 

Catalyst Onset 

Potential 

(V vs RHE) 

η10 
(mV vs 

RHE) 

Tafel 

slope 

(mV/dec) 

Mass 

Activity 

(mA/mg) 

Specific 

Activity 

(mA/cm2) 

TOF 

(s-1) 

Cu/C 1.64 

 

/ 147 4.69 0.03 0.53 

Ni/C 1.62 

 

/ 144 6.51 0.05 0.72 

Ni0.5Cu0.5/

C 

1.52 

 

480 113 36.72 0.23 4.09 

Ni0.75Cu0.2

5/C 

1.49 

 

470 93 43.77 0.25 4.82 

Ni0.25Cu0.7

5/C 

1.44 400 80 86.8 0.36 9.67 
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Table S4: Comparison of HER electrocatalytic performance of Cu/C, Ni/C, Ni0.50Cu0.50/C, 

Ni0.75Cu0.25/C and Ni0.25Cu0.75/C electrocatalysts in 0.5 M H2SO4 solution. 

 

Table S5: Comparison of ORR electrocatalytic performance of Cu/C, Ni/C, Ni0.50Cu0.50/C, 

Ni0.75Cu0.25/C and Ni0.25Cu0.75/C electrocatalysts in 0.5 M NaOH solution. 

 

Catalyst Onset 

Potential 

(mV) 

η10 
(mV) 

Tafel 

slope 

(mV/dec) 

Mass 

Activity 

(mA/mg) 

Specific 

Activity 

(mA/cm2) 

TOF 

(s-1) 

Cu/C 401 

 

471 179 2.90 0.01 0.04 

Ni/C 367 

 

437 106 10.50 0.05 0.27 

Ni0.5Cu0.5/C 327 

 

400 125 24.71 0.10 0.33 

Ni0.75Cu0.25/

C 

243 

 

334 

 

114 87.64 0.16 0.52 

Ni0.25Cu0.75/

C 

75 

 

186 

 

84 641.20 0.79 8.98 

Catalyst Onset 

Potential 

(V) 

E1/2 

(V) 

Tafel slope 

(mV/dec) 

Mass 

Activity 

(mA/mg) 

Specific 

Activity 

(mA/cm2) 

TOF 

(s-1) 

Cu/C 0.78 

 

0.43 125 0.48 0.003 0.056 

Ni/C 0.78 

 

0.56 122 0.56 0.004 0.061 

Ni0.5Cu0.5/C 0.81 

 

0.60 120 0.84 0.006 0.10 

Ni0.75Cu0.25/

C 

0.86 

 

0.75 80 2.45 0.015 0.28 

Ni0.25Cu0.75/

C 

0.95 0.80 51 5.60 0.023 0.62 



S9 
 

Table S6: The obtained Cdl, ECSA and RF values for different electrocatalysts in HER and OER 

conditions. 

 

 

 

 

 

 

 

 

 

 

Electrocatalytic 

Process 

Catalyst Cdl 

(mF‧cm-2) 

ECSA 

(cm2) 

RF 

                                                               

 

     HER 

Cu/C 1.07 30.57 436.71 

Ni/C 1.13 32.28 461.14 

Ni0.5Cu0.5/C 1.24 35.42 506 

Ni0.75Cu0.25/C 2.71 77.42 1106 

Ni0.25Cu0.75/C 4.05 115.71 1653 

     

 

     OER 

Cu/C 0.78 19.5 278.57 

Ni/C 0.80 20 285.71 

Ni0.5Cu0.5/C 0.87 21.75 310.71 

Ni0.75Cu0.25/C 0.98 24.5 350 

Ni0.25Cu0.75/C 1.4 35 500 
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Table S7: Comparison of OER performances with previously reported electrocatalysts. 

 

 

 

 

 

 

 

 

 

Catalysts Onset Potential 

(V vs RHE) 
η10 

(mV) 

Reference 

Ni0.25Cu0.75/C 1.44 400 This study 

RuO2 1.48 410 This study 

RuO2 1.51 370 S11 

IrO2 1.50 340 S12 

RuO2 NPs 1.54 460 S13 

CoNi1@C 1.53 335 S14 

FeNi4.34@FeNi-foil 1.45 283 S15 

 Pt-Ni@PCN920 1.50 290 S16 

CCVG@CoNC800 1.40 357 S17 

Co@NCNSs‐900 1.51 360 S18 

NiMo-FG 1.55 338 S19 

Ni@Ni2P/N-CNF-CN 1.46 269 S20 

FCC@CNOs/GC 1.40 320 S21 

CoFe@NC-SE 1.46 390 S22 



S11 
 

Table S8: Comparison of HER performances with previously reported electrocatalysts. 

 

 

 

 

 

 

 

 

 

 

 

Catalysts Onset 

Potential 

(mV vs RHE) 

η10 

(mV vs RHE) 

Reference 

Ni0.25Cu0.75/C 75 184 This study 

Ni@NC@MoS2 18 82 S23 

0.02Ni–MoP  79 102 S24 

Ni@NC-rGO 170 218 S25 

Ni-Mo2C-CNF 110 193 S26 

CoSe2/NPs 97 226 S27 

Co@NPC 200 259 S28 

NiCo2S4@NCNF 79 117 S29 

NiFe@C 80 195 S30 

CoP@NC 21 78 S31 

NiCoOS 250 300 S32 
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Table S9: Comparison of ORR performances with previously reported electrocatalysts.  

 

 

 

 

 

 

 

 

Catalysts EOnset (V vs RHE) E1/2 (V vs RHE) Reference 

Ni0.25Cu0.75/C 0.95 0.80 This study 

S-PtNiCu 0.89 0.767 S33 

Pt/C 0.98 0.872 S33 

C60-SWCNT15 0.91 0.84 S34 

NiCo2S4@g-C3N4-CNT 0.87 0.76 S35 

(Fe, Co) NCs 0.88 0.80 S36 

Zn/Co@C-NCNF 0.86 0.76 S37 

CoNi/NG 0.97 0.85 S38 

Cu@NCNT/CoxOy 0.95 0.82 S39 

Pt2Pd3/CKN 0.90 0.82 S40 

Zn6Co_Fe 0.97 0.89 S41 

N-Co3O4@NC-2 0.89 0.77 S42 

Fe28/Ni2-NPCF 0.96 0.88 S43 
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Figure S2. Slab model and OH adsorption on different electrocatalyst’s surface. 
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Figure S3. (A-B), (C-D) and (E-F) EDS analysis and elemental mapping images of the 

Cu0.5Ni0.5/C, Cu0.25Ni0.75/C and Cu0.75Ni0.25/C electrocatalysts, respectively. 
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Figure S4. (A-B) TEM images of the Ni/C and Cu/C electrocatalysts, respectively. 
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Figure S5. XPS spectra of the Ni/C electrocatalyst: (A-D) survey spectra, C 1s, O 1s and Ni 2p, 

respectively. 
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Figure S6. XPS spectra of the Cu/C electrocatalyst: (A-D) survey spectra, C 1s, O 1s and Cu 2p, 

respectively. 

 

 

A) B)

C) D)
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Figure S7. XPS spectra of the Cu0.5Ni0.5/C electrocatalyst: (A-E) survey spectra, C 1s, O 1s, Cu 2p and 

Ni 2p, respectively. 
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Figure S8. XPS spectra of the Cu0.25Ni0.75/C electrocatalyst: (A-E) survey spectra, C 1s, O 1s, Cu 2p and 

Ni 2p, respectively. 
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Figure S9.  LSVs of the Ni0.75Cu0.25/C (green), Ni0.50Cu0.50/C (wine) and Ni0.25Cu0.75/C (purple) 

nanocatalysts showing the NiOOH formation peak use for area integration. 

 

 

Figure S10. CVs of the as-synthesized electrocatalysts in N2 and O2-saturated 0.5 M NaOH 

solution. 
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