Supporting Information

Pennelliisides A-C, 2,3,4-Trisubstituted Acyl Glucoses Isolated from *Solanum pennellii*

Tenki Nakashima, Yurika Nambu, Yutaka Inoue, Masimbula Rishni, and Hideyuki Matsuura

Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan

Pennelliisides A-C, 2,3,4-Trisubstituted Acyl Glucoses Isolated from Solanum pennellii

Table S1. ¹ H (500 MHz) and ¹³ C (67.5 MHz) NMR Spectroscopic Data for Compound 4 in C ₆ D ₆	5
Table S2. ¹ H (500 MHz) and ¹³ C (67.5 MHz) NMR Spectroscopic Data for Compound 5 in C ₆ D ₆	6
Table S3. ¹ H (500 MHz) and ¹³ C (67.5 MHz) NMR Spectroscopic Data for Compound 6 in C ₆ D ₆	7
Figure S1. Extraction and isolation.	8
Figure S2. HRFD-MS spectrum of 4.	
Figure S3. ¹ H NMR spectrum of 4 (500 MHz, C_6D_6).	10
Figure S4. COSY spectrum of 4 (500 MHz, C_6D_6)	
Figure S5 . HMBC spectrum of 4 (500 MHz, C ₆ D ₆)	
Figure S6. NOESY spectrum of 4 (500 MHz, C ₆ D ₆).	13
Figure S7 . ¹³ C NMR spectrum of 4 (500 MHz, C_6D_6).	14
Figure S8 . HMQC spectrum of 4 (500 MHz, C ₆ D ₆)	
Figure S9. HRFD-MS spectrum of 5	
Figure S10 . ¹ H NMR spectrum of 5 (500 MHz, C ₆ D ₆)	17
Figure S11. COSY spectrum of 5 (500 MHz, C_6D_6)	
Figure S12 . HMBC spectrum of 5 (500 MHz, C ₆ D ₆)	
Figure S13 . NOESY spectrum of 5 (500 MHz, C ₆ D ₆)	20
Figure S14 . ¹³ C NMR spectrum of 5 (500 MHz, C ₆ D ₆)	21
Figure S15 . HMQC spectrum of 5 (500 MHz, C ₆ D ₆).	22
Figure S16. ¹ H NMR spectrum of 8-methylnonanoate (7) (270 MHz, CDCl3).	
Figure S17. GC-MS chromatogram of 8-methylnonanoate (7)	

Figure S18. Fragmentation pattern of the MS peak for 8-methylnonanoate (7)	
having Rt. of 12.1 min in the chromatogram of Figure S17	
Figure S19. GC-MS chromatograph of methylated acyl moiety of 5.	
Figure S20. Fragmentation pattern of the MS peak for methylated acyl moiety of 5	
having Rt. of 12.4 min in the chromatogram of Figure S19	
Figure S21. HRFD-MS spectrum of 6.	
Figure S22. ¹ H NMR spectrum of 6 (500 MHz, C_6D_6).	
Figure S23. COSY spectrum of 6 (500 MHz, C_6D_6)	
Figure S24. HMQC spectrum of 6 (500 MHz, C_6D_6).	
Figure S25 . NOESY spectrum of 6 (500 MHz, C ₆ D ₆).	
Figure S26 . ¹³ C NMR spectrum of 6 (500 MHz, C ₆ D ₆)	
Figure S27. HMQC spectrum of 6 (500 MHz, C_6D_6).	
Figure S28. HRFD-MS spectrum of 1.	
Figure S29. ¹ H NMR spectrum of 1 (500 MHz, CDCl ₃)	
Figure S30. ¹³ C NMR spectrum of 1 (500 MHz, CDCl ₃)	
Figure S31. COSY spectrum of 1 (500 MHz, CDCl ₃).	
Figure S32. Partial COSY spectrum of 1 (500 MHz, CDCl ₃).	
Figure S33. HMBC spectrum of 1 (500 MHz, CDCl ₃).	
Figure S34. HMQC spectrum of 1 (500 MHz, CDCl ₃).	
Figure S35. HRFD-MS spectrum of 2.	
Figure S36. ¹ H NMR spectrum of 2 (500 MHz, CDCl ₃)	
Figure S37. 13C NMR spectrum of 2 (500 MHz, CDCl ₃)	44

Figure S38. COSY spectrum of 2 (500 MHz, CDCl ₃).	. 45
Figure S39. Partial COSY spectrum of 2 (500 MHz, CDCl ₃).	. 46
Figure S40. HMBC spectrum of 2 (500 MHz, CDCl ₃).	. 47
Figure S41. HMQC spectrum of 2 (500 MHz, CDCl ₃).	. 48
Figure S42. HSQC-TQCSY spectrum of 2 (500 MHz, CDCl ₃).	. 49
Figure S43. HRFD-MS spectrum of 3.	. 50
Figure S44. ¹ H NMR spectrum of 3 (500 MHz, CDCl ₃)	. 51
Figure S45. ¹³ C NMR spectrum of 3 (500 MHz, CDCl ₃)	. 52
Figure S46. COSY spectrum of 3 (500 MHz, CDCl ₃).	. 53
Figure S47. Partial COSY spectrum of 3 (500 MHz, CDCl ₃).	. 54
Figure S48. HMBC spectrum of 3 (500 MHz, CDCl ₃).	. 55
Figure S49. HMQC spectrum of 3 (500 MHz, CDCl ₃).	. 56
Figure S50. HSQC-TQCSY spectrum of 3 (500 MHz, CDCl ₃).	. 57
Figure S51. ¹ H NMR spectrum of 8-methylnonanoic acid (9) (270 MHz, CDCl ₃).	. 58
Figure S52. ¹ H NMR spectrum of 6-methylheptanoic acid (14) (270 MHz, CDCl ₃).	. 59
Figure S53. ¹ H NMR spectrum of 7-methyloctanoic acid (15) (270 MHz, CDCl ₃).	. 60

Table S1. ¹ H (500 MHz) and ¹³ C (67.5 MHz) NMR Spectroscopic Data for Compound 4 in C ₆ D ₆				
	position	δc	type	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)
	1	99.5	CH	4.36, d (6.3)
	2	72.9	CH	5.45, dd (8.6, 6.3)
glucose	3	71.3	CH	5.43, dd (9.3, 8.6)
moiety	4	69.2	CH	5.29, dd (9.3, 9.1)
	5	73.5	CH	3.39, m
	6	69.2	CH ₂	3.47, m
	1a'	70.7	CH ₂	4.74, d (12.8)
	1b′			4.73, d (12.8)
	2'	137.4	С	
benzyl	3'	128.2	CH	7.24, d (7.5)
moiety	4′	128.1-127.4	CH	7.11-7.19, m
	5'	128.1-127.4	CH	7.07, t (7.3)
	6'	128.1-127.4	CH	7.11-7.19, m
	7′	128.2	CH	7.24, d (7.5)
	A-1	174.4	С	
	A-2	33.9	CH	2.41, m (7.0)
	A-3	18.5-18.7	CH ₃	1.07, d (7.0)
	<u>A-4</u>	18.5-18.7	CH ₃	1.07, d (7.0)
	B-1	175.5	С	
acyl	B-2	33.9	CH	2.39, m (7.1)
moiety	B-3	18.5-18.7	CH ₃	1.06, d (7.1)
	B-4	18.5-18.7	CH ₃	1.06, d (7.1)
	C-1	174.6	С	
	C-2	33.9	CH	2.30, m (7.0)
	C-3	18.6 ^a	CH ₃ ^a	1.01. d (7.0) ^b
	C-4	18.5 ^a	CH ₃ ^a	0.97, d (7.0) ^b
	1a″	73.2	CHa	4.33, d (12.3)
	1b″	13.2	CH ₂	4.30, d (12.3)
	2″	138.3	С	
benzyl	3″	128.2	СН	7.27, d (7.3)
moiety	4″	128.1-127.4	СН	7.11-7.19, m
	5″	128.1-127.4	CH	7.07, t (7.3)
	6″	128.1-127.4	СН	7.11-7.19, m
	7″	128.2	СН	7.27, d (7.3)

Table S2	. ¹ H (500	MHz) and ${}^{13}C$ (67.5 MF	Hz) NMR S	Spectroscopic Data for Compound 5 in C6D6
	position	δc	type	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)
	1	99.4	CH	4.39, d (7.7)
	2	71.3	CH	5.46, dd (9.0, 7.7)
lucose moiet	3	72.8	CH	5.49, dd (9.2, 9.0)
needse monety	4	69.3	CH	5.31, dd (9.2, 9.1)
	5	73.5	CH	3.43, m
	6	69.1	CH ₂	3.48, m
	1a′	69.9	CH	4.75, d (12.2)
	1b′	07.7	0112	4.46, d (12.2)
	2'	137.3	С	
enzyl moiety	3'	128.5-127.0	CH	7.24, d (7.7)
chizyr morety	4′	128.5-127.0	CH	7.11-7.19, m
	5'	128.5-127.0	CH	7.07, t (7.3)
	6'	128.5-127.0	CH	7.11-7.19, m
	7'	128.5-127.0	CH	7.24, d (7.7)
	A-1	174.5	С	
	A-2	33.8	CH	2.45, m (6.9)
	A-3	18.5 ^a	CH ₃	1.12, d (6.9)
-	A-4	18.6 ^a	CH ₃	1.12, d (6.9)
-	B-1	172.3	С	
	B-2	33.9	CH ₂	2.22, t (7.6)
	B-3	24.7	CH ₂	1.58, m
	B-4	29.5	CH ₂	1.20-1.15, m
a avil m - : - t	B-5	29.0	CH ₂	1.20-1.15, m
acyl molety	B-6	27.0	CH ₂	1.20, m
	B-7	38.9	CH ₂	1.10, m
	B-8	27.8	CH	1.47, m
	B-9	22.4	CH ₃	0.88, d (6.5)
	B-10	22.4	CH ₃	0.88, d (6.5)
-	C-1	174.6	С	
	C-2	33.7	CH	2.34, m (6.9)
	C-3	18.5 ^b	CH ₃	1.05. d (6.9)°
	C-4	18.4 ^b	CH ₃	1.00, d (6.9) °
	1a″			4.35, d (12.3)
	1b″	73.1	CH ₂	4.31. d (12.3)
	2"	138.2	С	
	<u>-</u> 2″	100.5 107.0		
enzyl moiety	5"	128.5-127.0	СН	/.2/, d (/.3)
	4″	128.5-127.0	СН	7.11-7.19, m
	5″	128.5-127.0	CH	7.07, t (7.3)
	6″	128.5-127.0	CH	7.11-7.19, m
	7"	128 5-127 0	СН	7 27 4 (7 3)

a), b), c): values are interchangeable in each other

Table S3.	¹ H (500 M	Hz) and ${}^{13}C$ (67.	5 MHz) NMR Spectrosc	opic Data for Compound 6 in C6D6
	position	бс	type	δ н, mult. (J in Hz)
	1	99.4	CH	4.39, d (7.3)
	2	71.3	CH	5.47, dd (9.7, 7.3)
glucose	3	72.8	CH	5.49, dd (9.7, 9.6)
moiety	4	69.2	CH	5.32, dd (9.6, 9.1)
	5	73.5	CH	3.43, m
	6	69.1	CH ₂	3.48, m
	1a′	60.0	CHa	4.75, d (12.1)
	1b′	09.9		4.45, d (12.1)
	2'	137.3	С	
benzyl	3'	128.2-127.1	CH	7.24, d (7.5)
moiety	4′	128.2-127.1	CH	7.11-7.19, m
	5'	128.2-127.1	CH	7.07, t (7.3)
	6'	128.2-127.1	СН	7.11-7.19, m
	7′	128.2-127.1	СН	7.24, d (7.5)
	A-1	174.5	С	
	A-2	33.8	СН	2.45, m (7.4)
	A-3	18.6 ^a	CH ₃	1.14-0.98, d (7.4)
	A-4	18.5 ^a	CH ₃	1.14-0.98, d (7.4)
	B-1	172.3	С	· · ·
	B-2	33.9	CH ₂	2.22, t (7.3)
	B-3	24.7	CH ₂	1.59, m
acyl	B-4	29.1	CH ₂	1.20, m
moiety	B-5-B-7	29.4-29.1	CH ₂	1.35-1.75, m
-	B-8	31.8	CH ₂	1.22, m
	B-9	22.6	CH ₂	1.28, m
	B-10	13.9	CH ₃	0.90, t (6.8)
	C-1	174.6	С	
	C-2	33.7	СН	2.34 m (6.9)
	C-3	18.5 ^b	CH ₃	1.14-0.98, d (6.9)
	C-4	18.4 ^b	CH ₃	1.14-0.98, d (6.9)
	1a″	72 1	CII	4.35, d (12.3)
	1b″	/3.1	CH2	4.31, d (12.3)
	2″	138.2	С	
benzyl	3″	128.2-127.1	CH	7.27, d (7.5)
moiety	4″	128.2-127.1	СН	7.11-7.19, m
2	5″	128.2-127.1	СН	7.07, t (7.3)
	6″	128.2-127.1	CH	7.11-7.19, m
	7″	128.2-127.1	СН	7.27, d (7.5)

Figure S1. Extraction and isolation.

Figure S2. HRFD-MS spectrum of 4.

Figure S3. ¹H NMR spectrum of 4 (500 MHz, C_6D_6).

Figure S4. COSY spectrum of 4 (500 MHz, C_6D_6).

Figure S5. HMBC spectrum of 4 (500 MHz, C_6D_6).

Figure S6. NOESY spectrum of 4 (500 MHz, C₆D₆).

Figure S8. HSQC spectrum of 4 (500 MHz, C₆D₆).

Figure S10. ¹H NMR spectrum of **5** (500 MHz, C_6D_6).

Figure S11. COSY spectrum of 5 (500 MHz, C_6D_6).

Figure S12. HMBC spectrum of 5 (500 MHz, C_6D_6).

Figure S13. NOESY spectrum of 5 (500 MHz, C_6D_6).

Figure S15. HMQC spectrum of 5 (500 MHz, C_6D_6).

Figure S16. ¹H NMR spectrum of 8-methylnonanoate (7) (270 MHz, CDCl₃).

Figure S17. GC-MS chromatogram of 8-methylnonanoate (7).

Figure S18. Fragmentation pattern of the MS peak for 8-methylnonanoate (7) having Rt. of 12.1 min in the chromatogram of Figure S17.

Figure S19. GC-MS chromatogram of methylated acyl moiety of **5**. ²⁶

Figure S20. Fragmentation pattern of the MS peak for methylated acyl moiety of 5 having Rt. of 12.4 min in the chromatogram of Figure S19.

Figure S21. HRFD-MS spectrum of **6**.

Figure S22. ¹H NMR spectrum of **6** (500 MHz, C_6D_6).

Figure S23. COSY spectrum of **6** (500 MHz, C_6D_6).

Figure S24. HMBC spectrum of 6 (500 MHz, C_6D_6).

Figure S25. NOESY spectrum of **6** (500 MHz, C_6D_6).

Figure S27. HMQC spectrum of 6 (500 MHz, C_6D_6).

Figure S28. HRFD-MS spectrum of 1.

Figure S29. ¹H NMR spectrum of **1** (500 MHz, CDCl₃).

Figure S30. ¹³C NMR spectrum of **1** (500 MHz, CDCl₃).

Figure S31. COSY spectrum of 1 (500 MHz, CDCl₃).

Figure S32. COSY spectrum of **1** (500 MHz, CDCl₃).

Figure S33. HMBC spectrum of 1 (500 MHz, CDCl₃).

Figure S34. HMQC spectrum of 1 (500 MHz, CDCl₃).

Figure S35. HRFD-MS spectrum of 2.

Figure S38. COSY spectrum of **2** (500 MHz, CDCl₃).

Figure S39. Partial COSY spectrum of **2** (500 MHz, CDCl₃).

Figure S40. HMBC spectrum of **2** (500 MHz, CDCl₃).

Figure S41. HMQC spectrum of **2** (500 MHz, CDCl₃).

Figure S42. HSQC-TQCSY spectrum of **2** (500 MHz, CDCl₃).

Figure S43. HRFD-MS spectrum of **3**.

Figure S44. ¹H NMR spectrum of **3** (500 MHz, CDCl₃).

Figure S45. ¹³C NMR spectrum of **3** (500 MHz, CDCl₃).

Figure S46. COSY spectrum of **3** (500 MHz, CDCl₃).

Figure S47. Partial COSY spectrum of **3** (500 MHz, CDCl₃).

Figure S48. HMBC spectrum of **3** (500 MHz, CDCl₃).

Figure S49. HMQC spectrum of **3** (500 MHz, CDCl₃).

Figure S50. HSQC-TQCSY spectrum of **3** (500 MHz, CDCl₃).

Figure S51. ¹H NMR spectrum of 8-methylnonanoic acid (9) (270 MHz, CDCl₃).

