Supporting Information

New Insights Into the Effect of Residue Mutations on the Rotavirus VP1 Function Using Molecular Dynamic Simulations

\author{
Nabil Abid ${ }^{1},{ }^{2},{ }^{*}$, Daniele Pietrucci ${ }^{3}$, Marco Salemi ${ }^{4}$ and Giovanni Chillemi ${ }^{5},{ }^{6}, *$
 ${ }^{1}$ Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Rue Ibn Sina, 5000, Monastir, Tunisia
 ${ }^{2}$ High Institute of Biotechnology of Sidi Thabet, Department of Biotechnology, University Manouba, BP-66, 2020, Ariana-Tunis, Tunisia; nabil.abid@isbst.uma.tn
 ${ }^{3}$ Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; daniele.pietrucci@uniroma2.it
 ${ }^{4}$ Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Emerging Pathogens Institute, Gainesville, University of Florida, P.O. Box 100009, FL 32610-3633, USA; salemi @ pathology.ufl.edu
 ${ }^{5}$ Department for Innovation in Biological, Agro-food and Forest systems, DIBAF, University of Tuscia, via S. Camillo de Lellis s.n.c., 01100 Viterbo, Italy; gchillemi@unitus.it ${ }^{6}$ Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, CNR, Via Giovanni Amendola, 122/O, 70126, Bari, Italy
 [^0]}

Figure S1.
Root Mean Square Deviation (RMSD) of amino acid residues of all mutants during 225 ns simulation run. (A) RMSD of mutations of hydrophobic residues of motif F (I461A, I462A, and I464A) and finger subdomain residues (S398A and K420A); (B) RMSD of a single (N186A_1), multiple (N186A_2 and N186A_3), and temperature-sensitive (L138P) mutations; (C) RMSD of RNA entry bottleneck mutations (K419A, K419M, K419R, and K419W).

A Radius of gyration

Figure S2. Radius of gyration (A) and solvent accessible surface analysis of the Native and the mutant structures. (B-F) during 225 ns simulation run. Structures are shown by different colors.

Figure S3. The secondary structure analysis of the Native and mutant structures during 225 ns simulation run. A-Helix, B-Sheet, and Coil structures are shown by different colors for all structures.

Figure S4.

Root mean square fluctuation (RMSF) values of $\mathrm{C} \alpha$ atoms of the mutants at the N -terminal region (residues 1-200) of S398A and K420A mutants calculated during 225 ns simulation run along the first six eigenvectors (A). The most pronounced fluctuations at residues 97117 for S398A (B) and 119-127 for K420A (C).

Figure 55.
Root mean square fluctuation (RMSF) values of $\mathrm{C} \alpha$ atoms of the mutants at additional region (residues 1017-1025) for S398A calculated during 225 ns simulation run (A), yet supported by the PCA analysis along the first six eigenvectors (B).

Figure S6.
Root mean square fluctuation (RMSF) values of $\mathrm{C} \alpha$ atoms of the temperature-sensitive (ts) mutants of L138P calculated during 225 ns simulation run, showing fluctuation at residue ranges 431-433, 482-499, and around residue 746 , compared to $\mathrm{L}_{138 \mathrm{P}_{300 \mathrm{~K}} \text {. }}$

Figure S7. The measurement of reachability in VP1 protein. Change in reachability $\left(\Delta L_{i}\right)$ for the each protein mutant (A-E), compared to the Native structure. $\Delta \mathrm{L}$ decrease indicates that residues in mutants are moving closer to each other with respect to the Native and are more accessible; whereas $\Delta \mathrm{L}$ increase indicates that residues in mutants are moving further to each other with respect to the Native and are less accessible.

Figure S8. Multiple change in reachability $\left(\Delta \mathrm{L}_{\mathrm{i}}\right)$ analysis within protein structures. Regions recording high $\Delta \mathrm{L}_{\mathrm{i}}$ are showing by different colors according to their corresponding structures.

Figure S9. The measurement of betweenness centrality in VP1 protein. Change in betweenness centrality $(\triangle \mathrm{BC})$ profile for each protein mutant (A-E), compared to the native structure. Decrease to $\triangle \mathrm{BC}$ indicates a decrease in residue usage within the mutant whereas an increase to $\Delta \mathrm{BC}$ demonstrates increased residue usage.

Figure S10. Change in betweenness centrality ($\Delta \mathrm{BC}$) profile analysis withn protein structures. Regions recording high $\Delta \mathrm{BC}$ are shown by different colors according to their corresponding structures.

Figure S11. Residue contact maps of mutated residues, compared to the Native structure (A-G). Edges between the residue of interest and the other residues are weighted based on how often the interaction exists.

Figure S12. Dynamic cross-correlation profile of protein mutants. Matrices calculated as the difference in communication efficiency between protein residues (A-E). Warm colors (from yellow to red) indicate a relatively higher positive correlation, whereas the cold color (from cyan to blue) represents relatively highly anti-correlation.

Figure S13. Difference in root mean square fluctuations ($\triangle \mathrm{RMSF}$) of backbone atoms in protein mutants, compared to Native structure. The fluctuations of residues were shown by horizontal lines (red). The most pronounced fluctuations (aa 515-535 and aa 585-605) were shown by magenta colored box.

Table S1. The h-bond analysis of the K419A, K419M, K419R, and K419W mutants. Time occurence of h-bond and atoms involved in interactions are shown. Differences are shown by different colors: (i) missing residues are shown by yellow; (ii) time occurrence of h-bond is shown by red; (iii) the unique residues for K419W mutant are shown by green.

LYS	409	N	LYS	409 H	ASP		OD1	94.00\%	YS	409 N	LYS	409 H	ASP	426 OD1	4.00\%	LYS	409 N	LYS	409 H	ASP	426 OD1	0.70\%	LYS	409 N	LYS	409 H	ASP	426 OD1	0.002\%
GLY	411	N	GLY	411 H	THR	807	OG1	7.00\%	GLY	411 N	GLY	411 H	THR	807 OG1	90.00\%	GLY	411 N	GLY	411 H	THR	807 OG1	81.00\%	GLY	411 N	GLY	411 H	THR	807 OG1	16.40\%
ARG	412	NH1	ARG	$412 \mathrm{HH11}$	GLY	797		86.00\%																					
ARG	412	NH1	ARG	$412 \mathrm{HH11}$	ASP	800	OD2	98.00\%															ARG	412 NH 1	ARG	$412 \mathrm{HH11}$	ASP	800 OD2	50.00\%
ARG	412	NH2	ARG	412 HH21	GLY	737	0	95.00\%																					
ARG	412	N	ARG	412 H	GLU	801	OE2	0.004\%	ARG	412 N	ARG	412 H	GLU	801 OE2	91.00\%	ARG	412 N	ARG	412 H	GLU	801 OE2	0.002\%	ARG	412 N	ARG	412 H	GLU	801 OE2	46.00\%
LYS	413	NZ	LYS	413 HZ1	GLU	848	OE2	1.50\%															LYS	413 NZ	LYS	413 HZ1	GLU	848 OE2	83.00
LYS	413	NZ	LYS	413 HZ1	GLU	801	OE1	0.05\%	LYS	413 NZ	LYS	413 HZ1	GLU	801 OE1	10.00\%	LYS	413 NZ	LYS	$413 \mathrm{HZ1}$	GLU	801 OE1	9.00\%	LYS	413 NZ	LYS	413 HZ1	GLU	801 OE1	88.00\%
SER	417	N	SER	417 H	ARG	406	0	94.00\%	SER	417 N	SER	417 H	ARG	4060	0.002\%	SER	417 N	SER	417 H	ARG	4060	5.00\%	SER	417 N	SER	417 H	ARG	4060	0.002\%
LYS	420	N	LYS	420 H	SER	398	0	19.00\%	LYS	420 N	LYS	420 H	SER	3980	17.00\%	LYS	420 N	LYS	420 H	SER	3980	0.10\%	LYS	420 NZ	LYS	420 HZ1	SER	3980	0.007\%
LYS	420	N	LYS	420 H	ALA	400	0	19.00\%	LYS	420 N	LYS	420 H	ALA	4000	0.005\%	LYS	420 N	LYS	420 H	ALA	4000	0.03\%	LYS	420 N	LYS	420 H	ALA	4000	0.30\%
LYS	420	NZ	LYS	420 HZ 1	GLU	404	OE2	27.00\%																					
LYS	420	NZ	LYS	420 HZ1	ASN	402	OD1	0.002\%	LYS	420 NZ	LYS	$420 \mathrm{HZ1}$	ASN	402 OD1	1.00\%	LYS	420 NZ	LYS	$420 \mathrm{HZ1}$	ASN	402 OD1	76.00\%	LYS	420 NZ	LYS	420 HZ1	ASN	402 OD1	0.015\%
ASN	421	N	ASN	421 H	SER	398	0	9.00\%	ASN	421 N	ASN	421 H	SER	3980	0.004\%	ASN	421 N	ASN	421 H	SER	3980	84.00\%	ASN	421 N	ASN	421 H	SER	3980	13.00\%
HIS	423	NE2	HIS	423 HE2	GLU	404	OE1	75.00\%	HIS	423 NE2	HIS	423 HE2	GLU	404 OE1	0.005\%	HIS	423 NE2	HIS	423 HE2	GLU	404 OE1	0.14\%	HIS	423 NE2	HIS	423 HE2	GLU	404 OE2	0.009\%
ASN	430	ND2	ASN	430 HD21	LYS	409	0	0.20\%	ASN	430 ND2	ASN	430 HD21	LYS	4090	4.50\%	ASN	430 ND2	ASN	430 HD21	LYS	4090	90.00\%							
LYS	445	NZ	LYS	445 HZ1	ASN	402	0	89.00\%	LYS	445 NZ	LYS	445 HZ1	ASN	4020	4.50\%	LYS	445 NZ	LYS	445 HZ1	ASN	4020	10.00\%	LYS	445 NZ	LYS	445 HZ1	ASN	4020	0.60\%
																							ARG	451 N	ARG	451 H	GLU	404 OE1	62.00%
																							ARG	452 NE	ARG	452 HE	GLU	404 OE1	54.00
TYR	467		TYR	467 H	ASN		OD1	18.00\%	TYR	467 N	TYR	467 H	ASN	402 OD1	0.004\%	TYR	467 N	TYR	467 H	ASN	402 OD1	4.60\%	TYR	467 N	TYR	467 H	ASN	402 OD1	0.002\%
LYS	583	NZ	LYS	583 HZ 1	GLU	404	OE1	0.005\%	LYS	583 NZ	LYS	583 HZ 1	GLU	404 OE1	0.002\%	LYS	583 NZ	LYS	583 HZ 1	GLU	404 OE1	0.15\%	LYS	583 NZ	LYS	583 HZ1	GLU	404 OE1	66.00
SER	805	OG	SER	805 HG	PHE	410		84.00\%	SER	805 OG	SER	805 HG	PHE	4100	30.00\%	SER	805 OG	SER	805 HG	PHE	4100	0.002\%	SER	805 OG	SER	805 HG	PHE	4100	0.07\%

Video S1. Animated visualization of the mutated residues in the VP1 protein used in the present study.

Video S2. Animated visualization of the fluctuation of the residues 400-406 of the K419W mutant, compared to K419A, K419M, and K419R using extreme structure according to eigenvector v1. Shift distance between model 1 and model 10 of the extreme structure of K419W was shown.

[^0]: *Corresponding Author

