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Optical microscope image of h-BN/APTES/WSe2 synaptic device 

 

Figure S1. The channel length and width are 5 and 5 𝜇m, respectively. The scale bar is 10 

𝜇m.  
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Ipost–VWC characteristic curves  

 

Figure S2. Ipost–VWC characteristic curves of synaptic devices with respect to various APTES 

concentrations (0.5%, 1%, 2%, and 5 %). 

 

 

 

 

Figure S3. Ipost–VWC characteristic curves of synaptic devices with different weight control 

voltage (VWC) values ranging from |5 V| to |25 V|.” 
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Mechanism of long-term potentiation (LTP) and long-term depression (LTD) 

of h-BN/APTES/WSe2 synaptic device 

 

Figure S4. (a) When a positive VWC is applied, some of the holes trapped at the APTES surface 

region are released (see APTES/WSe2 interface), decreasing the WSe2 channel potential (see 

Pd/WSe2 junction). This moves up the WSe2 energy band and consequently increases hole 

injection probability from the source electrode. As a result, the channel current increases, 

causing an increase in channel conductance (Gchannel ↑), which is called "long-term potentiation 

(LTP)". (b) On the other hand, when a negative VWC is applied, hole carriers in channel region 

are trapped at the APTES surface, causing an increase in the WSe2 channel potential. This 

drags down the WSe2 energy band and thereby decreases the hole injection probability from 

the source electrode. Consequently, the channel current decreases, resulting in a decrease in 

channel conductance (Gchannel ↓), which is called, “long-term depression (LTD)”. 
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Nonlinearity analysis of the LTP/LTD characteristic curves 

 

Figure S5. (a) Long-term potentiation (LTP) and (b) long-term depression (LTD) with respect 

to the nonlinearity (NL), ranging from 0 to 5. 
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Long-term potentiation (LTP) and long-term depression (LTD) 

characteristic curves measured at the pulse frequency of 100 Hz.  

 

Figure S6. (a) LTP and (b) LTD characteristics with the pulse amplitudes of +5 V and −5 V, 

respectively. The pulse width and frequency were fixed at 5 ms and 100 Hz, respectively. 

 

We investigated the LTP/LTD characteristics of the newly fabricated devices at a higher pulse 

frequency of 100 Hz. As shown in Figures S6a and S6b, our synaptic device responded well 

even at the pulse frequency of 100 Hz, where the read and write pulses were both of 5 ms. The 

dynamic range (Gmax/Gmin) was 116, and the nonlinearities for the LTP and LTD (NLP and NLD) 

were −2.49 and −4.88, respectively. 
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Van der Waals (vdW) synaptic device benchmarking   

 

Figure S7. Benchmarking results against recently reported van der Waals synaptic devices in 

terms of the dynamic range (Gmax/Gmin) and on/off current ratio at VWC = 0 V. 

 

We compared our device with other van der Waals synaptic devices in terms of the dynamic 

range (Gmax/Gmin) and on/off current ratio at VWC = 0 V (Figure S7). Our synaptic device 

exhibits relatively high Gmax/Gmin (>100) and on/off current ratio at VWC = 0 V (>106). 
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SLP and MLP simulation results for the LTP/LTD response measured at the 

pulse frequency of 100 Hz  

 

Figure S8. Recognition rate of single-layer perceptron (SLP)-based artificial neural network 

(ANN) as a function of training epochs for the high-frequency pulse condition (VWC of 5 V, 5 

ms, and 100 Hz). 

 

Using the synaptic characteristic data obtained at a higher frequency (VWC = ±5 V, 5 ms, and 

100 Hz), we constructed a single-layer artificial neural network (ANN) of size 784 × 10 and 

conducted the training/recognition simulation for MNIST digit patterns. As shown in Figure 

S8, the recognition rate of the ANN was 72%, which was slightly lower than the previous result 

achieved at the low-frequency pulse condition (VWC = ±5 V, 10 ms, and 16 Hz) but still 

acceptable. 
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Figure S9. Recognition rate of the multi-layer perceptron (MLP)-based artificial neural 

network (ANN) as a function of training epochs (VWC of 5 V, 5 ms, and 100 Hz). 

 

To achieve a higher pattern recognition rate, we inserted a hidden layer into the single-layer 

neural network and thereby prepared a multi-layer perceptron (MLP)-based ANN of size 400 

× 100 × 10. The simulation was conducted on the platform “MLP+NeuroSim ver. 1.0.” 

Consequently, a higher recognition rate of 94.10% was achieved (Figure S9), which was close 

to the maximum recognition rate of the ideal case (96.04%). 
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Synaptic performance benchmarking  

 

Table S1. Comparison table in terms of various synaptic performances such as the number of 

conductance states, dynamic range, nonlinearity, and learning accuracy (SLP-based ANN 

simulation only). 

 

We summarized recent papers that studied synaptic performances in terms of the number of 

conductance states, dynamic range, nonlinearity, and learning accuracy (Table S1). Here, for 

an accurate comparison, we selected the papers in which the training/recognition simulation 

was conducted in a single-layer perceptron (SLP)-based artificial neural network (ANN). Our 

h-BN/APTES/WSe2 hybrid synaptic device exhibited a relatively high dynamic range (~100) 

and moderate nonlinearities (+3.13/‒6.53). Owing to such excellent synaptic characteristics, a 

relatively high recognition rate of 78.3% was achieved even with the SLP-based ANN. 
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