Elemental Sulfur-Incorporated Cyclizations of Pyrrolidines

 Leading to ThienopyrrolesYuanyuan Yue, ${ }^{\text {a, } *}$ Huibin Shao, ${ }^{\text {a }}$ Zhixian Wang, ${ }^{\text {a }}$ Ke Wang, ${ }^{\text {a }}$ Le Wang, ${ }^{\text {a }}$ Kelei Zhuo ${ }^{\text {a }}$ and Jianming Liu ${ }^{\text {a,* }}$
${ }^{a}$ Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
E-mail address: yuanyuanyue@htu.cn and jmliu@htu.cn

Contents

1. Optimization of the reaction conditions S2
2. EPR experiment procedure. S3
3. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR copies of substrates S4
4. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR copies of products S45
5. Single-Crystal X-ray diffraction S91

Table S1. Optimization of the reaction conditions. ${ }^{a}$

[^0]
2. EPR experiment procedure for interaction of 4-benzyl-2-phenyl-5,

 6-dihydro-4H-thieno[3,2-b]pyrrole (1a) with elemental sulfur.1-benzyl-2-(phenylethynyl)pyrrolidine ($78.4 \mathrm{mg}, 0.30 \mathrm{mmol}$) and elemental sulfur $\mathbf{S}_{8}(115.2 \mathrm{mg}, 0.45 \mathrm{mmol})$ were combined in a 50 mL flame-dried Young-type tube equipped with a stir bar, and then the tube was sealed. Next, the Schlenk tube was purged three times with N_{2}. Then, 1,4 -dioxane ($(.0 \mathrm{~mL}$) was injected into the Schlenk tube with a syringe under N_{2} atmosphere. The contents of the Schlenk tube were then allowed to stir at $120^{\circ} \mathrm{C}$ by using a heating mantle for 1.0 h . Then, DMPO was added to the mixture and preserved in liquid nitrogen for EPR examination. No organic radical was observed.

3. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR copies of substrates

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6})

1j

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

11

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\bullet}{\dot{m}} \underset{i}{\dot{\sim}}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\qquad

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

80	170	160	150	140	${ }_{130}$	${ }_{120}$	${ }_{110}$	${ }_{100}$	${ }_{90}$	80	70	60	50	40	30	20	10	${ }_{0}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

80	170	160	150	140	130	120	110	100	90	80	70	60	50	10	30	20	10	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 1 \qquad

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

12202019-yy. 30.1.1r	\qquad					
		\bigcirc	-0	$\checkmark 60$	\bigcirc	\ulcorner
	$\stackrel{\mathcal{M}}{\sim} \stackrel{\sim}{\sim} \stackrel{\sim}{\sim} \stackrel{\sim}{\sim} \stackrel{\sim}{\sim} \stackrel{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim}$	ヘ	$\stackrel{\oplus}{\sim}$	ค\%	-	$\stackrel{\grave{N}}{ }$
	(-)	11	-	111		,

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR copies of products

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2k

N
${ }^{3} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz} \mathrm{CDCl}_{3}\right)$

(376 MHz, $\left.\mathrm{CDCl}_{3}\right)$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4 c

(

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right)$ (

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Maro2-2019-wzx. 20. 1. 1r

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Mar09－2019－wzx，10．1．1r	$\begin{aligned} & 00 \\ & 0 \end{aligned}$		
	กֻ̣		$\bar{\infty}$
			「「「「「
${ }^{1} \mathrm{H}$ NMR（ $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）			

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left.{ }^{13} \mathrm{C}_{\{ }{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5. Single-Crystal X-ray diffraction.

Single-crystal XRD studies on compounds $\mathbf{2 b}$ and $\mathbf{2 h}$ were performed on a Supernova CCD diffractometer at 293(2) K. Determination of unit cell parameters and data collection were performed with Mo-Ka radiation at a wavelength of $0.71073 \AA$ using the x -scan technique. The structures were solved by direct methods and refined by full matrix least-squares on F^{2} using SHELXS-97 and SHELXL-97 programs. ${ }^{1}$ The metal atoms in each compound were located from the E-maps, and other non-hydrogen atoms were located in successive difference Fourier syntheses and refined with anisotropic thermal parameters on F^{2}. The hydrogen atoms were added theoretically, riding on the concerned atoms and refined with fixed thermal factors. The SQUEEZE function in PLATON was utilized during the refinement of $\mathbf{2 b}$ and $\mathbf{2 h}$ owing to the disordered solvents. ${ }^{2}$

The structure was then refined again using the data generated. Crystal data and details of the data collection are given in Table S1-S2. CCDC 1946767 (2b) and 1946766 (2h) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
(1) M. Sheldrick, G. SHELXS-97. Program for X-ray crystal structure determination, Gottingen University, Germany, 1997.
(2) L. Spek, A. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7-13.

Single crystals (2b and 2h) suitable for X-ray analysis were obtained by slow evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent.
Table S1. Crystal data and structure refinement for 2b

Identification code	shs-20180927
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NS}$
Formula weight	303.41
Temperature/K	$293(2) \mathrm{K}$
Crystal system	monoclinic
Space group	$\mathrm{P} 121 / \mathrm{c} 1$
a / \AA	$13.4137(6) \mathrm{A}$

b/Å	5.9329(2) A
c/Å	20.1416(8) A
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90.210(4)
$\gamma^{/ 0}$	90
Volume/ $/{ }^{\text { }}$ 3	1602.90(11)
Z	4
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.257
μ / mm^{-1}	0.198
$\mathrm{F}(000)$	640
Crystal size/ mm^{3}	$0.45 \times 0.28 \times 0.11$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	3.58 to 29.21
Index ranges	$-17<=\mathrm{h}<=16,-8<=\mathrm{k}<=6,-26<=1<=25$
Reflections collected	8879 / 3702 [$\mathrm{R}(\mathrm{int})=0.0224]$
Independent reflections	unique 3702
Data/restraints/parameters	3702 / 0 / 200
Goodness-of-fit on F^{2}	1.038
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R} 1=0.0439, \mathrm{wR} 2=0.0992$
Final R indexes [all data]	$\mathrm{R} 1=0.0604, \mathrm{wR} 2=0.1081$
Largest diff. peak/hole / e \AA^{-3}	0.218 and -0.236

Figure S1. Additional X-ray crystallographic structures 2b with 30% probability ellipsoid.

Table S2. Crystal data and structure refinement for 2h

Identification code	shs-2-20180919
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NOS}$
Formula weight	333.43
Temperature/K	$293(2) \mathrm{K}$

Crystal system	monoclinic
Space group	C1c1
a/Å	28.9068(5) A
b/Å	5.75310(10) A
c/Å	10.5484(2) A
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	98.531(2)
$\gamma /{ }^{\circ}$	90
Volume/A ${ }^{3}$	1734.83(5)
Z	4
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.277
μ / mm^{-1}	1.694
$\mathrm{F}(000)$	704
Crystal size $/ \mathrm{mm}^{3}$	$0.20 \times 0.20 \times 0.20$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	6.19 to 71.18
Index ranges	$-34<=\mathrm{h}<=35,-5<=\mathrm{k}<=6,-12<=\mathrm{l}<=9$
Reflections collected	$5226 / 2646$ [$\mathrm{R}(\mathrm{int})=0.0166]$
Independent reflections	unique 2646
Data/restraints/parameters	2646 / 2 / 218
Goodness-of-fit on F^{2}	1.079
Final R indexes [$\mathrm{l}>=2 \sigma$ (I)]	$\mathrm{R} 1=0.0363, \mathrm{wR} 2=0.1052$
Final R indexes [all data]	$\mathrm{R} 1=0.0369, w R 2=0.1060$
Largest diff. peak/hole / e \AA^{-3}	0.108 and -0.191

Figure S2. Additional X-ray crystallographic structures 2h with 30% probability ellipsoid.

[^0]: ${ }^{a}$ Standard condition: 1a $(0.30 \mathrm{mmol}), \mathbf{S}_{\mathbf{8}}\left(1.5\right.$ equiv), solvent $(2.0 \mathrm{~mL}), \mathrm{N}_{2}, 120{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

