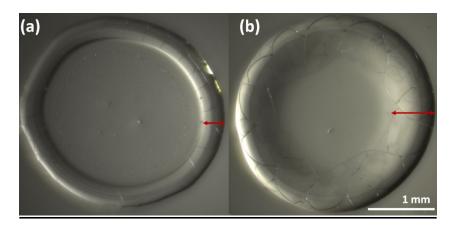
Supporting Information

Complex pattern formation in solutions of protein and mixed salts using dehydrating sessile droplets

Binita Pathak¹, John Christy^{2*}, Khellil Sefiane^{2,4} and Devrim Gozuacik³

¹Department of Mechanical Engineering, Indian Institute of Technology, BHU, Varanasi-221005, India ²School of Engineering, The University of Edinburgh, Kings Buildings, Edinburgh EH9 3JL, United Kingdom


³Koç University, School of Medicine, KUTTAM Research Center for Translational Medicine, Topkapı-Zeytinburnu 34010 Istanbul, Turkey

⁴Tianjin Key Lab of Refrigeration Technology, Tianjin University of Commerce, Tianjin City 300134, PR China

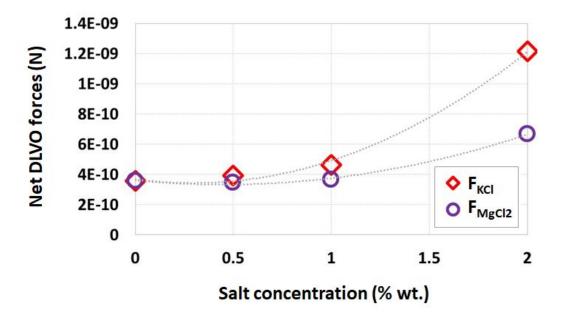

*Corresponding Author: J.Christy@ed.ac.uk . Phone: +44(0) 131 6504854

Table of Contents

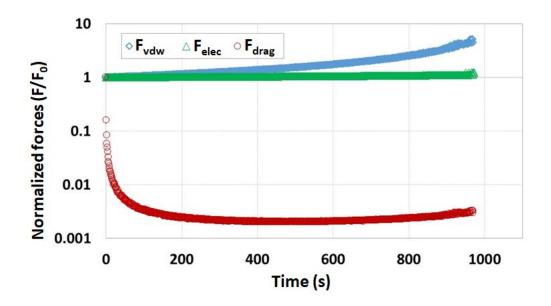

Figure S1. Final deposit of BSA droplets	
Figure S2. Comparison of the net DLVO forces	
Figure S3. Temporal variation of different forces	
Figure S4. Variation of DLVO forces with salt concentration	
Figure S5. Temporal variation of droplet volume	
Figure S6. Final deposit of KCl crystals	
Figure S7: Estimation of l _{crys} .	

Figure S1. Final deposit of BSA droplets. We show the final deposit of droplets with an initial concentration of (a) 3% wt. BSA and (b) 7% wt. BSA in water.

Figure S2. Comparison of the net DLVO forces. The net DLVO forces (magnitude) acting between particle-particle are plotted with the increase in the salt concentration (for BSA+KCl and BSA+MgCl₂ droplets; BSA: 7% wt.) [F_{KCl} and F_{MgCl_2} are the net forces for KCl and MgCl₂ respectively]

F_{drag}: drag force
F_{vdw}: van der Waals forces between protein-protein
F_{elec}: electrostatic interaction forces between protein-protein

Figure S3. Temporal variation of different forces. The temporal variation of different forces are plotted for droplets of 1% wt. BSA + 2% wt. KCl salt [the forces are normalized with the forces at the initial state of the droplet (F_0 : forces at time= 0)].

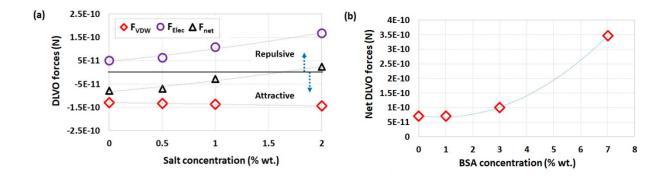
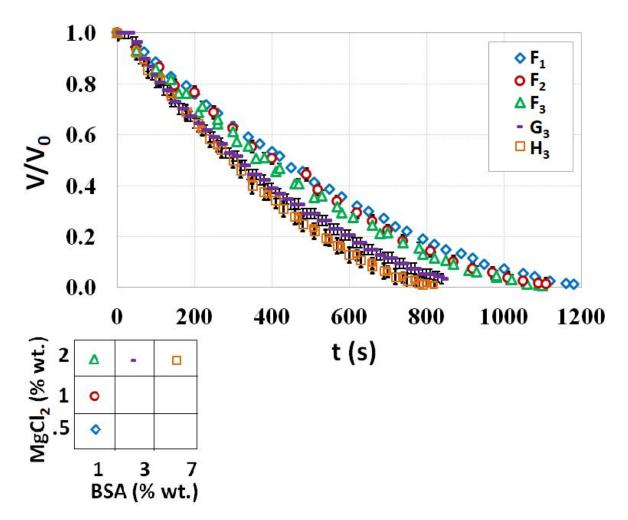
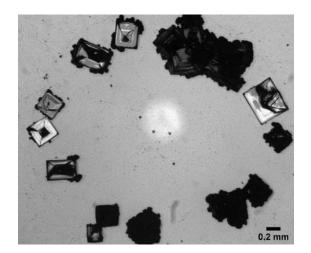




Figure S4. Variation of DLVO forces with salt concentration. The plot shows the variation of (a) DLVO forces for MgCl₂+BSA droplets with salt concentration for (BSA: 1% wt.) and (b) net DLVO forces ($F_{net}=F_{VDW}+F_{Elec}$) (only magnitude) with variation in the BSA concentration (MgCl₂: 0.5% wt.)

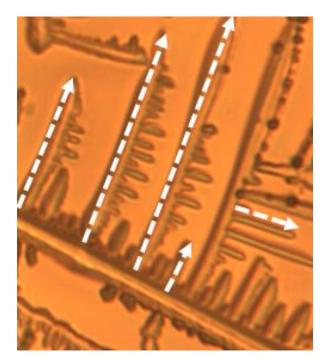

[van der Waals attraction: $F_{VDW} = \frac{-A - r_1 r_2}{6D^2(r_1 + r_2)}$ ad electrostatic repulsion forces: $F_{Elec} = \kappa Z e^{-\kappa D} \frac{r_1 r_2}{(r_1 + r_2)}$ respectively]

Figure S5. Temporal variation of droplet volume. The temporal variation of the volume of BSA+MgCl₂ droplets are plotted in the Figure. The volume is non-dimensionalized with the initial droplet volume

Figure S6. Final deposit of KCl crystals. The final precipitate shows the formation of ringtype peripheral deposit of KCl crystals (the initial concentration is 1 M solution in water) [unpublished data with permission from Efstratiou et. al].

Figure S7: Estimation of l_{crys} **.** The l_{crys} **is the axial length of the crystals measured from the point of initiation to the final growth (full grown crystal). The l_{crys} is calculated from the point of its initiation to the tip (maximum growth) for the main crystal as well as the branches.**