### **Supporting Information**

## Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides

*Christopher Paolucci,*<sup>#</sup> John R. Di Iorio,<sup>§,†</sup> William F. Schneider,<sup>\*,#</sup> and Rajamani Gounder<sup>\*,§</sup>

<sup>®</sup>Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903 (USA) <sup>§</sup>Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907 (USA)

<sup>#</sup>Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 (USA)

\*Corresponding author e-mail addresses: rgounder@purdue.edu, wschneider@nd.edu

#### S2.1 NH<sub>3</sub>-SCR and Dry NO Oxidation Rates

**Table S1.**  $NH_3$ -SCR kinetic parameters measured on a series of Cu-CHA samples with Si/Al = 15 and Cu/Al varying from 0.03-0.44. Data corresponding to Figure 2a (main text). Adapted with permission from ref. 1. Copyright 2017 American Association for the Advancement of Science.

| Si/Al | Cu/Al | Cu                  | SCR Rate (10 <sup>-3</sup> | SCR Rate (10 <sup>-3</sup> | <b>O</b> <sub>2</sub> | E <sub>app</sub> <sup>b</sup> |
|-------|-------|---------------------|----------------------------|----------------------------|-----------------------|-------------------------------|
|       |       | /1000Å <sup>3</sup> | mol NO/mol Cu/s)           | NO/1000Å <sup>3</sup> /s)  | order <sup>a</sup>    |                               |
| 15    | 0.03  | 0.03                | 1.8                        | 0.05                       | 0.8                   | 47                            |
| 15    | 0.08  | 0.07                | 2.3                        | 0.16                       | 0.7                   | 50                            |
| 15    | 0.10  | 0.09                | 3.3                        | 0.30                       | 0.7                   | 56                            |
| 15    | 0.12  | 0.11                | 4.5                        | 0.50                       | 0.7                   | 56                            |
| 15    | 0.19  | 0.18                | 6.5                        | 1.17                       | 0.5                   | 60                            |
| 15    | 0.25  | 0.23                | 7.8                        | 1.79                       | 0.4                   | 63                            |
| 15    | 0.37  | 0.35                | 7.4                        | 2.59                       | 0.4                   | 66                            |
| 15    | 0.44  | 0.41                | 7.8                        | 3.20                       | 0.3                   | 74                            |

<sup>a</sup>Errors are  $\pm 0.1$ .

<sup>b</sup>Errors are  $\pm$  7 kJ/mol.

**Table S2.** NH<sub>3</sub>-SCR kinetic parameters and dry NO oxidation rates measured on a series of Cuexchanged SSZ-13 samples with Si/Al = 4.3-4.5 and Cu/Al varying from 0.02-0.39; arranged by increasing Cu/Al). Data corresponding to Figure 2b (main text). Adapted with permission from refs. 2,3. Copyright 2014 Elsevier.

| Si/Al | Cu/Al | Cu<br>/1000Å <sup>3</sup> | SCR Rate (10 <sup>-3</sup><br>NO/1000Å <sup>3</sup> /s) | SCR O <sub>2</sub><br>order <sup>a</sup> | SCR<br>E <sub>app</sub> | Dry NO<br>Oxidation<br>Rate (10 <sup>-4</sup><br>NO/1000Å <sup>3</sup> /s) |
|-------|-------|---------------------------|---------------------------------------------------------|------------------------------------------|-------------------------|----------------------------------------------------------------------------|
| 4.3   | 0.02  | 0.06                      | 0.2                                                     | 0.5                                      | 42                      | 0                                                                          |
| 4.3   | 0.04  | 0.11                      | 1.5                                                     | 0.5                                      | 68                      | 0                                                                          |
| 4.5   | 0.09  | 0.25                      | 1.8                                                     | 0.3                                      | 64                      | 0                                                                          |
| 4.5   | 0.16  | 0.44                      | 2.8                                                     | 0.3                                      | 70                      | 0                                                                          |
| 4.5   | 0.20  | 0.55                      | 3.6                                                     | 0.3                                      | 71                      | 0                                                                          |
| 4.5   | 0.31  | 0.85                      | n.m.                                                    | n.m.                                     | n.m.                    | 0.5                                                                        |
| 4.5   | 0.35  | 0.96                      | 2.9                                                     | 0.2                                      | 71                      | 1.3                                                                        |
| 4.5   | 0.39  | 1.07                      | n.m.                                                    | n.m.                                     | n.m.                    | 1.6                                                                        |

<sup>a</sup>Errors are  $\pm 0.1$ .

<sup>b</sup>Errors are  $\pm$  5 kJ/mol.

n.m. not measured

#### S3.1 Energies of Cu species at 1Al and 2Al sites



**Figure S1.** Z<sub>2</sub>Cu energy vs Al–Al lattice separation, relative to the lowest energy structure (3NN 6-MR). Symbol color indicates connectivity distance: red–1NN, green–2NN, blue–3NN, orange–4NN, black–5NN. Lowest-energy structures and corresponding Cu–O<sub>f</sub> distances (in Å) at each connectivity distance are shown. Atom colors: yellow–Si, green–Al, red–O, pink–H. Reproduced from ref. 4. Copyright 2018 American Chemical Society.



**Figure S2.** Formation free energies ( $\Delta G_{\text{form}}$ ) CuH<sub>x</sub>O<sub>y</sub> species at (left) 298 K, 2 kPa H<sub>2</sub>O, 20 kPa O<sub>2</sub>, and at (right) 673 K, 2 kPa H<sub>2</sub>O, 20 kPa O<sub>2</sub> on the 2Al (Z<sub>2</sub>Cu) and 1Al (ZCu) sites. Common energy reference set through Eq. (S1). Reproduced from ref. 5. Copyright 2016 American Chemical Society.

$$[Z_2CuH_2O] + [ZH] \rightarrow [ZH]/[ZH] + [ZCuOH] \quad ; \quad \Delta E = +66 \text{ kJ/mol}$$
(S1)

#### S3.2 Composition of Synthesized Cu-CHA Materials

**Table S3.** Bulk elemental analysis and fraction of isolated  $Cu^{2+}$  and  $Cu^{2+}$ (OH) sites on a series of Cu-CHA samples with varying Si/Al (4.5-25) and Cu/Al (0.03-0.59); arranged by increasing Cu/Al for a fixed Si/Al ratio. Adapted with permission from ref. 1. Copyright 2017 American Association for the Advancement of Science. Adapted from ref. 5. Copyright 2016 American Chemical Society.

|       |       |                        | H <sup>+</sup> /Al | H <sup>+</sup> /Al |                                      |                   |
|-------|-------|------------------------|--------------------|--------------------|--------------------------------------|-------------------|
| Si/Al | Cu/Al | Cu /1000Å <sup>3</sup> | (H-form)           | (Cu-form)          | ZCu <sup>2+</sup> OH/Al <sup>a</sup> | $Z_2Cu^{2+}/Al^a$ |
| 4.5   | 0.08  | 0.22                   | 0.46               | 0.31               | 0                                    | 0.08              |
| 4.5   | 0.21  | 0.57                   | 0.87               | 0.42               | 0                                    | 0.21              |
| 15    | 0.03  | 0.03                   | 0.98               | 0.93               | 0                                    | 0.03              |
| 15    | 0.08  | 0.07                   | 0.98               | 0.81               | 0                                    | 0.08              |
| 15    | 0.10  | 0.09                   | 0.98               | 0.80               | 0.01                                 | 0.09              |
| 15    | 0.12  | 0.11                   | 0.98               | 0.73               | 0.03                                 | 0.09              |
| 15    | 0.19  | 0.18                   | 0.98               | 0.68               | 0.10                                 | 0.09              |
| 15    | 0.25  | 0.23                   | 1.00               | 0.64               | 0.16                                 | 0.09              |
| 15    | 0.37  | 0.35                   | 0.98               | 0.58               | 0.28                                 | 0.09              |
| 15    | 0.44  | 0.41                   | 0.98               | 0.51               | 0.35                                 | 0.09              |
| 25    | 0.21  | 0.11                   | 0.98               | 0.74               | 0.17                                 | 0.04              |
| 25    | 0.42  | 0.24                   | 0.98               | 0.58               | 0.37                                 | 0.04              |
| 25    | 0.59  | 0.34                   | 0.98               | 0.47               | 0.55                                 | 0.04              |

<sup>a</sup>Determined from titration of residual  $H^+$  sites by  $NH_3$  and thermodynamic preferences for  $Z_2Cu^{2+}$  and  $ZCu^{2+}OH$  siting.<sup>6,7</sup>

Titrimetric methods were developed to quantify speciation between  $Z_2Cu$  and ZCuOH site motifs, given that the former Cu sites exchange 2 H<sup>+</sup> and the latter exchange only 1 H<sup>+</sup>. NH<sub>3</sub> is among the only probe bases that can fully access the microporous voids of small-pore CHA zeolites, but it adsorbs strongly on both H<sup>+</sup> and Cu sites and more weakly in various physisorbed states, complicating efforts to distinguish individual site types. However, NH<sub>3</sub> saturation followed by H<sub>2</sub>O purge treatments selectively retain only NH<sub>4</sub><sup>+</sup> species, enabling quantifying residual H<sup>+</sup> sites after Cu exchange.<sup>6,7</sup> Cu-CHA materials expected to contain predominantly  $Z_2Cu$  or ZCuOH reveal two stoichiometric regimes (Fig. S3), corresponding to exchange of 2 or 1 H<sup>+</sup> with increasing Cu<sup>2+</sup> content, consistent with the preferential population of  $Z_2Cu$  before

ZCuOH sites (Fig. S2). In contrast,  $Co^{2+}$  exchanges only as Z<sub>2</sub>Co and enumerates 2Al sites (Fig. S3), and thus titrate the same set of proximal Al as Z<sub>2</sub>Cu.<sup>5,8</sup>



**Figure S3.** Number of residual H<sup>+</sup> sites after Cu<sup>2+</sup> (solid) or Co<sup>2+</sup> (open) exchange (measured by NH<sub>3</sub> titration) with increasing M<sup>2+</sup> exchange on CHA zeolites synthesized via FAU-to-CHA interconversion (circles, Si/Al = 5), using an equimolar mixture of Na<sup>+</sup> and TMAda<sup>+</sup> (squares, Si/Al = 15), and using only TMAda<sup>+</sup> (diamonds, Si/Al = 15). Dotted, dashed, and dot-dash lines are predicted Cu<sup>2+</sup> exchange stoichiometry based on the different synthetic procedures. Reproduced from ref. 5. Copyright 2016 American Chemical Society. Reproduced from ref. 9. Copyright 2017 American Chemical Society.

#### S7.1 Kinetic models for the transient oxidation experiments

The following equation (a detailed derivation can be found in ref.<sup>1</sup>) was used to model the transient oxidation of  $Cu^+$  in O<sub>2</sub>-assisted oxidation XAS experiments:

$$Cu^{I} Fraction = \frac{[Cu^{I}(t)]}{[Cu^{I}]_{0}} = \frac{1 - [Cu^{I}]_{\infty} / [Cu^{I}]_{0}}{1 + 2k \left( [Cu^{I}]_{0} - [Cu^{I}]_{\infty} \right) t} + \frac{[Cu^{I}]_{\infty}}{[Cu^{I}]_{0}}$$
(S2)

where  $Cu^{I}$  Fraction is the time-dependent  $Cu^{I}$  concentration divided by the initial  $Cu^{I}$  concentration ( $[Cu^{I}]_{0}$ ), *k* is a pseudo-second-order rate constant, and  $[Cu^{I}]_{\infty}$  is the unoxidizable, recalcitrant fraction of  $Cu^{I}$  at the end of the transient experiment.

**Table S4.** Apparent rate constants (*k*), recalcitrant  $[Cu^+]_{\infty}/[Cu^+]_0$  fractions, and goodness of fit ( $R^2$ ) to equation S2 for the data corresponding to Figure 8. Adapted with permission from ref. 1. Copyright 2017 American Association for the Advancement of Science.

|                                  | 0.07 Cu/1000 Å <sup>3</sup> | 0.22 Cu/1000 Å <sup>3</sup> | 0.57 Cu/1000 Å <sup>3</sup> |
|----------------------------------|-----------------------------|-----------------------------|-----------------------------|
| $k(m^3 \mod Cu^{-1}s^{-1})$      | 0.00011                     | 0.00017                     | 0.00082                     |
| $[Cu^{+}]_{\infty}/[Cu^{+}]_{0}$ | 0.26                        | 0.10                        | 0.05                        |
| $R^2$                            | 0.99                        | 0.98                        | 0.99                        |

#### **S7.2 Predicted recalcitrant Cu<sup>+</sup> fractions from stochastic simulations**



**Figure S4.** Snapshots taken from stochastic simulations at initial (time = 0) and final (time $\rightarrow \infty$ ) Cu<sup>+</sup> spatial distributions corresponding to the three samples in Figure 8. Cu<sup>+</sup> volumetric footprints are denoted by 9 Å–radius green spheres. Simulation results include decomposition of unoxidized Cu<sup>+</sup> fraction into physically isolated (Iso) and functionally isolated (MC) components. Reproduced with permission from ref. 1. Copyright 2017 American Association for the Advancement of Science.

#### S7.3 Metadynamics simulation of Cu<sup>+</sup>(NH<sub>3</sub>)<sub>2</sub> intercage diffusion



**Figure S5.** On left, the metadynamics-computed free energy at 473 K of  $Cu^+(NH_3)_2$  in the 72–T site CHA supercell versus Cu-Al distance. The red line is the energy profile predicted from a point-charge electrostatic model, described in SM section S9. Labeled are reactant state (1)  $[Cu^+(NH_3)_2$  in the same cage as A1], transition state (2)  $[Cu^+(NH_3)_2$  diffusion through 8-MR], and product state (3)  $[Cu^+(NH_3)_2$  in the neighboring cage without A1]. Corresponding representative  $Cu^+(NH_3)_2$  configurations from the trajectories are shown on the right. Gray, Cu; green, A1; blue, N; and white, H. Reproduced with permission from ref. 1. Copyright 2017 American Association for the Advancement of Science.

# S7.4 Both $Cu^+$ oxidation and $Cu^{2+}$ reduction steps are kinetically relevant during "standard" SCR

SCR rates measured at low (1 kPa)  $O_2$  pressures on Cu-CHA increase quadratically with Cu density in the entire range of Cu densities studied (Fig. S6a), because such conditions cause  $Cu^+$  oxidation rates to become the dominant rate-limiting step (Fig. S6b). These data demonstrate that  $O_2$ -assisted oxidation steps prevail in all Cu-CHA zeolites,<sup>10</sup> and that the kinetic relevance of oxidation half-cycle rates to overall SCR rates depends on both Cu density and  $O_2$  partial pressure.



**Figure S6.** A) SCR rates (per  $10^3$  Å<sup>3</sup>, 473 K) measured on Cu-CHA samples at 1 ( $\blacktriangle$ ), 10 ( $\bullet$ ), and 60 kPa ( $\blacksquare$ ) O<sub>2</sub> (other reaction conditions: 0.030 kPa NO, 0.030 kPa NH<sub>3</sub>, 7 kPa CO<sub>2</sub>, 1 kPa H<sub>2</sub>O, balance N<sub>2</sub>). Dashed lines are drawn through the origin and the rate on highest Cu content sample for each data series to guide the eye, illustrating that SCR rates deviate from a first-order dependence at dilute Cu density. B) Steady-state Cu<sup>+</sup> fraction (Cu<sup>+</sup>/Cu<sub>tot</sub>) at 1 ( $\bigstar$ ), 10 ( $\bullet$ ), and 60 kPa O<sub>2</sub> ( $\blacksquare$ ) measured *in operando* by XAS as a function of Cu density. Reproduced with permission from ref. 10. Copyright 2020 Elsevier.

#### REFERENCES

- Paolucci, C.; Khurana, I.; Parekh, A. A.; Li, S.; Shih, A. J.; Li, H.; Di Iorio, J. R.; Albarracin-Caballero, J. D.; Yezerets, A.; Miller, J. T.; Delgass, W. N.; Ribeiro, F. H.; Schneider, W. F.; Gounder, R. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. *Science* 2017, *357*, 898-903.
- (2) Verma, A. A.; Bates, S. A.; Anggara, T.; Paolucci, C.; Parekh, A. A.; Kamasamudram, K.; Yezerets, A.; Miller, J. T.; Delgass, W. N.; Schneider, W. F.; Ribeiro, F. H. NO oxidation: A probe reaction on Cu-SSZ-13. *J. Catal.* **2014**, *312*, 179-190.
- (3) Bates, S. A.; Verma, A. A.; Paolucci, C.; Parekh, A. A.; Anggara, T.; Yezerets, A.; Schneider, W. F.; Miller, J. T.; Delgass, W. N.; Ribeiro, F. H. Identification of the active Cu site in standard selective catalytic reduction with ammonia on Cu-SSZ-13. *J. Catal.* 2014, *312*, 87-97.
- (4) Li, S. C.; Li, H.; Gounder, R.; Debellis, A.; Mueller, I. B.; Prasad, S.; Moini, A.; Schneider, W. F. First-Principles Comparison of Proton and Divalent Copper Cation Exchange Energy Landscapes in SSZ-13 Zeolite. *J. Phys. Chem. C* 2018, *122*, 23564-23573.
- (5) Paolucci, C.; Parekh, A. A.; Khurana, I.; Di Iorio, J. R.; Li, H.; Caballero, J. D. A.; Shih, A. J.; Anggara, T.; Delgass, W. N.; Miller, J. T.; Ribeiro, F. H.; Gounder, R.; Schneider, W. F. Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites. J. Am. Chem. Soc. 2016, 138, 6028-6048.
- (6) Di Iorio, J. R.; Bates, S. A.; Verma, A. A.; Delgass, W. N.; Ribeiro, F. H.; Miller, J. T.; Gounder, R. The Dynamic Nature of Brønsted Acid Sites in Cu–Zeolites During NOx Selective Catalytic Reduction: Quantification by Gas-Phase Ammonia Titration. *Top. Catal.* 2015, *58*, 424-434.
- (7) Bates, S. A.; Delgass, W. N.; Ribeiro, F. H.; Miller, J. T.; Gounder, R. Methods for NH<sub>3</sub> titration of Brønsted acid sites in Cu-zeolites that catalyze the selective catalytic reduction of NOx with NH<sub>3</sub>. *J. Catal.* **2014**, *312*, 26-36.
- (8) Di Iorio, J. R.; Gounder, R. Controlling the Isolation and Pairing of Aluminum in Chabazite Zeolites Using Mixtures of Organic and Inorganic Structure-Directing Agents. *Chem. Mater.* **2016**, *28*, 2236-2247.
- (9) Di Iorio, J. R.; Nimlos, C. T.; Gounder, R. Introducing Catalytic Diversity into Single-Site Chabazite Zeolites of Fixed Composition via Synthetic Control of Active Site Proximity. *ACS Catal.* **2017**, *7*, 6663-6674.
- (10) Jones, C. B.; Khurana, I.; Krishna, S. H.; Shih, A. J.; Delgass, W. N.; Miller, J. T.; Ribeiro, F. H.; Schneider, W. F.; Gounder, R. Effects of Dioxygen Pressure on Rates of NOx Selective Catalytic Reduction with NH<sub>3</sub> on Cu-CHA Zeolites. *J. Catal.* **2020**, *389*, 140-149.