Supporting Information

Surface Segregation of Star-Shaped Polyhedral Oligomeric Silsesquioxane in Polymer Matrix

Kentaro Yamamoto¹, Daisuke Kawaguchi^{1,2*}, Tatsuki Abe¹, Takeshi Komino³, Masashi Mamada^{1,3}, Taizo Kabe⁴, Chihaya Adachi^{1,3}, Kensuke Naka^{5,6}, and Keiji Tanaka^{1,2*}

¹Department of Applied Chemistry, ²Center for Polymer Interface and Molecular Adhesion Science, and ³Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka 819-0395, Japan

⁴Diffraction and Scattering Group I, Diffraction and Scattering Division, Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), Hyogo 679-5148, Japan

⁵Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology and ⁶Materials Innovation Lab, Kyoto Institute of Technology, Kyoto 606-8585, Japan

*Correspondence to: d-kawaguchi@cstf.kyushu-u.ac.jp (D.K.) & k-tanaka@cstf.kyushu-u.ac.jp (K.T.)

The supporting information includes: Number of pages: 4 Number of figures: 3

Table of Contents

Differential scanning calorimetric (DSC) chart	S2
Fabrication of the organic field-effect transistor (OFET)	S2
Concentration depth profile	S2
Surface POSS fraction	S3
Crystalline structure	S3

Differential scanning calorimetric (DSC) chart

Figure S1 shows a DSC chart of the third scan for the poly(methyl methacrylate) (PMMA) used. A glass transition temperature (T_g) was determined to be 396 K.

Figure S1. A DSC chart of the third scan for the PMMA used in this study. Dotted lines denote the extrapolated baselines. A heating rate was 10 K•min⁻¹.

Fabrication of the organic field-effect transistor (OFET)

Pentacene was purchased from Sigma-Aldrich Co. LCC (St Louis, MO, USA). Silicon substrates with a size of 30 mm × 30 mm × 0.5 mm were cleaned in piranha solution (H₂SO₄ : $H_2O_2 = 80 : 20 \text{ v/v}$) at 353 K for 2 h, then washed by deionized water, isopropanol, and finally ultraviolet-ozone treatment. As a gate electrode, a 50-nm-thick Al layer was vacuum-deposited onto the Si substrate at a deposition rate of 0.1 nm•s⁻¹ under a pressure of 10⁻⁴ Pa. Then, blend of star-shaped polyhedral oligomeric silsesquioxane (s-POSS) and PMMA and homo-PMMA films with a thickness of ca. 200 nm were prepared by a spin-coating method from a toluene solution onto the gate electrodes. The films were annealed at 433 K for 24 h under vacuum. After drying, pentacene and gold were successively vacuum-deposited at a deposition rate of 0.1 nm•s⁻¹ under a pressure of 10⁻⁴ Pa. Separately, we prepared the pentacene-deposited s-POSS/PMMA blend film by the same method as that of transistors without electrodes for the grazing incidence wide-angle X-ray diffraction (GIWAXD) measurement.

Concentration depth profile

Figure S2(a) shows take-off angle of photoelectron (ϕ_e) dependence of intensity ratio of Si_{2p} to C_{1s} (I_{Si2p}/I_{C1s}) for the s-POSS/PMMA films. Symbols are the experimental data collected at ϕ_e from 15 to 90°. Solid curves in Figure S2(a) show the best-fit calculated $I_{Si2p}/I_{C1s} - \sin \phi_e$ relationship using eq. (2) in the main text based on the two-layer model, as shown in Figure S2(b). Although the two-layer model reproduced the experimental $I_{Si2p}/I_{C1s} - \sin \phi_e$ relationship, the $n_{Si/C}$ values for the surface s-POSS enriched layer were larger than the value of the neat s-

POSS (= 0.31). Thus, it is apparent that the two-layer model with the 1.0 nm-thick s-POSS enriched layer was not suitable for the s-POSS/PMMA blend films.

Figure S2. (a) Sin ϕ_e dependence of the integral intensity ratio of Si_{2p} to C_{1s} (I_{Si2p}/I_{C1s}) for s-POSS/PMMA blend films. (b) Model depth profile of molar fraction of Si to C ($n_{Si/C}$) to best-fit experimental data shown in panel (a).

Surface POSS fraction

The surface POSS fraction in weight (w^{s}_{POSS}) shown in Figure 3(c) was defined as the sum of the surface weight fraction of the outlying and central POSS units (w^{s}_{POSS-o} and w^{s}_{POSS-c}). The number ratio of the outlying to central POSS units is 8:1. Thus, the w^{s}_{POSS} can be given by,

$$w^{s}_{POSS} = w^{s}_{POSS-o} + w^{s}_{POSS-c} = w^{s}_{POSS-o} + (1/8) \bullet w^{s}_{POSS-o} \bullet (M_{POSS-c}/M_{POSS-o})$$
(S1)

where $M_{\text{POSS-o}}$ and $M_{\text{POSS-c}}$ are the molecular weight of the outlying and central POSS units, respectively. Then, the $w^{\text{s}}_{\text{POSS}}$ can be extracted from the $n_{\text{Si/C}}$ value averaged over the first and second layers shown in Figure 3(b) using the eq. (S1) and (S2),

 $n_{\rm Si/C} = (8 \ w^{\rm s}_{\rm POSS-o}/M_{\rm POSS-o} + 16 \ w^{\rm s}_{\rm POSS-c}/M_{\rm POSS-c})/$

 $[5 \cdot \{(1 - w^{s}_{POSS-o} - w^{s}_{POSS-c})/M_{PMMA}\} + 30 \cdot w^{s}_{POSS-o}/M_{POSS-o} + 16 \cdot w^{s}_{POSS-c}/M_{POSS-c})]$ (S2) where M_{PMMA} is the molecular weight of the methyl methacrylate monomer.

Crystalline structure

The grazing incidence X-ray wide-angle diffraction (GIWAXD) measurements for pentacene-deposited s-POSS/PMMA films were carried out at BL03XU at SPring-8, Hyogo, Japan. The wavelength of the incident X-ray was 0.1 nm. The incident angle of X-ray was 0.14 deg. A flat panel (C9827DK-10, Hamamatsu Photonics K. K., Japan) was used as a detector for the GIWAXD measurement. The sample-to-detector distance of the GIWAXD measurement was calibrated to 112 mm.

Figure S3 shows one-dimensional GIWAXD patterns for the pentacene on the s-POSS/PMMA blend films. The weight fractions of s-POSS in the bulk were 1 and 2wt%, respectively. For both samples, two diffraction peaks were observed at the scattering vector, q = 4.1 and 4.4 nm^{-1} , respectively, which were assignable to (001) in the orthorhombic and triclinic phases, the so-called "bulk phase" and "thin-film phase", respectively ^{1,2}.

Figure S3. One-dimensional GIWAXD patterns for a pentacene layer on s-POSS/PMMA blend films.

References

- 1. Yoshida, H.; Inaba, K.; Sato, N., X-Ray Diffraction Reciprocal Space Mapping Study of the Thin Film Phase of Pentacene. *Appl. Phys. Lett.* **2007**, *90*, 181930.
- Kakudate, T.; Yoshimoto, N.; Saito, Y., Polymorphism in Pentacene Thin Films on SiO₂ Substrate. *Appl. Phys. Lett.* 2007, *90*, 081903.