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Figure S1. Experimental (circles), fitted (line), and difference (line below observed and 

calculated patterns) XRD profiles for KCB11H12 at 122 K (=0.45236 Å). Vertical bars indicate 

the calculated positions of Bragg peaks of KCB11H12 (S.G. P21/c, Wt. Frac.: 98.845(3) %) and 

trace KCl impurity (Wt. Frac.: 1.155(16) %) (from the top). Rwp=0.0243, Rp=0.0187, χ2=1.08. 

Refined lattice parameters of low-T phase KCB11H12: a=9.8966(5) Å, b=19.4811(5) Å, 

c=9.8964(6) Å, β=93.545(2), and V=1904.3(1) Å3. 
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Figure S2.  Experimental (circles), fitted (line), and difference (line below observed and 

calculated patterns) XRD profiles for KCB11H12 at 298 K (=0.45236 Å). Vertical bars indicate 

the calculated positions of Bragg peaks of KCB11H12 (S.G. P21/c, Wt. Frac.: 98.977(2) %) and 

trace KCl impurity (Wt. Frac.: 1.023(1) %) (from the top). Rwp=0.0219, Rp=0.0166, and χ2=0.97. 

Refined lattice parameters of low-T phase KCB11H12: a=9.9792(6) Å, b=19.6782(6) Å, 

c=9.9841(6) Å, β=93.2668(20), and V=1957.41(15) Å3. 
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Figure S3. Experimental (circles), fitted (line), and difference (line below observed and 

calculated patterns) SXRPD profiles for KCB11H12 at 450 K (=0.45236 Å). Vertical bars 

indicate the calculated positions of Bragg peaks of KCB11H12 (S.G. Fm-3m, Wt. Frac.: 98.986(2) 

%) and trace KCl impurity (Wt. Frac.: 1.01(2) %) (from the top). Rwp=0.0261, Rp=0.0185, and 

χ2=1.14. Refined lattice parameters of high-T phase KCB11H12: a=10.1502(6) Å and 

V=1045.75(18) Å3. 
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Figure S4.  Exemplary QENS spectrum for KCB11H12 at 473 K (Q = 1.0 Å-1) using 8 Å 

wavelength neutrons (with 30 µeV fwhm resolution).  Spectra were fit with a delta function and 

one Lorentzian component, both convoluted with the instrumental resolution function, on top of 

a flat background. 
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Figure S5.  Exemplary QENS spectrum for KCB11H12 at 473 K (Q = 1.20 Å-1) using 4.8 Å 

wavelength neutrons (with 56 µeV fwhm resolution).  Spectra were fit with a delta function and 

two Lorentzian components, all convoluted with the instrumental resolution function, on top of a 

flat background. 

 



S7 
 

  
Figure S6.  Q-dependence of the broader “overdamped-vibration” component intensity for 

KCB11H12 at 410 K and λ=4.8 Å. The data were fit according to the incoherent neutron scattering 

law of the harmonic oscillator in the case of the one-phonon approximation: 

I=AQ2exp(-<u2>Q2 ), where I is the scattering intensity of the broader component, A is a 

constant, and exp(-<u2>Q2 ) is the Debye-Waller factor, with <u2> being the mean-squared 

displacement of the H atoms.  From the fit (red), the root-mean-squared displacement <u2>½ = 

0.41(3) Å. 
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Figure S7.  Q-dependence of the narrower quasielastic component linewidth  for KCB11H12 at 

473 K using 4.8 Å and 8 Å neutrons.  
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Figure S8.  The CB11H12
- anion geometry, used as a guide for the EISF models.  H atoms are 

numbered for convenience.  H1 and H12 are apical H atoms.  H2, H3, H4, H5, and H6 form one 

quintet band of equatorial H atoms.  H7, H8, H9, H10 and H11 form the other quintet band of 

equatorial H atoms. Average H-H distances were determined from refined models based on x-ray 

diffraction data for the ordered room-temperature KCB11H12. The following distances were used 

to derive the EISF model curves in Figure 8 of the text.  The apical-apical distance, d, between 

H1 and H12 is 5.51 Å. The intra-band nearest-neighbor equatorial H atom distance, d2, (e.g., 

between H2 and H3) is 2.94 Å.  The band diameter r = 
𝑑2

√2(1−cos(2 𝜋 5⁄ ))
 = 2.50 Å. The remaining 

distances are calculated using the band diameter, and are d1 = 1.54 Å, d3 = 4.05 Å, d4 = 4.76 Å 

and 2r = 5.00 Å. Upon isotropically rotating the anion, the radius of the spherical surface formed 

by the H atoms is re = 2.76 Å.  
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Model EISFs for Various Reorientational Mechanisms for the CB11H12
- Anion  

The elastic incoherent structure factors (EISFs) reflect the composite motions of all twelve H 

atoms of the CB11H12
- (rigid-body) anions. The following EISF models for CB11H12

- anion 

reorientations were included for comparison in Figure 8 of the text and are constructed below, 

according to the general methodology described elsewhere,S1 in terms of the various possible H-

H distances for the anion shown in Figure S8. (N.B., j0(x) = sin(x)/x, the zeroth-order spherical 

Bessel function.) 

For five-fold jumps around the C5 anion symmetry axis, the two apical H atoms remain 

stationary while the ten equatorial H atoms undergo five-fold jumps with jump distances of d2 = 

2.94 Å and d4 = 4.76 Å.  The EISF is then defined as: 

EISF𝐶5
=  

2

12
+

10

12
×

1

5
[1 +  2𝑗0(𝑄𝑑2) +  2𝑗0(𝑄𝑑4)] =  

1

6
+  

1

6
[1 + 2𝑗0(𝑄𝑑2) +  𝑗0(𝑄𝑑4)].  

Rotational diffusion (small-angle jump diffusion) around the anion C5 symmetry axis below Q = 

2.5 Å-1 can be approximated by considering a model with ten angular jump positions instead of 

five, in which case the two apical H atoms still remain stationary while the ten equatorial H 

atoms undergo ten-fold jumps with jump distances of d1 = 1.54 Å, d2 = 2.94 Å, d3 = 4.05 Å, d4 = 

4.76 Å and 2r = 5.00 Å (Figure S8). The EISF is defined as: 

EISF𝐶10
=

2

12
+

10

12
×

1

10
[1 +  2𝑗0(𝑄𝑑1) +  2𝑗0(𝑄𝑑2) + 2𝑗0(𝑄𝑑3) + 2𝑗0(𝑄𝑑4) + 𝑗0(𝑄2𝑟)]. 

The isotropic rotational diffusion of H over a spherical surface of radius re = 2.76 Å, is defined 

as: 

 EISF𝑖𝑠𝑜 = 𝑗0
2(𝑄𝑟𝑒).S2  

The EISF models of five-fold uniaxial reorientations around the C5 symmetry axis involving the 

addition of changes in the direction of this axis toward neighboring (±1 ±1 ±1) directions was 

calculated numerically, by taking into account all the possible positions that the H atoms can 

visit.
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Figure S9  Nyquist plots for KCB11H12 at various temperatures above the order-disorder phase 

transition. 
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