Supporting Information for:

Structural and Dynamical Properties of Potassium Dodecahydro-monocarba-*closo*-dodecaborate: KCB₁₁H₁₂

Mirjana Dimitrievska,^{†,‡,∥}* Hui Wu,^{†,*} Vitalie Stavila,[§] Olga A. Babanova,[△] Roman V. Skoryunov,[△] Alexei V. Soloninin,[△] Wei Zhou,[†] Benjamin A. Trump,[†] Mikael S. Andersson,^{†,▽} Alexander V. Skripov,^{△,*} and Terrence J. Udovic^{†,⊥}

[†]NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, United States
[‡]National Renewable Energy Laboratory, Golden, CO 80401, United States
[‡]Institute of Materials, Faculty of Engineering, École Polytechnique Fedérale de Lausanne, Lausanne, Switzerland
[§]Energy Nanomaterials, Sandia National Laboratories, Livermore, CA 94551, United States
[©]Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg SE-412 96, Sweden
^AInstitute of Metal Physics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620108, Russia
^LDepartment of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115, United States
^{*}Authors to whom correspondence should be addressed. E-mail: mira.dimitrievska@gmail.com; hui.wu@nist.gov; skripov@imp.uran.ru

N.B., for all supporting figures, standard uncertainties are commensurate with the observed scatter in the data, if not explicitly designated by vertical error bars.

Figure S1. Experimental (circles), fitted (line), and difference (line below observed and calculated patterns) XRD profiles for KCB₁₁H₁₂ at 122 K (λ =0.45236 Å). Vertical bars indicate the calculated positions of Bragg peaks of KCB₁₁H₁₂ (S.G. *P*2₁/*c*, Wt. Frac.: 98.845(3) %) and trace KCl impurity (Wt. Frac.: 1.155(16) %) (from the top). R_{wp}=0.0243, R_p=0.0187, χ^2 =1.08. Refined lattice parameters of low-*T* phase KCB₁₁H₁₂: *a*=9.8966(5) Å, *b*=19.4811(5) Å, *c*=9.8964(6) Å, β =93.545(2)°, and *V*=1904.3(1) Å³.

Figure S2. Experimental (circles), fitted (line), and difference (line below observed and calculated patterns) XRD profiles for KCB₁₁H₁₂ at 298 K (λ =0.45236 Å). Vertical bars indicate the calculated positions of Bragg peaks of KCB₁₁H₁₂ (S.G. *P*2₁/*c*, Wt. Frac.: 98.977(2) %) and trace KCl impurity (Wt. Frac.: 1.023(1) %) (from the top). R_{wp}=0.0219, R_p=0.0166, and χ^2 =0.97. Refined lattice parameters of low-*T* phase KCB₁₁H₁₂: *a*=9.9792(6) Å, *b*=19.6782(6) Å, *c*=9.9841(6) Å, *β*=93.2668(20)°, and *V*=1957.41(15) Å³.

Figure S3. Experimental (circles), fitted (line), and difference (line below observed and calculated patterns) SXRPD profiles for KCB₁₁H₁₂ at 450 K (λ =0.45236 Å). Vertical bars indicate the calculated positions of Bragg peaks of KCB₁₁H₁₂ (S.G. *Fm*-3*m*, Wt. Frac.: 98.986(2) %) and trace KCl impurity (Wt. Frac.: 1.01(2) %) (from the top). R_{wp}=0.0261, R_p=0.0185, and χ^2 =1.14. Refined lattice parameters of high-*T* phase KCB₁₁H₁₂: *a*=10.1502(6) Å and *V*=1045.75(18) Å³.

Figure S4. Exemplary QENS spectrum for KCB₁₁H₁₂ at 473 K ($Q = 1.0 \text{ Å}^{-1}$) using 8 Å wavelength neutrons (with 30 µeV fwhm resolution). Spectra were fit with a delta function and one Lorentzian component, both convoluted with the instrumental resolution function, on top of a flat background.

Figure S5. Exemplary QENS spectrum for $\text{KCB}_{11}\text{H}_{12}$ at 473 K ($Q = 1.20 \text{ Å}^{-1}$) using 4.8 Å wavelength neutrons (with 56 µeV fwhm resolution). Spectra were fit with a delta function and two Lorentzian components, all convoluted with the instrumental resolution function, on top of a flat background.

Figure S6. *Q*-dependence of the broader "overdamped-vibration" component intensity for KCB₁₁H₁₂ at 410 K and λ =4.8 Å. The data were fit according to the incoherent neutron scattering law of the harmonic oscillator in the case of the one-phonon approximation: $I=AQ^2\exp(-\langle u^2 \rangle Q^2)$, where *I* is the scattering intensity of the broader component, *A* is a constant, and $\exp(-\langle u^2 \rangle Q^2)$ is the Debye-Waller factor, with $\langle u^2 \rangle$ being the mean-squared displacement of the H atoms. From the fit (red), the root-mean-squared displacement $\langle u^2 \rangle^{\frac{1}{2}} = 0.41(3)$ Å.

Figure S7. *Q*-dependence of the narrower quasielastic component linewidth Γ for KCB₁₁H₁₂ at 473 K using 4.8 Å and 8 Å neutrons.

Figure S8. The CB₁₁H₁₂⁻ anion geometry, used as a guide for the EISF models. H atoms are numbered for convenience. H1 and H12 are apical H atoms. H2, H3, H4, H5, and H6 form one quintet band of equatorial H atoms. H7, H8, H9, H10 and H11 form the other quintet band of equatorial H atoms. Average H-H distances were determined from refined models based on x-ray diffraction data for the ordered room-temperature KCB₁₁H₁₂. The following distances were used to derive the EISF model curves in Figure 8 of the text. The apical-apical distance, *d*, between H1 and H12 is 5.51 Å. The *intra*-band nearest-neighbor equatorial H atom distance, *d*₂, (e.g., between H2 and H3) is 2.94 Å. The band diameter $r = \frac{d_2}{\sqrt{2(1-\cos(2\pi/5))}} = 2.50$ Å. The remaining distances are calculated using the band diameter, and are $d_1 = 1.54$ Å, $d_3 = 4.05$ Å, $d_4 = 4.76$ Å and 2r = 5.00 Å. Upon isotropically rotating the anion, the radius of the spherical surface formed by the H atoms is $r_e = 2.76$ Å.

Model EISFs for Various Reorientational Mechanisms for the CB11H12 Anion

The elastic incoherent structure factors (EISFs) reflect the composite motions of all twelve H atoms of the CB₁₁H₁₂⁻ (rigid-body) anions. The following EISF models for CB₁₁H₁₂⁻ anion reorientations were included for comparison in Figure 8 of the text and are constructed below, according to the general methodology described elsewhere,^{S1} in terms of the various possible H-H distances for the anion shown in Figure S8. (N.B., $j_0(x) = \frac{\sin(x)}{x}$, the zeroth-order spherical Bessel function.)

For five-fold jumps around the C_5 anion symmetry axis, the two apical H atoms remain stationary while the ten equatorial H atoms undergo five-fold jumps with jump distances of $d_2 = 2.94$ Å and $d_4 = 4.76$ Å. The EISF is then defined as:

$$\text{EISF}_{C_5} = \frac{2}{12} + \frac{10}{12} \times \frac{1}{5} [1 + 2j_0(Qd_2) + 2j_0(Qd_4)] = \frac{1}{6} + \frac{1}{6} [1 + 2j_0(Qd_2) + j_0(Qd_4)].$$

Rotational diffusion (small-angle jump diffusion) around the anion C_5 symmetry axis below $Q = 2.5 \text{ Å}^{-1}$ can be approximated by considering a model with ten angular jump positions instead of five, in which case the two apical H atoms still remain stationary while the ten equatorial H atoms undergo ten-fold jumps with jump distances of $d_1 = 1.54 \text{ Å}$, $d_2 = 2.94 \text{ Å}$, $d_3 = 4.05 \text{ Å}$, $d_4 = 4.76 \text{ Å}$ and 2r = 5.00 Å (Figure S8). The EISF is defined as:

$$\text{EISF}_{C_{10}} = \frac{2}{12} + \frac{10}{12} \times \frac{1}{10} [1 + 2j_0(Qd_1) + 2j_0(Qd_2) + 2j_0(Qd_3) + 2j_0(Qd_4) + j_0(Q2r)].$$

The isotropic rotational diffusion of H over a spherical surface of radius $r_e = 2.76$ Å, is defined as:

 $\mathrm{EISF}_{iso} = j_0^2 (Qr_e).^{\$2}$

The EISF models of five-fold uniaxial reorientations around the C_5 symmetry axis involving the addition of changes in the direction of this axis toward neighboring ($\pm 1 \pm 1 \pm 1$) directions was calculated numerically, by taking into account all the possible positions that the H atoms can visit.

Figure S9 Nyquist plots for $KCB_{11}H_{12}$ at various temperatures above the order-disorder phase transition.

References

- S1 Yildirim, T.; Gehring, P. M.; Neumann, D. A.; Eaton, P. E.; Emrick, T. Phys. Rev. B 1999, 60, 314–321.
- S2 Bée, M. Quasielastic Neutron Scattering, Principles and Applications in Solid State Chemistry, Biology and Materials Science. Adam Hilger: Bristol, **1988**.