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Figure S1. Experimental (circles), fitted (line), and difference (line below observed and
calculated patterns) XRD profiles for KCB11H12 at 122 K (4=0.45236 A). Vertical bars indicate
the calculated positions of Bragg peaks of KCBi11H12 (S.G. P2i/c, Wt. Frac.: 98.845(3) %) and
trace KCI impurity (Wt. Frac.: 1.155(16) %) (from the top). Rwp=0.0243, Ry;=0.0187, x>=1.08.
Refined lattice parameters of low-T phase KCBiiHi: a=9.8966(5) A, b=19.4811(5) A,
c=9.8964(6) A, p=93.545(2)°, and V=1904.3(1) AS.
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Figure S2. Experimental (circles), fitted (line), and difference (line below observed and
calculated patterns) XRD profiles for KCB11H12 at 298 K (1=0.45236 A). Vertical bars indicate
the calculated positions of Bragg peaks of KCB11H12 (S.G. P2i/c, Wt. Frac.: 98.977(2) %) and
trace KCI impurity (Wt. Frac.: 1.023(1) %) (from the top). Rwp=0.0219, Rp=0.0166, and x>=0.97.
Refined lattice parameters of low-T phase KCBiiHi: a=9.9792(6) A, b=19.6782(6) A,
c=9.9841(6) A, 5=93.2668(20)°, and V=1957.41(15) A3,
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Figure S3. Experimental (circles), fitted (line), and difference (line below observed and
calculated patterns) SXRPD profiles for KCBuiHi, at 450 K (1=0.45236 A). Vertical bars
indicate the calculated positions of Bragg peaks of KCB11H1> (S.G. Fm-3m, Wt. Frac.: 98.986(2)
%) and trace KCI impurity (Wt. Frac.: 1.01(2) %) (from the top). Rwp=0.0261, Rp=0.0185, and
v*=1.14. Refined lattice parameters of high-T phase KCBiiHi2: a=10.1502(6) A and
V=1045.75(18) A3,
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Figure S4. Exemplary QENS spectrum for KCBuHi, at 473 K (Q = 1.0 A1) using 8 A

wavelength neutrons (with 30 peV fwhm resolution). Spectra were fit with a delta function and

one Lorentzian component, both convoluted with the instrumental resolution function, on top of
a flat background.
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Figure S5. Exemplary QENS spectrum for KCB1:H1, at 473 K (Q = 1.20 A1) using 4.8 A
wavelength neutrons (with 56 peV fwhm resolution). Spectra were fit with a delta function and
two Lorentzian components, all convoluted with the instrumental resolution function, on top of a

flat background.
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Figure S6. Q-dependence of the broader “overdamped-vibration” component intensity for
KCBu11H12 at 410 K and 1=4.8 A. The data were fit according to the incoherent neutron scattering
law of the harmonic oscillator in the case of the one-phonon approximation:
I=AQ%xp(-<u®>Q? ), where | is the scattering intensity of the broader component, A is a
constant, and exp(-<u®>Q? ) is the Debye-Waller factor, with <u®> being the mean-squared
displacement of the H atoms. From the fit (red), the root-mean-squared displacement <u®>” =
0.41(3) A.
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Figure S7. Q-dependence of the narrower quasielastic component linewidth T" for KCB11H12 at
473 K using 4.8 A and 8 A neutrons.
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Figure S8. The CBi11Hi>" anion geometry, used as a guide for the EISF models. H atoms are
numbered for convenience. H1 and H12 are apical H atoms. H2, H3, H4, H5, and H6 form one
quintet band of equatorial H atoms. H7, H8, H9, H10 and H11 form the other quintet band of
equatorial H atoms. Average H-H distances were determined from refined models based on x-ray
diffraction data for the ordered room-temperature KCB11H12. The following distances were used
to derive the EISF model curves in Figure 8 of the text. The apical-apical distance, d, between
H1 and H12 is 5.51 A. The intra-band nearest-neighbor equatorial H atom distance, d,, (e.g.,

between H2 and H3) is 2.94 A. The band diameter r = 2 = 2.50 A. The remaining
2(1—cos(2 /5))

distances are calculated using the band diameter, and are di = 1.54 A, d3 = 4.05 A, ds = 4.76 A
and 2r = 5.00 A. Upon isotropically rotating the anion, the radius of the spherical surface formed
by the H atoms is re = 2.76 A.
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Model EISFs for Various Reorientational Mechanisms for the CB11H12” Anion

The elastic incoherent structure factors (EISFs) reflect the composite motions of all twelve H
atoms of the CBi11H12 (rigid-body) anions. The following EISF models for CB11H12™ anion
reorientations were included for comparison in Figure 8 of the text and are constructed below,
according to the general methodology described elsewhere,>! in terms of the various possible H-
H distances for the anion shown in Figure S8. (N.B., jo(x) = sin(x)/x, the zeroth-order spherical
Bessel function.)

For five-fold jumps around the Cs anion symmetry axis, the two apical H atoms remain
stationary while the ten equatorial H atoms undergo five-fold jumps with jump distances of d, =
2.94 A and ds = 4.76 A. The EISF is then defined as:

EISFg, = =+ =X <[1+ 2jo(Qd) + 2jo(Qdy)] = =+ =[1+ 2j5(Qdy) + jo(Qda)].

Rotational diffusion (small-angle jump diffusion) around the anion Cs symmetry axis below Q =
2.5 A can be approximated by considering a model with ten angular jump positions instead of
five, in which case the two apical H atoms still remain stationary while the ten equatorial H
atoms undergo ten-fold jumps with jump distances of d1 = 1.54 A, d2 =2.94 A, ds = 4.05 A, ds =
4.76 A and 2r = 5.00 A (Figure S8). The EISF is defined as:

EISFc,, = = + =X —[1+ 2o(Qdy) + 2j5(Qdy) + 2jo(Qds) + 2jo(Qds) +jo(Q27)].

The isotropic rotational diffusion of H over a spherical surface of radius re = 2.76 A, is defined
as:

EISF;s, = ]g (Qre)-sz

The EISF models of five-fold uniaxial reorientations around the Cs symmetry axis involving the
addition of changes in the direction of this axis toward neighboring (1 +1 +1) directions was
calculated numerically, by taking into account all the possible positions that the H atoms can
visit.
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Figure S9 Nyquist plots for KCB11H12 at various temperatures above the order-disorder phase
transition.
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