Supporting Information

Photocatalytic Pinacol C-C Coupling and Jet Fuel Precursor Production on ZnIn₂S₄ nanosheets

Guanqun Han^[a], Xingwu Liu^[b], Zhi Cao^{[b][c]}, and Yujie Sun^{[a]*}

[a]Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
 [b]Syncat@Beijing, Synfuels China Co., Ltd, Beijing 101400, China
 [c]State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

Correspondence and requests for materials should be addressed to Y.S. (email: yujie.sun@uc.edu)

Figure S1. EDX spectrum of $ZnIn_2S_4$, indicating the presence of Zn, In, and S with an atomic ratio ~1:2:4.

Figure S2. XPS survey spectrum of fresh ZnIn₂S₄.

$\begin{array}{c} O \\ \hline \\$					
Entry	Photocatalyst	Solvent ^[b]	Conversion (%)	Hydrobenzoin (%) [c]	Benzyl alcohol (%) [c]
1 [d]	ZnIn ₂ S ₄ -1	CH ₃ CN	6.6	6	Trace
2 ^[d]	ZnIn ₂ S ₄ -2	CH ₃ CN	42.5	25.8	16.7
3 [d]	$ZnIn_2S_4-3$	CH ₃ CN	12.1	5.6	6.5
4 ^[d]	ZnIn ₂ S ₄ -4	CH ₃ CN	20.4	13.3	7.1
5 [d]	ZnIn ₂ S ₄ -5	CH ₃ CN	54.9	49.0	5.0
6 ^[d]	ZnIn ₂ S ₄ -6	CH3CN	53.2.	29.0	23.2
7 ^[e]	ZnIn ₂ S ₄ -5	CH ₃ CN	-	-	-
8	-	CH ₃ CN	-	-	-
9 [f]	ZnIn ₂ S ₄ -5	CH ₃ CN	-	-	-
10	ZnIn ₂ S ₄ -5	V/V(CH ₃ CN:H ₂ O)=9:1	~100	79.1	21.0
11	ZnIn ₂ S ₄ -5	V/V(CH ₃ CN:H ₂ O)=5:5	~100	90.6	9.4
12	ZnIn ₂ S ₄ -5	V/V(CH ₃ CN:H ₂ O)=3:7	~100	98.1	1.9
13	$ZnIn_2S_4$ -5	V/V(CH ₃ CN:H ₂ O)=1:9	~100	>99	trace

Table S1. Optimization for the photocatalytic C-C coupling of benzaldehyde.^[a]

[a] Reaction condition: benzaldehyde (10 mM), TEA (1 mL), catalyst (10 mg), room temperature, solvent (10 mL), blue LED (450 nm), 2 h. [b] Solvent is degassed by N₂. [c] Yield is determined by HPLC. [d] Catalyst synthesized at different temperatures: 1 is 80 °C; 2 is 90 °C; 3 is 100 °C; 4 is 110 °C; 5 is 120 °C; and 6 is 130 °C. [e] Without light. [f] Without TEA.

Figure S3. HPLC spectra of benzoic acid, benzyl alcohol, hydrobenzoin, benzaldehyde, benzoin, deoxybenzoin, and benzil. (Conditions: 40% 5 mM ammonium acetate (aq), 60% CH₃CN, 0.5 mL min⁻¹, 11 min).

Figure S4. HPLC spectra and calibration curves of benzaldehyde, benzyl alcohol, hydrobenzoin, benzoin, benzil, and deoxybenzoin.

Figure S5. HPLC spectra of photocatalytic upgrading of benzaldehyde over time in pure CH₃CN (a), a mixture with V_{CH3CN} : V_{H2O} =9:1 (b), a mixture with V_{CH3CN} : V_{H2O} =5:5 (c), a mixture with V_{CH3CN} : V_{H2O} =3:7 (d), and a mixture with V_{CH3CN} : V_{H2O} =1:9 (e). (Conditions: 10 mM benzaldehyde, 10 mg ZnIn₂S₄, 10 mL solvents, 1 mL TEA, blue LED).

Figure S6. ¹H NMR spectra of benzaldehyde (top), and products from benzaldehyde upgrading (bottom). (Condition: 10 mM benzaldehyde, 10 mg $ZnIn_2S_4$, 1 mL CH₃CN, 9 mL H₂O, 1 mL TEA, blue LED, 0.5 h).

Figure S7. GC-MS spectra after photocatalytic upgrading of benzaldehyde using CH_3CN/H_2O (a) or CH_3CN/D_2O (b) as solvents. (Conditions: 10 mM benzyl alcohol, 10 mg $ZnIn_2S_4$, 1 mL CH_3CN , 9 mL H_2O or D_2O , 1 mL TEA, blue LED, 0.5 h).

Figure S8. ¹H NMR spectra of 4-cyanobenzaldehyde (top), and products from 4-cyanobenzaldehyde upgrading (bottom). (Condition: 10 mM 4-cyanobenzaldehyde, 10 mg $ZnIn_2S_4$, 3 mL CH₃CN, 7 mL H₂O, 1 mL TEA, blue LED, 0.5 h).

Figure S9. ¹H NMR spectra of 4-(trifluoromethyl)benzaldehyde (top), and products from 4-(trifluoromethyl)benzaldehyde upgrading (bottom). (Condition: 10 mM 4-(trifluoromethyl)benzaldehyde, 10 mg $ZnIn_2S_4$, 3 mL CH₃CN, 7 mL H₂O, 1 mL TEA, blue LED, 0.5 h).

Figure S10. ¹H NMR spectra of 4-fluorobenzaldehyde (top), and products from 4-fluorobenzaldehyde upgrading (bottom). (Condition: 10 mM 4-fluorobenzaldehyde, 10 mg ZnIn₂S₄, 3 mL CH₃CN, 7 mL H₂O, 1 mL TEA, blue LED, 0.5 h).

Figure S11. ¹H NMR spectra of 4-chlorobenzaldehyde (top), and products from 4-chlorobenzaldehyde upgrading (bottom). (Condition: 10 mM 4-chlorobenzaldehyde, 10 mg $ZnIn_2S_4$, 3 mL CH₃CN, 7 mL H₂O, 1 mL TEA, blue LED, 0.5 h).

Figure S12. ¹H NMR spectra of 4-methylbenzaldehyde (top), and products from 4-methylbenzaldehyde upgrading (bottom). (Condition: 10 mM 4-methylbenzaldehyde, 10 mg $ZnIn_2S_4$, 3 mL CH₃CN, 7 mL H₂O, 1 mL TEA, blue LED, 0.5 h).

Figure S13. ¹H NMR spectra of 4-methoxybenzaldehyde (top), products from 4-methoxybenzaldehyde upgrading after 0.5 h (middle), and products from 4-methoxybenzaldehyde upgrading after 6 h (bottom). (Condition: 10 mM 4-methoxybenzaldehyde, 10 mg $ZnIn_2S_4$, 3 mL CH₃CN, 7 mL H₂O, 1 mL TEA, blue LED, 0.5 h or 6 h).

Figure S14. HPLC spectra of photocatalytic upgrading of benzyl alcohol over time. (Conditions: 10 mM benzyl alcohol, 10 mg $ZnIn_2S_4$, 3 mL CH_3CN , 7 mL H_2O , blue LED, 10 h).

Figure S15. ¹H NMR spectra of benzyl alcohol (1), products from benzyl alcohol upgrading (2), standard benzoin (3) and standard deoxybenzoin (4). (Condition: 10 mM benzyl alcohol, 10 mg $ZnIn_2S_4$, 3 mL CH₃CN, 7 mL H₂O, blue LED, 10 h).

Figure S16. Yield of H_2 change over time. Conditions: 10 mM benzyl alcohol, 10 mg ZnIn₂S₄, room temperature, 3 mL CH₃CN, 7 mL H₂O, blue LED, 4 h.

Figure S17. HPLC spectra of heterocoupling between benzyl alcohol and benzaldehyde before and after photocatalysis. Conditions: 10 mM benzaldehyde, 10 mM benzyl alcohol, 10 mg $ZnIn_2S_4$, room temperature, 7 mL H₂O, 3 mL CH₃CN, blue LED, 14 h.

Figure S18. HPLC spectra of photocatalytic upgrading of benzyl alcohol over time using HCOONa as hole scavenger (a) and $K_2S_2O_8$ as electron scavenger (b). (Conditions: 10 mM benzyl alcohol, 10 mM scavenger, 10 mg ZnIn₂S₄, 3 mL CH₃CN, 7 mL H₂O, blue LED, 2 h).

Figure S19. GC-MS spectra of the mixture after radical trapping experiment. Conditions: 2.5 mmol benzyl alcohol, 5 mmol 1,1-diphenylethylene, 50 mg $ZnIn_2S_4$, 25 mL CH₃CN, blue LED, 60 h.

Figure S20. ¹H NMR spectrum of the purified 1,3,3-triphenyl-1-propanol after radical trapping experiment. Conditions: 2.5 mmol benzyl alcohol, 5 mmol 1,1-diphenylethylene, 50 mg $ZnIn_2S_4$, 25 mL CH₃CN, blue LED, 60 h.

Figure S21. HPLC spectra of benzyl alcohol upgrading before and after photocatalysis by three consecutive cycles. (a) 1^{st} cycle, (b) 2^{nd} cycle, and (c) 3^{rd} cycle. (Conditions: 10 mM benzyl alcohol, 20 mg ZnIn₂S₄, 3 mL CH₃CN, 7 mL H₂O, blue LED, 18 h).

Figure S22. XPS spectra of $ZnIn_2S_4$ before and after photocatalysis including survey (a), high-resolution Zn 2p (b), In 3d (c), and S 2p (d).

Figure S23. GC-MS spectra from photocatalytic upgrading of benzyl alcohol using CH_3CN/H_2O or CH_3CN/D_2O as solvents. (Conditions: 10 mM benzyl alcohol, 10 mg $ZnIn_2S_4$, 3 mL CH_3CN , 7 mL H_2O or D_2O , blue LED, 18 h).

Figure S24. ¹H NMR spectra of photocatalytic coupling of benzyl alcohol. ¹H NMR spectra of (1) benzyl alcohol, (2) benzoin, (3) deoxybenzoin, (4) products from benzyl alcohol coupling (condition: 10 mM benzyl alcohol, 10 mM acetic acid, 10 mg ZnIn₂S₄, 10 mL CH₃CN, blue LED, 6 h), and (4) products from benzyl alcohol coupling (condition: 10 mM benzyl alcohol, 10 mM acetic acid, 10 mg ZnIn₂S₄, 7 mL CH₃CN, 3 mL H₂O, blue LED, 18 h).

Figure S25. ¹H NMR spectra of standard deoxybenzoin, chromatography purified deoxybenzoin after photocatalysis, standard benzoin, and chromatography purified benzoin after photocatalysis. Conditions: (1) 10 mM benzyl alcohol, 10 mM acetic acid, 10 mg $ZnIn_2S_4$, 10 mL CH₃CN, blue LED, 6 h; (2) 10 mM benzyl alcohol, 10 mM acetic acid, 10 mg $ZnIn_2S_4$, 7 mL CH₃CN, 3 mL H₂O, blue LED, 18 h.

Figure S26. XPS spectra of fresh Ni/ZnIn₂S₄ including survey (a), high-resolution Zn 2p (b), In 3d (c), S 2p (d) and Ni 2p (e).

 Table S2. ICP-AES of Ni/ZnIn₂S₄.

Element	Wt%
Ni	2.0
Zn	12.7
In	45.0
S	40.3

Figure S27. HPLC spectra of photocatalytic upgrading of benzyl alcohol over time. (Conditions: 10 mM benzyl alcohol, 10 mg Ni/ZnIn₂S₄, 3 mL CH₃CN, 7 mL H₂O, blue LED, 2.4 h).

Figure S28. ¹H NMR spectra of benzyl alcohol (top), and products from benzyl alcohol upgrading (bottom). (Condition: 10 mM benzyl alcohol, 10 mg Ni/ZnIn₂S₄, 3 mL CH₃CN, 7 mL H₂O, blue LED, 2.4 h).

Figure S29. Yield of H_2 change over time. Conditions: 10 mM benzyl alcohol, 10 mg Ni/ZnIn₂S₄, room temperature, 3 mL CH₃CN, 7 mL H₂O, 2.5 h.

Figure S30. HPLC spectra of benzyl alcohol upgrading before and after photocatalysis by three consecutive cycles. (a) 1^{st} cycle, (b) 2^{nd} cycle, and (c) 3^{rd} cycle. (Conditions: 10 mM benzyl alcohol, 20 mg Ni/ZnIn₂S₄, 3 mL CH₃CN, 7 mL H₂O, blue LED, 2.4 h).

Figure S31. XPS spectra of $Ni/ZnIn_2S_4$ before and after photocatalysis including survey (a), high-resolution Zn 2p (b), In 3d (c), S 2p (d) and Ni 2p (e).

Figure S32. (a) Conversion of benzyl alcohol and yield of benzaldehyde change over time. (b) Yield of H_2 change over time. Conditions: 10 mM benzyl alcohol, 10 mg NiS/ZnIn₂S₄, room temperature, 3 mL CH₃CN, 7 mL H₂O, blue LED, 2 h.

Figure S33. GC-MS spectra after photocatalytic coupling of furfural and furfural alcohol. (Conditions: 10 mM furfural, 10 mM furfural alcohol, 10 mg $ZnIn_2S_4$, 9 mL CH_3CN , 1 mL H_2O , blue LED, 16 h).

Figure S34. Yield of hydrofuroin over time. Conditions: 10 mM furfural, 10 mM furfural alcohol, 10 mg $ZnIn_2S_4$, 9 mL CH_3CN , 1 mL H_2O , Blue LED.

Figure S35. ¹H NMR spectra of heterocoupling between furfural and furfural alcohol after different photocatalysis time. Conditions: 10 mM furfural, 10 mM furfural alcohol, 10 mg ZnIn₂S₄, 9 mL CH₃CN, 1 mL H₂O, Blue LED.

Figure S36. ¹H NMR spectrum of the purified hydrofuroin obtained from photocatalysis. Conditions: 20 mM furfural, 20 mM furfural alcohol, 500 mg $ZnIn_2S_4$, 450 mL CH₃CN, 50 mL H₂O, 4 Blue LEDs, 60 h.