Supporting Information

Lignans and Neolignans with Antioxidant and Human Cancer Cell Proliferation Inhibitory Activities from *Cinnamomum bejolghota* Confirm its Functional Food Property

Li Rao[†], Yun-Xia You[†], Yu Su[†], Yue Fan[†], Yu Liu[†], Qian He[†], Yi Chen[†], Jie Meng[†], Lin Hu[†], Yizhou Li[†], You-Kai Xu[‡], Bin Lin[§], Chuan-Rui Zhang^{*,†,⊥}

[†]Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China

[‡]Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, P. R. China

[§]School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China

[⊥]State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China

S1. ECD Calculations.

Figure S1. $^{1}H^{-1}H$ COSY (—), Selected HMBC (H \rightarrow C) and key ROESY (H \leftrightarrow H) correlations of 2

Figure S2. ¹H–¹H COSY (—), Selected HMBC (H \rightarrow C) and key ROESY (H \leftrightarrow H) correlations of 3

Figure S3. $^{1}H^{-1}H$ COSY (—), Selected HMBC (H \rightarrow C) and key ROESY (H \leftrightarrow H) correlations of 4

Figure S4. $^{1}H^{-1}H$ COSY (—), Selected HMBC (H \rightarrow C) and key ROESY (H \leftrightarrow H) correlations of 10

For bejolghotin A (1)

Figure S5. ¹H NMR spectrum (600 MHz) of bejolghotin A (1) in CDCl₃

Figure S6. ¹³C NMR spectrum (150 MHz) of bejolghotin A (1) in CDCl₃

Figure S7. ¹H–¹H COSY spectrum (600 MHz) of bejolghotin A (1) in CDCl₃

Figure S8. HSQC spectrum (600 MHz) of bejolghotin A (1) in CDCl₃

Figure S9. HMBC spectrum (600 MHz) of bejolghotin A (1) in CDCl₃

Figure S10. ROESY spectrum (600 MHz) of bejolghotin A (1) in CDCl₃

Figure S11. HRESIMS spectrum of bejolghotin A (1)

Figure S12. UV spectrum of bejolghotin A (1)

Figure S13. IR spectrum (KBr disc) of bejolghotin A (1)

For bejolghotin B (2)

Figure S14. ¹H NMR spectrum (600 MHz) of bejolghotin B (2) in CDCl₃

Figure S15. ¹³C NMR spectrum (150 MHz) of bejolghotin B (2) in CDCl₃

Figure S16. ¹H–¹H COSY spectrum (600 MHz) of bejolghotin B (2) in CDCl₃

Figure S17. HSQC spectrum (600 MHz) of bejolghotin B (2) in CDCl₃

Figure S18. HMBC spectrum (600 MHz) of bejolghotin B (2) in CDCl₃

Figure S19. ROESY spectrum (600 MHz) of bejolghotin B (2) in CDCl₃

Figure S20. HRESIMS spectrum of bejolghotin B (2)

Figure S21. UV spectrum of bejolghotin B (2)

Figure S22. IR spectrum (KBr disc) of bejolghotin B (2)

For bejolghotin C (3)

- Figure S23. ¹H NMR spectrum (600 MHz) of bejolghotin C (3) in CDCl₃
- Figure S24. ¹³C NMR spectrum (150 MHz) of bejolghotin C (3) in CDCl₃
- Figure S25. ¹H–¹H COSY spectrum (600 MHz) of bejolghotin C (3) in CDCl₃
- Figure S26. HSQC spectrum (600 MHz) of bejolghotin C (3) in CDCl₃
- Figure S27. HMBC spectrum (600 MHz) of bejolghotin C (3) in CDCl₃
- Figure S28. ROESY spectrum (600 MHz) of bejolghotin C (3) in CDCl₃
- Figure S29. HRESIMS spectrum of bejolghotin C (3)
- Figure S30. UV spectrum of bejolghotin C (3)
- Figure S31. IR spectrum (KBr disc) of bejolghotin C (3)
- For bejolghotin D (4)
- Figure S32. ¹H NMR spectrum (600 MHz) of bejolghotin D (4) in CDCl₃
- Figure S33. ¹³C NMR spectrum (150 MHz) of bejolghotin D (4) in CDCl₃
- Figure S34. ¹H–¹H COSY spectrum (600 MHz) of bejolghotin D (4) in CDCl₃
- Figure S35. HSQC spectrum (600 MHz) of bejolghotin D (4) in CDCl₃
- Figure S36. HMBC spectrum (600 MHz) of bejolghotin D (4) in CDCl₃
- Figure S37. ROESY spectrum (600 MHz) of bejolghotin D (4) in CDCl₃
- Figure S38. HRESIMS spectrum of bejolghotin D (4)
- Figure S39. UV spectrum of bejolghotin D (4)
- Figure S40. IR spectrum (KBr disc) of bejolghotin D (4)
- For bejolghotin E (9)
- Figure S41. ¹H NMR spectrum (600 MHz) of bejolghotin E (9) in CDCl₃
- Figure S42. ¹³C NMR spectrum (150 MHz) of bejolghotin E (9) in CDCl₃
- Figure S43. ¹H–¹H COSY spectrum (600 MHz) of bejolghotin E (9) in CDCl₃
- Figure S44. HSQC spectrum (600 MHz) of bejolghotin E (9) in CDCl₃
- Figure S45. HMBC spectrum (600 MHz) of bejolghotin E (9) in CDCl₃
- Figure S46. ROESY spectrum (600 MHz) of bejolghotin E (9) in CDCl₃
- Figure S47. HRESIMS spectrum of bejolghotin E (9)
- Figure S48. UV spectrum of bejolghotin E (9)
- Figure S49. IR spectrum (KBr disc) of bejolghotin E (9)
- For bejolghotin F (10)

- Figure S50. ¹H NMR spectrum (600 MHz) of bejolghotin F (10) in CDCl₃
- Figure S51. ¹³C NMR spectrum (150 MHz) of bejolghotin F (10) in CDCl₃
- Figure S52. ¹H–¹H COSY spectrum (600 MHz) of bejolghotin F (10) in CDCl₃
- Figure S53. HSQC spectrum (600 MHz) of bejolghotin F (10) in CDCl₃
- Figure S54. HMBC spectrum (600 MHz) of bejolghotin F (10) in CDCl₃
- Figure S55. ROESY spectrum (600 MHz) of bejolghotin F (10) in CDCl₃
- Figure S56. HRESIMS spectrum of bejolghotin F (10)
- Figure S57. UV spectrum of bejolghotin F (10)
- Figure S58. IR spectrum (KBr disc) of bejolghotin F (10)
- For bejolghotin G (11)
- Figure S59. ¹H NMR spectrum (600 MHz) of bejolghotin G (11) in CDCl₃
- Figure S60. ¹³C NMR spectrum (150 MHz) of bejolghotin G (11) in CDCl₃
- Figure S61. ¹H–¹H COSY spectrum (600 MHz) of bejolghotin G (11) in CDCl₃
- Figure S62. HSQC spectrum (600 MHz) of bejolghotin G (11) in CDCl₃
- Figure S63. HMBC spectrum (600 MHz) of bejolghotin G (11) in CDCl₃
- Figure S64. ROESY spectrum (600 MHz) of bejolghotin G (11) in CDCl₃
- Figure S65. HRESIMS spectrum of bejolghotin G (11)
- Figure S66. UV spectrum of bejolghotin G (11)
- Figure S67. IR spectrum (KBr disc) of bejolghotin G (11)

S1. ECD Calculations.

Conformational search was carried out by CONFLEX using the Merck molecular force field (MMFF) with standard parameters.¹ Next, they were subjected to geometry optimization at the B3LYP/6-31G(d) level of DFT calculations. Based on the DFT energies, conformers with a Boltzmann distribution $\geq 1\%$ were chosen for ECD calculations. The conformers were imported into Gaussian 09 package.² The ECD curves of the conformers were calculated by the TDDFT method at the B3LYP/6-311++G (2d, p) level with the CPCM model in a methanol solution.

Fig. 1. B3LYP/6-311+G(d,p) optimized lowest energy conformers for compound 1.

Fig. 2. B3LYP/6-311+G(d,p) optimized lowest energy conformers for compound **2**.

Fig. 3. B3LYP/6-311+G(d,p) optimized lowest energy conformers for compound **3**.

Fig. 4. B3LYP/6-311+G(d,p) optimized lowest energy conformers for compound **4**.

Fig. 5. B3LYP/6-311+G(d,p) optimized lowest energy conformers for compound **9**.

Fig. 6. B3LYP/6-311+G(d,p) optimized lowest energy conformers for compound **10**.

Fig. 7. B3LYP/6-311+G(d,p) optimized lowest energy conformers for compound **11**.

Reference:

(1) Jagannadh, B.; Reddy, S. S.; Thangavelu, R. P. Conformational preferences of 1,4,7-trithiacyclononane: a molecular mechanics and density functional theory study. *J. Mol. Model.* **2004**, *10*, 55–59.

(2) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc.: Wallingford CT, 2016.

Figure S1. $^{1}H^{-1}H$ COSY (—), Selected HMBC (H \rightarrow C) and key ROESY (H \leftrightarrow H) correlations of 2

Figure S2. $^{1}H^{-1}H$ COSY (—), Selected HMBC (H \rightarrow C) and key ROESY (H \leftrightarrow H) correlations of 3

Figure S3. $^{1}H^{-1}H$ COSY (—), Selected HMBC (H \rightarrow C) and key ROESY (H \leftrightarrow H) correlations of 4

Figure S4. ${}^{1}H{-}^{1}H$ COSY (—), Selected HMBC (H \rightarrow C) and key ROESY (H \leftrightarrow H) correlations of 10

Figure S5. ¹H NMR spectrum (600 MHz) of bejolghotin A (1) in CDCl₃

Figure S6. ¹³C NMR spectrum (150 MHz) of bejolghotin A (1) in CDCl₃

Figure S7. ¹H–¹H COSY spectrum (600 MHz) of bejolghotin A (1) in CDCl₃

Figure S8. HSQC spectrum (600 MHz) of bejolghotin A (1) in CDCl₃

Figure S9. HMBC spectrum (600 MHz) of bejolghotin A (1) in CDCl₃

Figure S10. ROESY spectrum (600 MHz) of bejolghotin A (1) in CDCl₃

f1 (ppm)

Figure S11. HRESIMS spectrum of bejolghotin A (1)

Mass Spectrum SmartFormula Report

Figure S12. UV spectrum of bejolghotin A (1)

Figure S13. IR spectrum (KBr disc) of bejolghotin A (1)

Transmittance [%)

Figure S14. ¹H NMR spectrum (600 MHz) of bejolghotin B (2) in CDCl₃

Figure S15. ¹³C NMR spectrum (150 MHz) of bejolghotin B (2) in CDCl₃

Figure S16. ¹H–¹H COSY spectrum (600 MHz) of bejolghotin B (2) in CDCl₃

Figure S17. HSQC spectrum (600 MHz) of bejolghotin B (2) in CDCl₃

Figure S18. HMBC spectrum (600 MHz) of bejolghotin B (2) in CDCl₃

Figure S19. ROESY spectrum (600 MHz) of bejolghotin B (2) in CDCl₃

Figure S20.	HRESIMS	spectrum	of bejo	lghotin B	(2))
0				0	· /	

Figure S21. UV spectrum of bejolghotin B (2)

Transmittance [%)

Figure S22. IR spectrum (KBr disc) of bejolghotin B (2)

Figure S23. ¹H NMR spectrum (600 MHz) of bejolghotin C (3) in CDCl₃

Figure S24. ¹³C NMR spectrum (150 MHz) of bejolghotin C (3) in CDCl₃

Figure S25. ¹H–¹H COSY spectrum (600 MHz) of bejolghotin C (3) in CDCl₃

Figure S26. HSQC spectrum (600 MHz) of bejolghotin C (3) in CDCl₃

Figure S27. HMBC spectrum (600 MHz) of bejolghotin C (3) in CDCl₃

Figure S28. ROESY spectrum (600 MHz) of bejolghotin C (3) in CDCl₃

Figure S29. HRESIMS spectrum of bejolghotin C (3)

		Mas	ss Spe	ctrun	n Sn	nartForr	nula	a Repo	ort			
Analysis Info							A	cquisition D	ate 10	/12/2018	10:50:1	7 AM
Analysis Name Method Sample Name Comment	D:\Data 4_17_1 RL-07-	a\201810\R Mass_range 46B	L-07-46B_(e_pos_7T)00001.d			O In	perator strument	so	lariX		
Acquisition Parar	neter											
Polarity n/a Broadband Low Mas Broadband High Mas Acquisition Mode	P n/ s 5: s 1' Si	ositive a 3.8 m/z 100.0 m/z ingle MS	n/a No. of C n/a n/a n/a	ell Fills		n/a 1 n/a n/a n/a	No La n/a n/a	o. of Laser Sh ser Power a	nots	200 20.0 lp n/a n/a		
Pulse Program Source Accumulatior Ion Accumulation Tin Flight Time to Acq. C	n 0. ne 0. sell 0.	asic 025 sec 025 sec 001 sec	n/a n/a n/a			n/a n/a n/a	Ca Da Ap	libration Dat ta Acquisitio odization	e n Size	Sun Apr 524288 Sine-Be	8 02:39:0	2 2018 ation
Intens. x107 2.5												+MS
1.5						783.25983						
0.5 0.0 760	765	770	7	1- , -, *, 75	780	<u> </u>	, I , , ,	790	^, ^, _, 795		* ** ** , 800	— — — — — — — — — — — — — — — — — — —
Meas. m/	'z ‡	¥ Formula		Sc	ore	m/z	eri [ppm]	r Mean] err [ppm]	mSig ma	rdb	e ⁻ Conf	N-R ule
783.2598	3 .	1 C 41 H 44	4 Na O 14	100	0.00	783.26233	3.19	2.22	56.7	19.5	even	ok

Figure S30. UV spectrum of bejolghotin C (3)

Transmittance [%]

Figure S31. IR spectrum (KBr disc) of bejolghotin C (3)

Figure S32. ¹H NMR spectrum (600 MHz) of bejolghotin D (4) in CDCl₃

Figure S33. ¹³C NMR spectrum (150 MHz) of bejolghotin D (4) in CDCl₃

Figure S34. ¹H–¹H COSY spectrum (600 MHz) of bejolghotin D (4) in CDCl₃

Figure S35. HSQC spectrum (600 MHz) of bejolghotin D (4) in CDCl₃

Figure S36. HMBC spectrum (600 MHz) of bejolghotin D (4) in CDCl₃

Figure S37. ROESY spectrum (600 MHz) of bejolghotin D (4) in CDCl₃

Figure S38. HRESIMS spectrum of bejolghotin D (4)

Figure S39. UV spectrum of bejolghotin D (4)

- 08 Walvenumber cm-1 1708 -1460 1329 1269

Transmittance [%]

Figure S40. IR spectrum (KBr disc) of bejolghotin D (4)

Figure S41. ¹H NMR spectrum (600 MHz) of bejolghotin E (9) in CDCl₃

Figure S42. ¹³C NMR spectrum (150 MHz) of bejolghotin E (9) in CDCl₃

Figure S43. ¹H–¹H COSY spectrum (600 MHz) of bejolghotin E (9) in CDCl₃

Figure S44. HSQC spectrum (600 MHz) of bejolghotin E (9) in CDCl₃

Figure S45. HMBC spectrum (600 MHz) of bejolghotin E (9) in CDCl₃

Figure S46. ROESY spectrum (600 MHz) of bejolghotin E (9) in CDCl₃

Figure S47. HRESIMS spectrum of bejolghotin E (9)

Figure S48. UV spectrum of bejolghotin E (9)

Transmittance [%]

Figure S49. IR spectrum (KBr disc) of bejolghotin E (9)

Figure S50. ¹H NMR spectrum (600 MHz) of bejolghotin F (10) in CDCl₃

Figure S51. ¹³C NMR spectrum (150 MHz) of bejolghotin F (10) in CDCl₃

Figure S52. ¹H–¹H COSY spectrum (600 MHz) of bejolghotin F (10) in CDCl₃

Figure S53. HSQC spectrum (600 MHz) of bejolghotin F (10) in CDCl₃

Figure S54. HMBC spectrum (600 MHz) of bejolghotin F (10) in CDCl₃

Figure S55. ROESY spectrum (600 MHz) of bejolghotin F (10) in CDCl₃

Figure S56. HRESIMS spectrum of bejolghotin F (10)

				-								
			Mas	s Spec	trum Si	martFor	mula	Repor	t			
Analysis Info							Acqu	isition Dat	e 10	/12/2018	10:43:1	9 AM
Analysis Name Method Sample Name Comment	D:\Da 4_17 RL-0	ata\2 _Ma 7-35	01810\RL· ss_range_ C	-07-35C_000 .pos_7T	0002.d		Oper	rator ument	so	lariX		
Acquisition Para	meter											
Polarity n/a Broadband Low Mas Broadband High Ma Acquisition Mode Pulse Program Source Accumulation Ion Accumulation Tir Flight Time to Acq. C	ss ss m me Cell	Posit n/a 53.8 1100 Singl basic 0.02 0.02 0.02	tive m/z 0.0 m/z le MS 5 sec 5 sec 5 sec 1 sec	n/a No. of Cell n/a n/a n/a n/a n/a	Fills	n/a 1 n/a n/a n/a n/a n/a	No. of Laser n/a n/a Calibr Data / Apodi	Laser Shot Power ation Date Acquisition S zation	s Size	200 20.0 lp n/a n/a Sun Apr 524288 Sine-Bel	8 02:39:0)2 2018 ation
Intens; x106 5 4 3 2 1							635.20932					+M\$
0 ⁴ • • • • • • • • • • • • • • • • • • •	622.5	-,,	625.0	627.5	630.0	632.5	635.0	637.5	6	40.0	642.5	≁., , m/
Meas. m	ı/z	#	Formula		Score	m/z	err [ppm]	Mean err [ppm]	mSig ma	rdb	e Conf	N-I ul
635.2093	32	1	C 32 H 36	Na O 12	100.00	635.20990	0.92	0.65	8.5	14.5	even	0

Figure S57. UV spectrum of bejolghotin F (10)

Wavenumber cm-1 1705 -1607 -1461 1322 1262 1214 1160 1108 < Ş

Transmittance [%]

Figure S58. IR spectrum (KBr disc) of bejolghotin F (10)

Figure S59. ¹H NMR spectrum (600 MHz) of bejolghotin G (11) in CDCl₃

Figure S60. ¹³C NMR spectrum (150 MHz) of bejolghotin G (11) in CDCl₃

Figure S61. ¹H–¹H COSY spectrum (600 MHz) of bejolghotin G (11) in CDCl₃

Figure S62. HSQC spectrum (600 MHz) of bejolghotin G (11) in CDCl₃

Figure S63. HMBC spectrum (600 MHz) of bejolghotin G (11) in CDCl₃

Figure S64. ROESY spectrum (600 MHz) of bejolghotin G (11) in CDCl₃

Figure S65. HRESIMS spectrum of bejolghotin G (11)

		Mad	- C no	otrumo (SmortEa	rmula	Dana	-			
		Ivias	s ope	ctrum s	SmartFO	mula	керо	n			
Analysis Info						Acq	uisition Da	ite 9/6	6/2019 12	:00:31 F	M
Analysis Name Method Sample Name Comment	D:\Data 4_17_I RL-07-	a\201909\RI Mass_range 95A	07-95A_0 _pos_7T	00001.d		Ope Inst	erator rument	SO	lariX		
Acquisition Para	meter										
Polarity n/a Broadband Low Mas Broadband High Ma	P n/ ss 20 ss 10	ositive a)0.7 m/z)00.0 m/z	n/a No. of Ce n/a n/a	ell Fills	n/a 1 n/a n/a	No. c Lase n/a n/a	of Laser Sho r Power	its	200 20.0 lp n/a n/a		
Acquisition Mode Pulse Program Source Accumulatio Ion Accumulation Tii Flight Time to Acq. (n 0. me 0. Cell 0.	ngle MS asic 010 sec 200 sec 001 sec	n/a n/a n/a n/a		n/a n/a n/a	Calib Data Apod	ration Date Acquisition lization	Size	Wed Aug 1048576 Sine-Bel	g 7 02:23: I Multiplic	11 2019 ation
Intens. x10 ⁸ 5 4					810 21505						+MS
3 2 1 541.1	12216								70	1.49547	
0-4	ю	560	580	600	620	640	660	680	.,	-n. 00	m/z
Meas. m	/z #	Formula		Score	m/z	err [ppm]	Mean err [ppm]	mSig ma	rdb	e ⁻ Conf	N-R ule
619.2159	95 1	C 32 H 36	Na O 11	100.00	619.21498	-1.56	-1.76	27.8	14.5	even	ok

Figure S66. UV spectrum of bejolghotin G (11)

Figure S67. IR spectrum (KBr disc) of bejolghotin G (11)

66