Supporting Information

Singlet and Triplet Excited State Dynamics of 3,7-Bis(ArylEthynyl)Phenothiazines: Intramolecular Charge Transfer and Reverse Intersystem Crossing

Madhurima Poddar,^[a] Alessio Cesaretti,^[b] Elena Ferraguzzi,^[b] Benedetta Carlotti,^{*[b]} Rajneesh Misra^{*[a]}

[a] Discipline of Chemistry, Indian Institute of Technology Indore, Indore 453552 (India), E-mail: <u>rajneeshmisra@iiti.ac.in</u>
[b] Department of Chemistry, Biology and Biotechnology and Center of Excellence on Innovative Nanostructured Materials
(CEMIN), University of Perugia, via Elce di Sotto n. 8, 06123 Perugia, Italy, E-mail: <u>benedetta.carlotti@unipg.it</u>

Scheme S1. Synthesis of 3,7-dibromophenothiazine 2.

¹H NMR

Figure S1. ¹HNMR of phenothiazine 4a.

Figure S2. ¹HNMR of phenothiazine 4b.

Figure S3. ¹HNMR of phenothiazine 4c.

Figure S4. ¹HNMR of phenothiazine 4d.

Figure S5. ¹HNMR of phenothiazine 4e.

Figure S6. ¹HNMR of phenothiazine 4f.

Figure S7. ¹³C NMR of phenothiazine 4a.

Figure S8. ¹³C NMR of phenothiazine 4b.

Figure S9. ¹³C NMR of phenothiazine 4c.

Figure S10. ¹³C NMR of phenothiazine 4d.

Figure S11. ¹³C NMR of phenothiazine 4e.

Figure S12. ¹³C NMR of phenothiazine 4f.

Figure S13. HRMS of 4a.

Figure S15. HRMS of 4c.

Figure S16. HRMS of 4d.

Figure S17. HRMS of 4e.

Figure S18. HRMS of 4f.

Phenothiazine	Solvent	f (ε,n ²)	λ_{abs}	λ _{em}	Stokes Shift Δυ
			(nm)	(nm)	(cm ⁻¹)
4 a	Toluene	0.0242	380	479	5440
	THF	0.441	371	480	6120
	DCM	0.474	374	483	6035
	DMF	0.664	377	489	6075
4b	Toluene	0.0242	381	490	5840
	THF	0.441	383	495	5910
	DCM	0.474	385	497	5850
	DMF	0.664	389	512	6180
4c	Toluene	0.0242	369	482	6355
	THF	0.441	367	484	6590
	DCM	0.474	368	487	6640
	DMF	0.664	369	493	6820

 Table S1. Solvent dependent studies of phenothiazines 4a-4f in different solvents.

4d	Toluene	0.0242	439	528	3840
	CHCl ₃	0.293	439	547	4498
	EtAc	0.400	436	564	5205
	THF	0.441	439	568	5173
	DCM	0.474	440	589	5750
	Acetone	0.651	437	627	6934
	DMF	0.664	443	657	7350
4e	Toluene	0.0242	382	492	5850
	THF	0.441	383	501	6150
	DCM	0.474	388	502	5853
	DMF	0.664	393	520	6215
4f	Toluene	0.0242	406	446	2210
				476	
	THF	0.441	403	443	2240
				473	
	DCM	0.474	404	446	2330
				474	
	DMF	0.664	405	450	2450
				474	

Figure S19. Normalized absorption and emission spectra of 4f in DCM solution at different concentrations.

Figure S20. Femtosecond transient absorption spectroscopy of **4d** in DCM: A) contour plot of the experimental data, B) time resolved absorption spectra recorded at different delays after the laser pulse. Insets: decay kinetics recorded at meaningful wavelengths and C) evolution associated spectra obtained by SVD and Global Analysis.

Figure S21. Evolution associated spectra obtained by SVD and Global Analysis of the femtosecond transient absorption data in DCM.

Figure S22. Evolution associated spectra obtained by SVD and Global Analysis of the femtosecond transient absorption data for 4d.

Table S2. Lifetimes and assignment of the exponential components revealed by Global Fitting of the femtosecond transient absorption data of **4a–4f** in DCM.

Compound	τ / ps	Assignment
	0.16	Solvation
	1.3	Solvation
4a	120	Structural Relaxation
	4880	S_1
	Rest	T ₁
	0.14	Solvation
	1.0	Solvation
4b	180	Structural Relaxation
	2130	S_1
	Rest	T ₁
	0.14	Solvation
	2.0	Solvation
4c	200	Structural Relaxation
	2280	\mathbf{S}_1
	Rest	T ₁
	0.22	Solvation
	1.9	Solvation+ S_1 (LE)
4d	150	Structural Relaxation
	4190	S_1 (ICT)
	Rest	T_1
	0.14	Solvation
	0.57	Solvation
4e	200	Structural Relaxation
	2040	S_1
	Rest	T ₁
	0.14	Solvation
	1.9	Solvation
4f	94	Structural Relaxation
	1630	$ S_1 $
	Rest	$ T_1 $

Figure S23. Nanosecond transient absorption decay kinetics of 4a in air–equilibrated and nitrogen–purged DCM.

Evaluation of reverse intersystem crossing rate constants

Adachi Method:

4d in toluene

$$\begin{split} \phi_{prompt} &= \frac{\phi_{prompt,air} \times \tau_{prompt,N2}}{\tau_{prompt,air}} = \frac{0.75 \times 3.27 ns}{2.92 ns} = 0.84 \\ \phi_{delayed} &= \phi_{N2} - \phi_{prompt} = 0.88 - 0.84 = 0.04 \\ k_{prompt} &= \frac{1}{\tau_{prompt,N2}} = \frac{1}{3.27 ns} = 3.06 \times 10^8 s^{-1} \\ k_{delayed} &= \frac{1}{\tau_{delayed,N2}} = \frac{1}{6 \mu s} = 1.67 \times 10^5 s^{-1} \\ k_{ISC} &= (1 - \phi_{prompt}) \times k_{prompt} = 4.90 \times 10^7 s^{-1} \\ k_{rISC} &= \frac{k_{prompt} \times k_{delayed} \times \phi_{delayed}}{k_{ISC} \times \phi_{prompt}} = 4.97 \times 10^4 s^{-1} \\ \end{split}$$
Goodson Method:

4d in toluene

$$\phi_{TADF} = \phi_{N2} - \phi_{air} = 0.88 - 0.75 = 0.13$$

$$k_T = \frac{1}{\tau_{T,N2}} = \frac{1}{6\,\mu s} = 1.67 \times 10^5 s^{-1}$$

$$k_{rISC} = k_T \times \phi_{TADF} = 2.17 \times 10^4 s^{-1}$$

Goodson Method:

4a in DCM

 $\phi_{TADF} = \phi_{N2} - \phi_{air} = 0.89 - 0.82 = 0.07$

$$k_T = \frac{1}{\tau_{T,N2}} = \frac{1}{12\,\mu s} = 8.33 \times 10^4 s^{-1}$$

 $k_{rISC} = k_T \times \phi_{TADF} = 5.83 \times 10^3 \, s^{-1}$

Figure S24. Front view and top view of the optimized geometry of 4a-4f.

Figure S25. Theoretical absorption spectra of 4d.

DFT Calculations

Phenothiazine 4a

Standard orientation:

Center	Atomic		Atomic	Coordinat	es (Angstroms)
Number	Numb	er	Туре	X Y	ΧZ
1	6	0	-2.403757	2.354307	-0.033080
2	6	0	-1.234372	1.685949	0.375985
3	6	0	-3.622105	1.694651	-0.147864
4	6	0	-1.354867	0.310726	0.677376
5	6	0	-3.727899	0.319106	0.113303
6	6	0	1.234377	1.685943	0.375979
7	6	0	-2.562075	-0.358941	0.519943
8	6	0	2.403770	2.354297	-0.033071
9	6	0	1.354865	0.310719	0.677371

10	1	0	-2.612759	-1.419765	0.741416
11	6	0	3.622114	1.694635	-0.147853
12	1	0	2.375247	3.408784	-0.269492
13	6	0	2.562070	-0.358954	0.519940
14	6	0	3.727899	0.319087	0.113306
15	1	0	2.612748	-1.419779	0.741411
16	7	0	0.000004	2.359741	0.498357
17	16	0	-0.000002	-0.571575	1.416860
18	6	0	0.000003	3.828104	0.507852
19	1	0	0.873710	4.148359	1.084314
20	1	0	-0.873645	4.148351	1.084407
21	6	0	-0.000085	4.533719	-0.862575
22	1	0	0.871232	4.220406	-1.446291
23	1	0	-0.871480	4.220406	-1.446175
24	6	0	-0.000074	6.057427	-0.702847
25	1	0	-0.883714	6.402370	-0.153912
26	1	0	0.883638	6.402370	-0.154030
27	1	0	-0.000139	6.555220	-1.676756
28	1	0	-4.501458	2.247941	-0.459345
29	1	0	4.501472	2.247922	-0.459325
30	1	0	-2.375225	3.408791	-0.269513
31	6	0	-4.964554	-0.369647	-0.021189
32	6	0	-6.021832	-0.961238	-0.135765
33	6	0	4.964551	-0.369672	-0.021182
34	6	0	6.021829	-0.961263	-0.135755

35	6	0	7.258585	-1.655198	-0.269098
36	6	0	7.337934	-3.037129	-0.001782
37	6	0	8.548414	-3.711181	-0.132888
38	1	0	6.442993	-3.567198	0.307242
39	6	0	9.698658	-3.025661	-0.531072
40	6	0	-7.258571	-1.655203	-0.269101
41	6	0	-7.337891	-3.037131	-0.001763
42	6	0	-8.425371	-0.973345	-0.670324
43	6	0	-8.548356	-3.711212	-0.132861
44	1	0	-6.442939	-3.567175	0.307272
45	6	0	-9.631187	-1.656305	-0.798620
46	6	0	-9.698613	-3.025724	-0.531060
47	6	0	9.631202	-1.656240	-0.798611
48	1	0	10.522266	-1.118151	-1.108626
49	6	0	8.425370	-0.973308	-0.670308
50	1	0	8.370264	0.090430	-0.877396
51	1	0	-8.370288	0.090391	-0.877427
52	1	0	-10.522263	-1.118241	-1.108644
53	1	0	-8.594861	-4.775943	0.076360
54	1	0	-10.641197	-3.555288	-0.632190
55	1	0	8.594943	-4.775914	0.076316
56	1	0	10.641253	-3.555203	-0.632209

E (HF) = -1648.0364362

Phenothiazine 4b

Standard orientation:

Center	Atomic		Atomic	Coordinate	es (Angstroms)
Number	Numb	er	Туре	X Y	Z
	6	0	2.403321	2.342749	-0.253648
2	6	0	1.234155	1.669043	-0.654373
3	6	0	3.621369	1.684694	-0.129188
4	6	0	1.354855	0.289962	-0.937919
5	6	0	3.727787	0.305686	-0.372204
6	6	0	-1.234158	1.669016	-0.654340
7	6	0	2.561922	-0.377519	-0.771286
8	6	0	-2.403309	2.342684	-0.253486
9	6	0	-1.354858	0.289951	-0.937929
10	1	0	2.612670	-1.441153	-0.978760
11	6	0	-3.621349	1.684623	-0.129027
12	1	0	-2.374645	3.400154	-0.030884
13	6	0	-2.561922	-0.377544	-0.771297
14	6	0	-3.727776	0.305633	-0.372145
15	1	0	-2.612671	-1.441166	-0.978833
16	7	0	-0.000007	2.341145	-0.785317
17	16	(0.000006	-0.601813	-1.666061
18	6	0	-0.000017	3.809393	-0.815579
19	1	0	-0.873711	4.121263	-1.396639

20	1	0	0.873639	4.121270	-1.396696
21	6	0	0.000025	4.534615	0.544564
22	1	0	-0.871253	4.229783	1.132821
23	1	0	0.871391	4.229864	1.132731
24	6	0	-0.000051	6.055868	0.363010
25	1	0	0.883580	6.393070	-0.190683
26	1	0	-0.883785	6.392998	-0.190562
27	1	0	-0.000005	6.567281	1.329820
28	1	0	4.499793	2.243190	0.175632
29	1	0	-4.499760	2.243088	0.175888
30	1	0	2.374668	3.400241	-0.031145
31	6	0	4.962799	-0.382970	-0.226949
32	6	0	6.014764	-0.984234	-0.104634
33	6	0	-4.962786	-0.383030	-0.226897
34	6	0	-6.014748	-0.984300	-0.104584
35	6	0	-7.234928	-1.702963	0.033501
36	6	0	-8.433637	-1.041486	0.482049
37	6	0	-7.274204	-3.061406	-0.266518
38	6	0	-8.464655	0.339089	0.804989
39	6	0	-9.638228	-1.806207	0.607315
40	6	0	-8.466775	-3.800838	-0.139097
41	1	0	-6.366835	-3.551453	-0.603538
42	6	0	-9.628486	0.939343	1.232005
43	1	0	-7.549804	0.914322	0.708991
44	6	0	-10.821449	-1.155433	1.050703

45	6	0	-9.624621	-3.189870	0.288155
46	1	0	-8.464238	-4.859294	-0.381304
47	6	0	-10.819682	0.185925	1.356693
48	1	0	-9.634095	1.997788	1.475351
49	1	0	-11.732362	-1.740983	1.143917
50	1	0	-10.545071	-3.758901	0.387065
51	1	0	-11.731271	0.669982	1.694519
52	6	0	7.234912	-1.702935	0.033533
53	6	0	8.433655	-1.041477	0.482027
54	6	0	7.274119	-3.061407	-0.266364
55	6	0	8.464751	0.339127	0.804854
56	6	0	9.638202	-1.806256	0.607380
57	6	0	8.466647	-3.800889	-0.138867
58	1	0	6.366729	-3.551435	-0.603356
59	6	0	9.628615	0.939352	1.231813
60	1	0	7.549930	0.914401	0.708820
61	6	0	10.821461	-1.155509	1.050707
62	6	0	9.624521	-3.189947	0.288347
63	1	0	8.464057	-4.859368	-0.380973
64	6	0	10.819771	0.185877	1.356568
65	1	0	9.634288	1.997820	1.475058
66	1	0	11.732338	-1.741104	1.143983
67	1	0	10.544929	-3.759029	0.387342
68	1	0	11.731386	0.669915	1.694351

E (HF) = -1955.3308079

Phenothiazine 4c

Standard orientation:

Center	Atomic	<u>د</u> :	Atomic	Coordinate	es (Angstroms)
Number	Numb	er	Туре	X Y	Z
1	6	0	2.404200	3.739460	0.074898
2	6	0	1.234520	3.092930	-0.367240
3	6	0	3.621885	3.073842	0.159216
4	6	0	1.354821	1.734017	-0.735278
5	6	0	3.727350	1.712200	-0.167619
6	6	0	-1.234484	3.092905	-0.367169
7	6	0	2.561119	1.056306	-0.608755
8	6	0	-2.404123	3.739421	0.075088
9	6	0	-1.354788	1.734003	-0.735223
10	1	0	2.611018	0.007414	-0.881316
11	6	0	-3.621804	3.073801	0.159467
12	1	0	-2.376622	4.781282	0.362352
13	6	0	-2.561084	1.056291	-0.608639
14	6	0	-3.727279	1.712173	-0.167407
15	1	0	-2.611002	0.007402	-0.881208
16	7	0	0.000019	3.772077	-0.457606
17	16	0	0.000003	0.889821	-1.518307

18	6	0	0.000020	5.238414	-0.387779
19	1	0	-0.873610	5.589804	-0.945854
20	1	0	0.873632	5.589798	-0.945890
21	6	0	0.000057	5.867215	1.019701
22	1	0	-0.871389	5.521531	1.584548
23	1	0	0.871382	5.521307	1.584593
24	6	0	0.000248	7.397419	0.944746
25	1	0	0.883947	7.771704	0.415400
26	1	0	-0.883287	7.771927	0.415285
27	1	0	0.000237	7.841220	1.944438
28	1	0	4.501131	3.610826	0.498390
29	1	0	-4.501026	3.610768	0.498729
30	1	0	2.376732	4.781341	0.362102
31	6	0	4.961935	1.015234	-0.063466
32	6	0	6.013987	0.408974	0.023945
33	6	0	-4.961835	1.015148	-0.063144
34	6	0	-6.013854	0.408845	0.024347
35	6	0	-7.247997	-0.291400	0.131095
36	6	0	-7.336763	-1.642995	-0.187072
37	6	0	-8.558767	-2.344465	-0.082144
38	1	0	-6.449910	-2.172129	-0.522816
39	6	0	-9.733051	-1.654854	0.360520
40	6	0	7.248072	-0.291346	0.130659
41	6	0	7.336521	-1.643259	-0.186216
42	6	0	8.425175	0.389291	0.569453

43	6	0	8.558522 -2.344745 -0.081322
44	1	0	6.449418 -2.172652 -0.520893
45	6	0	9.622513 -0.273586 0.678495
46	6	0	9.733145 -1.654815 0.359949
47	6	0	8.668014 -3.728835 -0.401000
48	6	0	10.963397 -2.356764 0.467972
49	6	0	9.863184 -4.389203 -0.290892
50	6	0	11.027635 -3.699430 0.148792
51	6	0	-9.622088 -0.273959 0.680376
52	1	0	-10.507721 0.258549 1.017187
53	6	0	-8.424751 0.388915 0.571265
54	1	0	-8.354795 1.442999 0.819001
55	6	0	-8.668586 -3.728232 -0.403128
56	6	0	-10.963322 -2.356784 0.468553
57	6	0	-11.027891 -3.699120 0.148063
58	1	0	-11.839208 -1.814981 0.806443
59	1	0	-7.783080 -4.260168 -0.740177
60	1	0	8.355450 1.443616 0.816224
61	1	0	10.508392 0.259150 1.014299
62	1	0	11.839546 -1.814708 0.804781
63	1	0	7.782252 -4.261031 -0.736962
64	1	0	9.956488 -5.442900 -0.531773
65	6	0	-9.863751 -4.388590 -0.292942
66	1	0	-9.957313 -5.442043 -0.534789
67	6	0	-13.355012 -3.860502 0.649684

68	1	0	-14.114162	-4.643491	0.630670
69	1	0	-13.262230	-3.469663	1.670903
70	1	0	-13.657907	-3.045213	-0.019534
71	6	0	13.355064	-3.860451	0.648958
72	1	0	13.263000	-3.468616	1.669859
73	1	0	14.114151	-4.643507	0.630196
74	1	0	13.657556	-3.045836	-0.021261
75	8	0	12.149478	-4.471165	0.215378
76	8	0	-12.149754	-4.470858	0.214672

E (HF) = -2184.3837787

Phenothiazine 4d

Standard orientation:

Center	Atom	ic A	Atomic	Coord	linate	s (Angstroms)
Number	Nun	nber	Туре	Х	Y	Z
1	6	0	-2.403779	-3.065	162	-0.375284
2	6	0	-1.234073	-2.363	043	-0.722697
3	6	0	-3.621407	-2.418	412	-0.200456
4	6	0	-1.354742	-0.966	199	-0.899514
5	6	0	-3.728266	-1.024	181	-0.336483
6	6	0	1.234073	-2.363	049	-0.722667
7	6	0	-2.561395	-0.313	246	-0.681995

8	6	0	2.403759	-3.065187	-0.375225
9	6	0	1.354767	-0.966212	-0.899497
10	1	0	-2.609896	0.763298	-0.807154
11	6	0	3.621396	-2.418459	-0.200389
12	1	0	2.375689	-4.136722	-0.234828
13	6	0	2.561430	-0.313279	-0.681970
14	6	0	3.728281	-1.024230	-0.336432
15	1	0	2.609953	0.763264	-0.807141
16	7	0	0.000000	-3.023128	-0.903772
17	16	0	0.000020	-0.021437	-1.557611
18	6	0	0.000012	-4.485006	-1.046138
19	1	0	0.873762	-4.751556	-1.649185
20	1	0	-0.873684	-4.751568	-1.649258
21	6	0	-0.000030	-5.310666	0.255401
22	1	0	0.871302	-5.050486	0.864526
23	1	0	-0.871428	-5.050525	0.864449
24	6	0	0.000014	-6.814074	-0.039485
25	1	0	-0.883607	-7.108981	-0.616761
26	1	0	0.883713	-7.108950	-0.616658
27	1	0	-0.000030	-7.396230	0.886425
28	1	0	-4.499758	-2.998875	0.060290
29	1	0	4.499735	-2.998934	0.060373
30	1	0	-2.375735	-4.136699	-0.234900
31	6	0	-4.963510	-0.350886	-0.138838
32	6	0	-6.022614	0.228711	0.030950

33	6	0	4.963545	-0.350964	-0.138803
34	6	0	6.022659	0.228621	0.030957
35	6	0	7.256013	0.904095	0.227352
36	6	0	8.412070	0.170982	0.618911
37	6	0	7.332086	2.312360	0.031204
38	6	0	8.386389	-1.239606	0.829429
39	6	0	9.659058	0.867364	0.813536
40	6	0	8.589706	2.987605	0.232045
41	6	0	9.515422	-1.920703	1.206689
42	1	0	7.448904	-1.765109	0.684242
43	6	0	10.813204	0.120436	1.206604
44	6	0	9.716227	2.251563	0.616023
45	6	0	10.746955	-1.233652	1.398402
46	1	0	9.472929	-2.994824	1.361614
47	1	0	11.748144	0.655413	1.350555
48	1	0	10.660878	2.769061	0.765381
49	1	0	11.631253	-1.788632	1.697203
50	6	0	-7.255990	0.904134	0.227376
51	6	0	-8.412026	0.170958	0.618879
52	6	0	-7.332115	2.312406	0.031285
53	6	0	-8.386294	-1.239638	0.829330
54	6	0	-9.659044	0.867283	0.813518
55	6	0	-8.589767	2.987591	0.232132
56	6	0	-9.515306	-1.920797	1.206544
57	1	0	-7.448787	-1.765097	0.684131

58	6	0	-10.813167	0.120291	1.206533
59	6	0	-9.716265	2.251488	0.616065
60	6	0	-10.746869	-1.233803	1.398272
61	1	0	-9.472772	-2.994923	1.361425
62	1	0	-11.748131	0.655225	1.350493
63	1	0	-10.660940	2.768942	0.765422
64	1	0	-11.631150	-1.788831	1.697033
65	6	0	-6.202624	3.090576	-0.360270
66	6	0	-8.653908	4.401965	0.032294
67	6	0	-7.545908	5.113207	-0.343456
68	1	0	-7.608510	6.187167	-0.491571
69	6	0	-6.304496	4.446117	-0.541890
70	1	0	-5.431371	5.018962	-0.840067
71	6	0	8.653789	4.401976	0.032156
72	6	0	6.202565	3.090467	-0.360393
73	6	0	6.304382	4.446005	-0.542059
74	1	0	5.431238	5.018804	-0.840267
75	6	0	7.545764	5.113156	-0.343635
76	1	0	7.608323	6.187113	-0.491785
77	1	0	-5.255676	2.584483	-0.512336
78	1	0	-9.606838	4.901143	0.186622
79	1	0	9.606695	4.901199	0.186482
80	1	0	5.255641	2.584328	-0.512455

E (HF) = -2262.6131034

Phenothiazine 4e

Standard orientation:

Center	Atomi	c A	Atomic	Coordinate	s (Angstroms)
Number	Num	ber	Туре	X Y	Ζ
1	6	0	-2.404129	3.455951	0.130137
2	6	0	-1.234213	2.782534	0.529603
3	6	0	-3.622119	2.797446	0.006056
4	6	0	-1.354323	1.403235	0.812073
5	6	0	-3.727419	1.417920	0.247580
6	6	0	1.234246	2.782556	0.529629
7	6	0	-2.560866	0.735280	0.644888
8	6	0	2.404134	3.455987	0.130105
9	6	0	1.354403	1.403271	0.812157
10	1	0	-2.609413	-0.328529	0.852089
11	6	0	3.622156	2.797528	0.006074
12	1	0	2.376019	4.513668	-0.091722
13	6	0	2.560978	0.735366	0.645042
14	6	0	3.727514	1.418027	0.247710
15	1	0	2.609569	-0.328429	0.852304
16	7	0	0.000002	3.454576	0.660692
17	16	0	0.000027	0.511714	1.540852
18	6	0	-0.000029	4.922802	0.694226

19	1	0	0.873687	5.233320	1.275990
20	1	0	-0.873732	5.233273	1.276043
21	6	0	-0.000089	5.651095	-0.664188
22	1	0	0.871289	5.347748	-1.253085
23	1	0	-0.871438	5.347646	-1.253072
24	6	0	-0.000168	7.171909	-0.478960
25	1	0	-0.883876	7.507686	0.075463
26	1	0	0.883500	7.507769	0.075477
27	1	0	-0.000186	7.685621	-1.444539
28	1	0	-4.501628	3.354714	-0.297731
29	1	0	4.501639	3.354815	-0.297753
30	1	0	-2.376060	4.513660	-0.091564
31	6	0	-4.963579	0.731122	0.103033
32	6	0	-6.025121	0.147551	-0.022061
33	6	0	4.963681	0.731249	0.103170
34	6	0	6.025208	0.147657	-0.021963
35	6	0	7.271769	-0.522428	-0.169967
36	6	0	7.369082	-1.957858	0.051930
37	6	0	8.393446	0.188604	-0.523780
38	6	0	8.627563	-2.611117	-0.099679
39	6	0	9.667674	-0.433532	-0.684251
40	1	0	8.314636	1.259014	-0.687426
41	6	0	9.804654	-1.837895	-0.475616
42	6	0	-7.271705	-0.522490	-0.170114
43	6	0	-7.369117	-1.957868	0.052072

44	6	0	-8.393287	0.188522	-0.524260
45	6	0	-8.627606	-2.611096	-0.099582
46	6	0	-9.667561	-0.433559	-0.684616
47	1	0	-8.314387	1.258880	-0.688199
48	6	0	-9.804659	-1.837851	-0.475586
49	6	0	6.232370	-2.713082	0.415724
50	6	0	8.679342	-4.007016	0.125717
51	6	0	7.554015	-4.726294	0.481439
52	6	0	6.317235	-4.074903	0.628299
53	6	0	10.799853	0.334793	-1.049417
54	6	0	11.086148	-2.409494	-0.646117
55	6	0	12.178456	-1.639295	-1.003347
56	6	0	12.037656	-0.253829	-1.207656
57	6	0	-6.232479	-2.713080	0.416121
58	6	0	-8.679439	-4.006989	0.125840
59	6	0	-7.554177	-4.726264	0.481778
60	6	0	-6.317419	-4.074879	0.628827
61	6	0	-10.799681	0.334759	-1.049982
62	6	0	-11.086252	-2.409352	-0.645694
63	6	0	-12.178516	-1.639149	-1.003049
64	1	0	-13.150098	-2.108496	-1.125729
65	6	0	-12.037547	-0.253790	-1.207981
66	1	0	-12.898113	0.346063	-1.488429
67	1	0	-10.674443	1.403181	-1.204553
68	1	0	-11.229588	-3.473214	-0.495510

69	1	0	-9.620034	-4.534848	0.019124
70	1	0	-7.628676	-5.796988	0.647321
71	1	0	-5.432647	-4.638996	0.908202
72	1	0	-5.284444	-2.197798	0.525930
73	1	0	10.674717	1.403277	-1.203635
74	1	0	12.898276	0.346037	-1.487911
75	1	0	13.149948	-2.108732	-1.126401
76	1	0	11.229339	-3.473451	-0.496476
77	1	0	9.619984	-4.534848	0.019276
78	1	0	7.628487	-5.797017	0.647003
79	1	0	5.432398	-4.639032	0.907442
80	1	0	5.284337	-2.197774	0.525447

E (HF) = -2262.6280617

Phenothiazine 4f

Standard orientation:

Center	Atom	nic A	tomic	Coord	dinates (A	Angstroms)
Number	Nu	mber	Туре	Х	Y	Ζ
1	6	0	2.403389	2.719	946 -0.	458095
2	6	0	1.234073	2.065	236 -0.	889302
3	6	0	3.620436	2.056	6033 -0.	360265
4	6	0	1.354588	0.699	941 -1.	233890

5	6	0	3.726380	0.688418 -0.662662
6	6	0	-1.234061	2.065228 -0.889255
7	6	0	2.560657	0.024662 -1.094539
8	6	0	-2.403355	2.719929 -0.457975
9	6	0	-1.354589	0.699939 -1.233863
10	1	0	2.610749	-1.028898 -1.348351
11	6	0	-3.620400	2.056016 -0.360118
12	1	0	-2.375587	3.766661 -0.189379
13	6	0	-2.560656	0.024664 -1.094490
14	6	0	-3.726363	0.688413 -0.662557
15	1	0	-2.610763	-1.028889 -1.348330
16	7	0	0.000002	2.742589 -0.990264
17	16	0	-0.000008	-0.157255 -2.002940
18	6	0	-0.000006	4.210485 -0.944130
19	1	0	-0.873465	4.552505 -1.508099
20	1	0	0.873429	4.552520 -1.508126
21	6	0	0.000004	4.861679 0.452996
22	1	0	-0.871302	4.525220 1.023625
23	1	0	0.871324	4.525226 1.023608
24	6	0	-0.000001	6.390510 0.353393
25	1	0	0.883634	6.756576 -0.181710
26	1	0	-0.883641	6.756568 -0.181708
27	1	0	-0.000002	6.849859 1.345997
28	1	0	4.498667	2.599832 -0.029451
29	1	0	-4.498613	2.599807 -0.029240

30	1	0	2.375637	3.766686	-0.189530
31	6	0	4.959650	-0.006335	-0.541286
32	6	0	6.013964	-0.607828	-0.434424
33	6	0	-4.959632	-0.006338	-0.541168
34	6	0	-6.013944	-0.607835	-0.434312
35	6	0	-7.229415	-1.333090	-0.314709
36	6	0	-8.416412	-0.713093	0.168492
37	6	0	-7.260415	-2.695067	-0.678468
38	6	0	-9.610672	-1.487438	0.275581
39	6	0	-8.456313	0.667541	0.555136
40	6	0	-8.422620	-3.441872	-0.573980
41	1	0	-6.348811	-3.154799	-1.045445
42	6	0	-10.810871	-0.884268	0.761314
43	6	0	-9.614029	-2.865903	-0.099352
44	6	0	-9.601649	1.242053	1.017488
45	1	0	-7.543763	1.247761	0.469976
46	1	0	-8.418738	-4.489778	-0.861153
47	6	0	-10.819457	0.492435	1.139179
48	6	0	-12.008113	-1.656398	0.871887
49	6	0	-10.831046	-3.615549	0.021543
50	1	0	-9.609851	2.290064	1.305246
51	6	0	-12.011153	1.064054	1.614943
52	6	0	-13.175160	-1.041026	1.353267
53	6	0	-11.974840	-3.039283	0.485422
54	1	0	-10.820957	-4.663193	-0.267139

55	6	0	-13.173681 0.303508 1.719704
56	1	0	-12.016699 2.111992 1.902454
57	1	0	-14.085641 -1.628229 1.437548
58	1	0	-12.888387 -3.621521 0.571186
59	1	0	-14.086012 0.761870 2.089878
60	6	0	7.229436 -1.333080 -0.314801
61	6	0	8.416413 -0.713092 0.168461
62	6	0	7.260451 -2.695048 -0.678590
63	6	0	9.610671 -1.487435 0.275569
64	6	0	8.456293 0.667530 0.555147
65	6	0	8.422653 -3.441855 -0.574075
66	1	0	6.348863 -3.154772 -1.045614
67	6	0	10.810855 -0.884271 0.761346
68	6	0	9.614044 -2.865893 -0.099393
69	6	0	9.601615 1.242038 1.017540
70	1	0	7.543739 1.247744 0.469990
71	1	0	8.418783 -4.489755 -0.861270
72	6	0	10.819426 0.492426 1.139237
73	6	0	12.008098 -1.656397 0.871934
74	6	0	10.831060 -3.615538 0.021526
75	1	0	9.609804 2.290041 1.305329
76	6	0	12.011109 1.064043 1.615036
77	6	0	13.175131 -1.041028 1.353351
78	6	0	11.974840 -3.039277 0.485446
79	1	0	10.820979 -4.663178 -0.267172

80	6	0	13.173639	0.303501	1.719810
81	1	0	12.016645	2.111975	1.902566
82	1	0	14.085612	-1.628228	1.437645
83	1	0	12.888386	-3.621513	0.571228
84	1	0	14.085958	0.761860	2.090014

E (HF) = -2415.0994039

TD-DFT Calculations

Phenothiazine 4a

Excited State 115 ->118 116 ->117 116 ->119 116 ->123	1: Singlet-A 0.14772 0.64671 -0.13196 0.13942	3.4080 eV	363.81 nm	f=1.0118	<s**2>=0.000</s**2>
Excited State	2: Singlet-A	4.1724 eV	297.15 nm	f=0.4024	<s**2>=0.000</s**2>
116 ->118	0.56700				
116 ->120	0.20297				
Excited State	3: Singlet-A	4.2835 eV	289.44 nm	f=0.7546	<s**2>=0.000</s**2>
113 ->117	-0.12769				
114 ->119	0.10851				
115 ->118	0.17454				
115 ->120	0.10509				
116 ->119	0.61417				
Excited State	4: Singlet-A	4.4236 eV	280.28 nm	f=0.2369	<s**2>=0.000</s**2>
110 ->117	0.14829				
114 ->118	0.21765				
115 ->117	-0.26936				
116 ->120	0.54917				
Excited State 114 ->117	5: Singlet-A 0.53820	4.4732 eV	277.17 nm	f=0.8906	<s**2>=0.000</s**2>

114 ->119	-0.11794	
115 ->118	-0.26279	
115 ->120	0.10499	
116 ->123	0.21328	
116 ->125	0.10253	
Excited State	6: Singlet-A	4.9414 eV 250.91 nm f=0.0106 <s**2>=0.000</s**2>
113 ->118	-0.14025	
114 ->118	-0.21915	
115 ->117	0.44907	
116 ->118	-0.34447	
116 ->120	0.24389	
116 ->124	0.14496	
Excited State	7: Singlet-A	5.1198 eV 242.16 nm f=0.0000 <s**2>=0.000</s**2>
111 ->117	-0.29879	
111 ->123	0.16472	
112 ->118	-0.30673	
112 ->124	-0.12343	
113 ->121	-0.18008	
114 ->121	-0.18013	
115 ->122	0.31086	
116 ->121	0.28040	
Excited State	8: Singlet-A	5.1199 eV 242.16 nm f=0.0001 <s**2>=0.000</s**2>
111 ->118	-0.30672	
111 ->124	-0.12343	
112 ->117	-0.29879	
112 ->123	0.16473	
113 ->122	-0.18012	
114 ->122	-0.18017	
115 ->121	0.31087	
116 ->122	0.28047	

Phenothiazine 4b

Excited State	1: Singlet-A	3.2891 eV	376.95 nm	f=1.4353	<s**2>=0.000</s**2>
140 ->145	0.11710				
141 ->144	-0.20133				
142 ->143	0.60968				
142 ->145	0.23079				
Excited State	2: Singlet-A	3.8023 eV	326.08 nm	f=0.3639	<s**2>=0.000</s**2>
140 ->144	-0.17449				

141 ->143 142 ->144	-0.40901 0.51003		
Excited State 140 ->143 141 ->144 142 ->145 142 ->147 142 ->149 142 ->151	3: Singlet-A 0.37279 0.36463 0.34927 0.17020 -0.11189 0.10305	4.0458 eV 306.45 nm f=0.8099 <s*< td=""><td>**2>=0.000</td></s*<>	**2>=0.000
Excited State 139 ->143 139 ->145 140 ->143 140 ->147 141 ->144 141 ->146 142 ->145 142 ->147 142 ->149	4: Singlet-A -0.17516 -0.14847 -0.28278 0.10785 -0.11708 0.10437 0.10691 0.41902 -0.29606	4.3275 eV 286.50 nm f=0.0016 <s*< td=""><td>**2>=0.000</td></s*<>	**2>=0.000
Excited State 135 ->143 140 ->144 140 ->146 141 ->143 142 ->144 142 ->146 142 ->150	5: Singlet-A 0.12691 0.24277 0.14706 0.22576 0.17572 0.49497 -0.14380	4.3326 eV 286.17 nm f=0.0215 <s*< td=""><td>**2>=0.000</td></s*<>	**2>=0.000
Excited State 136 ->144 137 ->143 137 ->145 138 ->144 140 ->147 140 ->149 141 ->148 142 ->147 142 ->149	6: Singlet-A 0.31698 0.31862 -0.16622 -0.11373 -0.14300 -0.19660 -0.31667 0.13826 0.18769	4.5037 eV 275.30 nm f=0.0003 <s*< td=""><td>**2>=0.000</td></s*<>	**2>=0.000
Excited State 136 ->143 136 ->145 137 ->144	7: Singlet-A 0.30010 -0.15627 0.33643	4.5037 eV 275.30 nm f=0.0027 <s*< td=""><td>**2>=0.000</td></s*<>	**2>=0.000

138 ->143	-0.10745	
140 ->148	-0.24261	
141 ->147	-0.18798	
141 ->149	-0.25575	
142 ->148	0.23289	
Excited State	8: Singlet-A	4.6257 eV 268.03 nm f=0.0399 <s**2>=0.000</s**2>
138 ->143	0.11365	
139 ->144	-0.14342	
140 ->144	0.26465	
141 ->143	0.30043	
142 ->144	0.35267	
142 ->146	-0.22924	
142 ->150	0.28502	

Phenothiazine 4c

Excited State 157 ->160 158 ->159 158 ->161 158 ->163 158 ->165	1: Singlet-A 0.17398 0.61794 0.15590 0.10037 -0.10607	3.3426 eV 370.92 nm f=1.4217 <s**2>=0.000</s**2>
Excited State 156 ->160 157 ->159 158 ->160	2: Singlet-A -0.15102 0.39777 0.49949	3.9283 eV 315.62 nm f=1.0315 <s**2>=0.000</s**2>
Excited State 155 ->159 156 ->159 156 ->163 157 ->160 158 ->161 158 ->163	3: Singlet-A -0.10349 -0.30856 -0.14694 0.35325 -0.27302 -0.30804	4.1053 eV 302.01 nm f=0.6249 <s**2>=0.000</s**2>
Excited State 153 ->160 154 ->159 154 ->165 155 ->160 156 ->162 157 ->161	4: Singlet-A -0.15035 0.18426 0.10910 0.16633 -0.23576 0.35440	4.2593 eV 291.09 nm f=0.0166 <s**2>=0.000</s**2>

157 ->163	-0.11543				
157 ->165	0.10130				
158 ->162	0.35852				
Excited State	5: Singlet-A	4.2692 eV	290.42 nm	f=0.4060	<s**2>=0.000</s**2>
153 ->161	-0 10101				
154 ->160	-0 17564				
155 ->159	-0.15309				
156 >161	0.15505				
156 >165	0.22383				
150 - 2103	0.13017				
157 - >102	-0.34807				
158 ->161	-0.21486				
158 ->163	0.35462				
Excited State	6: Singlet-A	13540 eV	281 76 nm	f=0.0300	<\$**2>=0.000
152 \150	0. 19016	4.5540 CV	204.70 IIII	1-0.0377	<5 2>-0.000
153 - 2139	0.16910				
154 - >100	-0.10077				
155 ->159	0.11504				
155 ->161	0.11350				
156 ->159	0.33827				
156 ->163	-0.10807				
157 ->160	-0.14070				
157 ->162	-0.11606				
157 ->164	-0.11922				
158 ->163	-0.33537				
158 ->165	-0.26039				
T		4 25 41 - 37	204 75	£_0 1172	<0** 2 > _0 000
Excited State	/: Singlet-A	4.3541 eV	284./5 nm	I=0.11/2	<\$**2>=0.000
151 ->159	0.13490				
156 ->160	-0.20323				
156 ->162	-0.12548				
156 ->164	0.14066				
157 ->159	0.22218				
158 ->160	-0.11926				
158 ->164	0.51116				
Excited State	8. Singlat A	16817 N	261 82 nm	f-0 0270	<s**7>-0 000</s**7>
154 > 150	0.15652	4.001700	204.03 1111	1-0.0279	<5 2>=0.000
134 - 2139	-0.13033				
134 - >101	0.15/91				
155 ->160	-0.1033/				
156 ->160	0.30387				
156 ->164	0.10123				
157 ->159	-0.26279				
158 ->160	0.30281				
158 ->162	0.14178				
158 ->164	0.27710				

158 ->166 0.15998

Phenothiazine 4d

Excited State 166 ->171 167 ->170 168 ->169 168 ->171	1: Singlet-A -0.12073 -0.36935 0.56389 -0.12080	2.8744 eV	431.34 nm	f=1.4530	<s**2>=0.000</s**2>
Excited State 166 ->170 167 ->169 168 ->170	2: Singlet-A -0.18569 -0.46761 0.48305	3.0515 eV	406.30 nm	f=0.2956	<s**2>=0.000</s**2>
Excited State 166 ->169 166 ->171 167 ->170 168 ->169 168 ->171	3: Singlet-A 0.41641 -0.16586 0.31625 0.13668 -0.37345	3.5477 eV	349.48 nm	f=0.0196	<s**2>=0.000</s**2>
Excited State 163 ->169 164 ->170 166 ->173 167 ->172 167 ->174 168 ->173	4: Singlet-A 0.35823 -0.35807 0.19042 -0.10602 -0.30059 -0.27398	3.9604 eV 2	313.06 nm	f=0.0023	<s**2>=0.000</s**2>
Excited State 163 ->170 164 ->169 166 ->174 167 ->173 168 ->174	5: Singlet-A -0.35738 0.35755 0.18166 -0.31871 -0.25543	3.9604 eV .	313.06 nm	f=0.0110	<s**2>=0.000</s**2>
Excited State 162 ->169 166 ->170 166 ->172 167 ->169 168 ->170 168 ->172	6: Singlet-A 0.14408 0.39270 0.10005 0.29891 0.42150 0.14533	3.9696 eV 2	312.33 nm	f=0.0225	<s**2>=0.000</s**2>

Excited State	7:	Singlet-A	4.1950) eV	295.55 nm	f=0.0621	<s**2>=0.000</s**2>
162 ->170		0.12308					
166 ->169		0.25091					
166 ->171		0.10894					
166 ->175		0.24413					
167 ->170		0.11094					
168 ->169		0.18654					
168 ->171		0.30906					
168 ->175		0.39402					
Excited State	8:	Singlet-A	4.3741	eV	283.45 nm	f=0.0082	<s**2>=0.000</s**2>
159 ->169		-0.10863					
159 ->171		0.12574					
162 ->175		0.10475					
165 ->170		0.12331					
166 ->172		0.17745					
166 ->176		-0.18895					
167 ->169		-0.14053					
167 ->175		-0.12136					
168 ->170		-0.15075					
168 ->172		0.39740					
168 ->174		-0.13896					
168 ->176		-0.32506					

Phenothiazine 4e

1: Singlet-A	3.2748 eV	378.60 nm	f=1.7054	<s**2>=0.000</s**2>
0.11704				
0.20018				
0.60593				
0.23200				
2: Singlet-A	3.7784 eV	328.14 nm	f=0.2653	<s**2>=0.000</s**2>
-0.16527				
0.40789				
0.50754				
2 0.14	40262 V	207.04	6 1 0222	< <u>-</u> - - - - - - - - - - - - -
3: Singlet-A	4.0262 eV	307.94 nm	t=1.0322	<s**2>=0.000</s**2>
0.37696				
-0.10264				
-0.36629				
0.33825				
-0.18202				
	 Singlet-A 0.11704 0.20018 0.60593 0.23200 Singlet-A -0.16527 0.40789 0.50754 Singlet-A 0.37696 -0.10264 -0.36629 0.33825 -0.18202 	 Singlet-A 3.2748 eV 0.11704 0.20018 0.60593 0.23200 Singlet-A 3.7784 eV -0.16527 0.40789 0.50754 Singlet-A 4.0262 eV 0.37696 -0.10264 -0.36629 0.33825 -0.18202 	 Singlet-A 3.2748 eV 378.60 nm 0.11704 0.20018 0.60593 0.23200 Singlet-A 3.7784 eV 328.14 nm -0.16527 0.40789 0.50754 Singlet-A 4.0262 eV 307.94 nm 0.37696 -0.10264 -0.36629 0.33825 -0.18202 	 Singlet-A 3.2748 eV 378.60 nm f=1.7054 0.11704 0.20018 0.60593 0.23200 Singlet-A 3.7784 eV 328.14 nm f=0.2653 -0.16527 0.40789 0.50754 Singlet-A 4.0262 eV 307.94 nm f=1.0322 0.37696 -0.10264 -0.36629 0.33825 -0.18202

Excited State 164 ->170 165 ->169 165 ->173 166 ->172 167 ->171 168 ->172	4: Singlet-A 0.32266 -0.31547 0.14955 0.24138 -0.31972 -0.24590	4.1337 eV	299.93 nm	f=0.0004	<s**2>=0.000</s**2>
Excited State 164 ->169 164 ->173 165 ->170 166 ->171 167 ->172 168 ->171	5: Singlet-A -0.31138 0.14792 0.32704 -0.23948 0.32028 0.24708	4.1338 eV	299.93 nm	f=0.0025	<s**2>=0.000</s**2>
Excited State 160 ->169 166 ->170 166 ->174 167 ->169 168 ->170 168 ->174 168 ->174	6: Singlet-A -0.11907 -0.25818 0.14567 0.23449 -0.20280 0.47168 -0.13755	4.3196 eV	287.03 nm	f=0.0001	<s**2>=0.000</s**2>
Excited State 163 ->169 163 ->173 166 ->169 166 ->175 167 ->170 167 ->174 168 ->173 168 ->175	7: Singlet-A 0.16796 0.14284 0.26163 0.14844 -0.10727 -0.10237 -0.12823 0.51437	4.3205 eV	286.97 nm	f=0.0040	<s**2>=0.000</s**2>
Excited State 162 ->169 163 ->170 165 ->171 166 ->170 166 ->174 167 ->169 168 ->170 168 ->174 168 ->176	8: Singlet-A 0.11995 -0.14280 0.10131 0.24793 0.10264 -0.26258 0.33078 0.26060 -0.27737	4.5923 eV	269.98 nm	f=0.1934	<s**2>=0.000</s**2>

Phenothiazine 4f

Excited State 178 ->183 179 ->182 180 ->181 180 ->183	1: Singlet-A 0.12533 0.30005 0.57341 0.17982	3.0561 eV 405.69 nm f=2.6756 <s**2>=0.000</s**2>
Excited State 178 ->182 179 ->181 180 ->182	2: Singlet-A -0.16816 0.45073 0.48805	3.3408 eV 371.12 nm f=0.1508 <s**2>=0.000</s**2>
Excited State 176 ->183 178 ->181 178 ->183 179 ->182 180 ->183 180 ->185	3: Singlet-A 0.10175 0.41655 0.12277 -0.35542 0.28009 0.19523	3.7088 eV 334.30 nm f=0.2999 <s**2>=0.000</s**2>
Excited State 174 ->181 175 ->182 176 ->182 177 ->181 178 ->182 178 ->184 179 ->183 179 ->185 180 ->184	4: Singlet-A -0.11558 0.18220 -0.25908 0.30923 0.12373 -0.20762 -0.21143 0.25668 0.26055	3.8368 eV 323.15 nm f=0.0028 <s**2>=0.000</s**2>
Excited State 174 ->182 175 ->181 176 ->181 177 ->182 178 ->185 179 ->184 180 ->183 180 ->185	5: Singlet-A -0.12960 0.18332 -0.26338 0.30318 -0.19610 0.32709 -0.24355 0.17640	3.8418 eV 322.73 nm f=0.0021 <s**2>=0.000</s**2>
Excited State 174 ->181 178 ->182	6: Singlet-A 0.10827 0.36229	4.1333 eV 299.96 nm f=0.1500 <s**2>=0.000</s**2>

178 ->186	0.13900				
179 ->181	-0.29082				
180 ->182	0.35535				
180 ->184	-0.16334				
180 ->186	0.19839				
180 ->188	-0.10315				
Excited State	7: Singlet-A	4.2578 eV	291.20 nm	f=0.0823	<s**2>=0.000</s**2>
178 ->181	-0.21513				
178 ->187	0.25580				
180 ->181	-0.12397				
180 ->183	0.11353				
180 ->185	0.17752				
180 ->187	0.47364				
Excited State	8: Singlet-A	4.4202 eV	280.50 nm	f=0.1566	<s**2>=0.000</s**2>
170 ->181	-0.11080				
170 ->183	-0.10386				
174 ->181	0.10087				
175 ->182	-0.11544				
178 ->182	0.10800				
178 ->186	-0.15506				
178 ->188	0.19456				
179 ->181	-0.11578				
180 ->182	0.16678				
180 ->186	-0.31699				
180 ->188	0.39879				