Supporting Information

A Three-component Iminolactonization Reaction via the Bifunctionalization of Olefins Using Molecular lodine and Visible Light

Saki Maejima^a, Eiji Yamaguchi,*^a Akichika Itoh*^a

^aGifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan E-mail: yamaguchi@gifu-pu.ac.jp, itoha@gifu-pu.ac.jp

<u>Contents</u>

Figure S1. General reaction set up	S3
Figure S2. The wave length and spectral irradiance of fluorescent lamp	S3
Table S1. Optimization of amount of amine	S4
Table S2. Optimization of additives	S4
Table S3. Optimization of bases	S5
Table S4. Using cationic iodine instead of molecular iodine	S6
Table S5. Using amide substrate 2a' instead of malonate 2a	S6
Table S6. Transformation for lactone 4' to iminolactone 4	S7
Scheme S1. Experiments on the isomerization of amine (D-(+)-3p)	S8
Scheme S2. Experiments of radical clock reaction	S9
Scheme S3. Reaction of iodinated malonate to elucidate intermediate	S9
NMR spectra of iminolactones 4-34	S10
Figure S3. Key NOE of 4-trans	S41
Figure S4. Key NOE of 4-cis	S44

Figure S2. The wave length and spectral irradiance of fluorescent lamp (ERF25ED/22-SP-F)

Table S1. Optimization of amount of amine

Pi 1a	h + MeO ₂ C O Me 2a	I ₂ (1.0 equiv.) BnNH ₂ (3a) (X equiv.) ⁷ BuOH (3 mL) CFL Ar, rt, 20 h	MeO ₂ C Me ¹ Ph 4	C O Ph
entry	BnNH ₂ (equiv.)	4 yield (%) ^{<i>a</i>}	$dr (trans: cis)^b$	4' yield (%) ^{<i>a</i>}
1	1.0	10	80:20	12
2	1.5	30	67:33	11
3	2.0	34	80:20	6
4	2.5	37	83:17	4
5	3.0	53	67:33	10
6	3.5	50	77:23	5
7	4.0	55	68:32	7
8	4.5	41	74:26	4
9	5.0	30	60:40	2

^{*a* ¹}H NMR yield. ^{*b*} Diasteremeric ratio were determined by ¹H NMR analysis of crude reaction mixture.

Table S2. Optimization of additives

	Ph + MeO ₂ C $MeMe1a 2a$	I ₂ (1.0 equiv.) BnNH ₂ (3a) (3.0 equiv.) <i>dry</i> ⁴ BuOH (3 mL), 3Å MS (X mg CFL Ar, rt, 20 h	g) MeO₂C N-Bn MeO₂ g) Me [™] O Me g) Ph 4	Ph
entry	Molecular Sieves (mg)	4 yield (%) ^{<i>a</i>}	$dr (trans: cis)^b$	4' yield (%) ^{<i>a</i>}
1	3Å (30)	31	68:32	3
2	3Å (60)	55	74:26	21
3	3Å (100)	70 ^c	74:26	7 ^c
4	3Å (150)	67	78:22	8
5	3Å (200)	47	77:23	10

^{*a*} 1H NMR yield. ^{*b*} Diasteremeric ratio were determined by 1H NMR analysis of crude reaction mixture. ^{*c*} Isolated yield.

Table S3. Optimization of bases

	Ph + MeO ₂ C Me 1a 2a	base (X mol%) I ₂ (1.0 equiv.) Amine (3a) or (3e) (3.0 equiv.) <i>dry</i> [‡] BuOH (3 mL), 3Å MS (X m CFL Ar, rt, 20 h	g) MeO ₂ C N-R MeO Me ^{VV} O M Ph	P ^{2C} e''' Ph
entry	base (mol%)	4 yield (%) ^{<i>a</i>}	$dr (trans: cis)^b$	4' yield (%) ^{<i>a</i>}
1	Li ₂ CO ₃ (100)	66	74:26	8
2	K ₂ CO ₃ (100)	57	72:28	4
3	Na ₂ CO ₃ (100)	75 ^c	74:26	18 ^c
4	Cs_2CO_3 (100)	69	78:22	8
5	none	70	74:26	5
6	$Na_2CO_3(10)$	60	75:25	13
7	Na ₂ CO ₃ (30)	76	72:28	trace
8	Na ₂ CO ₃ (50)	77 ^c	75:25	6 ^c
9	Na ₂ CO ₃ (120)	77	76:24	7
10^d	none	78	74:26	7
10^d	$Na_2CO_3(10)$	74	73:27	4
12 ^{<i>d</i>}	Na ₂ CO ₃ (30)	72	79:21	21
13 ^d	Na ₂ CO ₃ (50)	79 ^c	73:27	4
14^d	Na ₂ CO ₃ (100)	74	73:27	4

^{*a*} 1H NMR yield. ^{*b*} Diasteremeric ratio were determined by 1H NMR analysis of crude reaction mixture. ^{*c*} Isolated yield. ^{*d*} Using 4-MeO Benzylamine (**3e**) instead of Benzylamine (**3a**).

Table S4. Using cationic iodine instead of molecular iodine

dark ^a 1H NMR yield. ^b Diasteremeric ratio were determined by 1H NMR analysis of crude reaction mixture.

Table S5. Using amide substrate 2a' instead of malonate 2a

 $(DMAP)_{2}I^{+}BF_{4}(2.0 \text{ equiv.})$

8

n.r.

^a 1H NMR yield. ^b Diasteremeric ratio were determined by 1H NMR analysis of crude reaction mixture.

Table S6. Transformation for lactone 4' to iminolactone 4

entry	additive (1.0 equiv.)	condition	4 yield $(\%)^a$	4' yield $(\%)^a$	4-I yield $(\%)^a$	4-II yield $(\%)^a$
1	I ₂	hv	n.d.	61	-	-
2	-	hv	n.d.	59	-	-
3	I ₂	heat, 60 °C	n.d.	70	-	-
4	-	heat, 60 °C	n.d.	55	-	-
5	Acetic acid	hv	n.d.	34	27	14
6	NH ₄ Cl	hv	n.d.	24	24	16
7	oxalic acid	hv	n.d.	44	21	9
8	H_3PO_4	hv	n.d.	44	21	9

^a 1H NMR yield. ^b Diasteremeric ratio were determined by 1H NMR analysis of crude reaction mixture.

Scheme S1. Experiments on the isomerization of amine (D-(+)-3p)

Preparation of the sample A¹⁶

The solution of *D*-(+)-1-Phenylethylamine (**3p**) (36.3 mg, 1.0 equiv., 0.3 mmol) in CH_2CI_2 (3.0 mL) were added Et_3N (54.6 mg, 1.8 equiv., 0.54 mmol) and Benzoyl Chloride (63.2 mg, 1.5 equiv., 0.45 mmol). Upon stirring at room temperature for 30 min, the reaction mixture was purified by recrystallized in *n*hexane/CHCI₃ to give quant of **A** as white solid. The sample was subjected to determine the specific rotation in CHCI₃.

A: [α]²⁰_D = +28.7

Preparation of the sample B

A Pyrex[®] test tube (16.5 cm × 1.5 cm) containing a mixture of *D*-(+)-1-Phenylethylamine (**3p**) (36.3 mg, 1.0 equiv., 0.3 mmol), I_2 (76 mg, 1.0 equiv., 0.30 mmol) and sodium carbonate (15.9 mg, 50 mol%, 0.15 mmol) in *dry*⁴Butylalcohol (3.0 mL) was degassed *via* FPT cycling for three times and backfilled with Ar. The resulting solution was stirred at ambient temperature for 3 h, and concentrated *in vacuo*. Dissolved the reaction crude in CH₂Cl₂ (3.0 mL) were added Et₃N (54.6 mg, 1.8 equiv., 0.54 mmol) and Benzoyl Chloride (63.2 mg, 1.5 equiv., 0.45 mmol). Upon stirring at room temperature for 30 min, the reaction mixture was purified by recrystallized in *n*hexane/CHCl₃ to give quant of **A** as white solid. The sample was subjected to determine the specific rotation in CHCl₃.

B: [α]²⁰_D = +22.0

Scheme S2. Experiments of radical clock reaction

Scheme S3. Reaction of iodinated malonate to elucidate intermediate

¹H NMR (CDCl₃, 500 MHz) and ¹³C{¹H} NMR (CDCl₃, 125 MHz) spectra of **4**_*trans, cis*-mixture

¹H NMR (CDCI₃, 500 MHz) and ¹³C{¹H} NMR (CDCI₃, 125 MHz) spectra of **5**_*trans, cis*-mixture

¹H NMR (CDCl₃, 500 MHz) and ¹³C{¹H} NMR (CDCl₃, 125 MHz) spectra of **6**_*trans, cis*-mixture

¹H NMR (CDCl₃, 500 MHz) and ¹³C{¹H} NMR (CDCl₃, 125 MHz) spectra of **7**_*trans, cis*-mixture

¹H NMR (CDCl₃, 500 MHz), ¹³C{¹H} NMR (CDCl₃, 125 MHz) and ¹⁹F NMR (CDCl₃, 470 MHz) spectra of **11**_*trans*

¹H NMR (CDCl₃, 500 MHz) and ¹³C{¹H} NMR (CDCl₃, 125 MHz) spectra of **12**_*trans, cis*-mixture

¹H NMR (CDCl₃, 500 MHz) and ¹³C{¹H} NMR (CDCl₃, 125 MHz) spectra of **13**_*trans, cis*-mixture

¹H NMR (CDCl₃, 500 MHz) and ¹³C{¹H} NMR (CDCl₃, 125 MHz) spectra of **14**_ *trans, cis*-mixture

¹H NMR (CDCl₃, 500 MHz) and ¹³C{¹H} NMR (CDCl₃, 125 MHz) spectra of **15_A**, *B*-mixture

¹H NMR (CDCl₃, 500 MHz) and ¹³C{¹H} NMR (CDCl₃, 125 MHz) spectra of **17**_*trans*, *cis*-mixture

¹H NMR (CDCl₃, 500 MHz) and ¹³C{¹H} NMR (CDCl₃, 125 MHz) spectra of **20**_*trans, cis*-mixture

¹H NMR (CDCl₃, 500 MHz) and ¹³C{¹H} NMR (CDCl₃, 125 MHz) spectra of **21_***trans, cis*-mixture

¹H NMR (CDCl₃, 500 MHz) and ¹³C{¹H} NMR (CDCl₃, 125 MHz) spectra of **22**_trans, cis-mixture

¹H NMR (CDCl₃, 500 MHz), ¹³C{¹H} NMR (CDCl₃, 125 MHz) and ¹⁹F NMR (CDCl₃, 470 MHz) spectra of **24**_*trans, cis*-mixture

¹H NMR (CDCl₃, 500 MHz) and ¹³C{¹H} NMR (CDCl₃, 125 MHz) spectra of **25**_*trans, cis*-mixture

¹H NMR (CDCl₃, 500 MHz), ¹³C{¹H} NMR (CDCl₃, 125 MHz) and ¹⁹F NMR (CDCl₃, 470 MHz) spectra of **26**_*trans-major*

¹H NMR (CDCl₃, 500 MHz) and ¹³C{¹H} NMR (CDCl₃, 125 MHz) spectra of **29**_*trans, cis*-mixture

¹H NMR (CDCl₃, 500 MHz) and ¹³C{¹H} NMR (CDCl₃, 125 MHz) spectra of **30**_*trans-major*

¹H NMR (CDCl₃, 500 MHz) and ¹³C{¹H} NMR (CDCl₃, 125 MHz) spectra of **31_***trans, cis*-mixture

¹H NMR (CDCl₃, 500 MHz) and ¹³C{¹H} NMR (CDCl₃, 125 MHz) spectra of **34_***A*, *B*, *C*, *D*-mixture

4_trans_NOE 1.98 ppm

4_trans_NOE 3.80 ppm

4_trans_NOE 5.52 ppm

4_cis_NOE 2.42 ppm

4_cis_NOE 4.52 ppm

4_cis_NOE 5.42 ppm

