¹ Supporting Information

Reactive distillation toward eco-efficient process of continuous biodiesel manufacture from waste oil: Pilot-scale experiments and process design

5	Xin Gao*, Runnan Zhao, Haifeng Cong, Jian Na, Yang Shi, Hong Li*, Xingang Li
6	School of Chemical Engineering and Technology, Tianjin University, National
7	Engineering Research Center of Distillation Technology, Collaborative Innovation
8	Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
9	* Corresponding author. Email: gaoxin@tju.edu.cn
10	
11	Section 1. The kinetic parameter data.
12	Section 2. The detailed pilot-scale reactive distillation experimental results.
13	Section 3. Physical parameters and thermodynamic data in simulation.
14	Section 4. The input specifications used in base-case Aspen Plus simulations.
15	Section 5. Equation of TAC and equipment sizing.

2 Section 1. The kinetic parameter data.

Temperature (K)	k*104/(L·1	k*10 ⁴ /(L·mol ⁻¹ ·min ⁻¹)							
	k ₁₊	k ₁₋	k_{2^+}	k ₂₋	k_{3^+}	k ₃₋			
341.15	69.13	45.54	594.95	239.09	23.73	18.81			
336.15	51.31	39.55	472.43	195.74	14.07	11.47			
331.15	42.73	36.26	410.03	173.10	10.21	8.47			

Table S1. Kinetic constants of the reaction system at different temperatures.

Table S2. Estimated kinetic parameter values.

k _i	k_{0i} (L mol ⁻¹ s ⁻¹)	E _{ai} (kJ/mol)
k ₁₋	$5.505 imes 10^6$	45.13
k ₁₋	62.483	21.38
k ₂₊	1.301×10^4	34.92
k ₂₋	$0.103 imes 10^4$	30.29
k ₃₊	2.965×10^{9}	79.11
k ₃₋	5.367 × 10 ⁹	94.91

2

Section 2. The detailed pilot-scale reactive distillation experimental results.

3		
	_	

 Table S3. The detailed pilot-scale reactive distillation experimental results.

Run number	Exp1	Exp2	Exp3	Exp4	Exp5	Exp6
Experiment time(h)	0-18	18-34	34-47.5	47.5-59.5	59.5-72	72-88
Steady-state time(h)	14-18	31-34	43-47.5	56.5-59.5	67-72	86-88
Feeding position	1/4	1/4	1/4	1/4	1/4	1/1
Reflux ratio	1	1	1	0.5	0.1	1
$F_{SODD}(g/h)$	117.8	81.1	48.1	79.1	78.9	79.6
F _{MeOH} (g/h)	122.2	158.9	191.9	160.9	161.1	160.4
D(g/h)	115.2	142.3	168.4	146.3	148.7	142.3
B(g/h)	124.8	97.7	71.6	93.7	91.3	97.7
D/F (mass based)	0.48	0.59	0.70	0.60	0.61	0.59
Total feeding rate(g/h)	240	240	240	240	240	240
Mass ratio (MeOH/SODD)	1.04	1.96	3.99	2.03	2.04	2.02
FMR(MeOH/FFA)	16.75	31.56	64.24	32.68	32.84	32.52
X _D (MeOH)	0.9690	0.9887	0.9935	0.9879	0.9893	0.9917
X _D (water)	0.0189	0.0113	0.0065	0.0121	0.0107	0.0083
X _B (MeOH)	0.0082	0.0103	0.0112	0.0093	0.0081	0.0106
X _B (FFA)	0.2395	0.1935	0.1234	0.1619	0.1965	0.2533
Conversion of FFA(%)	53.35	57.14	66.23	64.75	58.21	42.855

2 Section 3. Physical parameters and thermodynamic data in simulation.

Component i	Component j	A _{ij}	A _{ji}	$\mathbf{B_{ij}}(K)$	$\mathbf{B_{ji}}(K)$	Sources
C1	M1	0	0	43.45581	-55.4737	predict by UNIFAC
C1	water	0	0	-607.901	-205.828	predict by UNIFAC
C1	C2	0	0	104.078	-119.081	predict by UNIFAC
C1	M2	0	0	-19.3846	15.2478	predict by UNIFAC
C1	M3	0	0	74.63104	-100.406	predict by UNIFAC
MeOH	C2	0	0	8.350149	-384.831	predict by UNIFAC
MeOH	M2	0	0	-6.60289	-595.595	predict by UNIFAC
MeOH	M3	0	0	-1.32898	-614.16	predict by UNIFAC
M1	water	0	0	-743.429	-240.363	predict by UNIFAC
M1	C2	0	0	-123.047	96.98707	predict by UNIFAC
M1	M2	0	0	51.34585	-56.8088	predict by UNIFAC
M1	C3	0	0	-21.4266	15.00525	predict by UNIFAC
M1	M3	0	0	52.34295	-57.9477	predict by UNIFAC
water	C2	0	0	-131.828	-553.315	predict by UNIFAC
water	M2	0	0	-209.491	-733.907	predict by UNIFAC
water	C3	0	0	-218.847	-606.43	predict by UNIFAC
C2	M2	0	0	34.13477	-37.9913	predict by UNIFAC
C2	C3	0	0	37.46803	-32.4858	predict by UNIFAC
C2	M3	0	0	112.9601	-153.381	predict by UNIFAC
M2	C3	0	0	47.03327	-52.2715	predict by UNIFAC
C3	M3	0	0	65.28362	-85.84	predict by UNIFAC
C1	C3	0	0	-32.0945	30.6595	predict by UNIFAC
MeOH	water	-2.02207	1.88037	753.352	-743.727	from Aspen
MeOH	C1	0.721647	6.37736	-123.13	-2582.67	from Aspen
MeOH	M1	0.536451	-2.40167	-152.96	271.123	from Aspen
MeOH	C3	2.07748	-3.95537	-626.245	843.386	from Aspen
water	M3	-2.0304	-1.06052	-250.646	-186.846	from Aspen
M2	M3	-2.67351	3.69956	1457.7	-1994.35	from Aspen

Table S4. UNIFAC model parameters of FFA esterification parameters.

4 C1= Oleic acid, C2= Linoleic acid, C3= Palmitic acid, M1= Methyl oleate, M2= Methyl linoleate, M3= Methyl

5 palmitate.

1

For calculating the saturation vapor pressure of the pure component, the extended

2 Antoine equation was adopted. And constants $C_{1i} \sim C_{9i}$, are given in Table S4.

3 The equation for extend Antoine vapor pressure model is

$$\ln(P_i^S) = C_{1i} + \frac{C_{2i}}{T + C_{3i}} + C_{4i}T + C_{5i}\ln T + C_{6i}T^{C_{7i}} \text{ for } C_{8i} < T < C_{9i}$$

- 5 and the unit is T(K) and P(N/Sqm)
- 6

7 **Table S5.** Parameters of Extended Antoine Equation ^a

Components	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆	C ₇	C ₈	C ₉
CH ₃ OH	81.768	-6876	0	0	-8.7078	7.19E-06	2	175.47	512.64
H ₂ O	65.154	-6842.9	0	0.00278 4	-6.13638	3.31E-18	6	319.266	647.3
M1	187.489	-19153	0	0	-22.989	7.28E-06	2	293.049	764
M2	39.907	-15642	0	0	0	0	2	465.149	485.149
M3	-54.972	-6033.7	0	0	12.8029	-1.48E-05	2	335	625
C1	182.069	-20017	0	0	-21.9057	5.92E-06	2	286.528	770
C2	155.131	-18760	0	0	-17.8148	2.61E-06	2	268.148	627
C3	68.923	-11660	0	0	-6.11606	1.66E-06	2	335.66	775
VE	132.38	-20735	0	0	-14.201	7.43E-19	6	276.15	964.3
ST	135.31	-20937	0	0	-14.58	8.11E-19	6	443.15	953.6

8 *a* Taken from Aspen Plus V9.0 physical properties databank.

9

10 For calculating the heat of vaporization of the pure component, the model in Aspen Plus

11 is used. And the unit is H_i^* (*J/kmol*) and *T* (*K*).

12

13 (1) The Watson equation is used to calculate heat of vaporization as:

$$\Delta_{vap}H_{i}^{*}(T) = \Delta_{vap}H_{i}^{*}(T_{1})\left(\frac{1-T/T_{ci}}{1-T_{1}/T_{ci}}\right)^{a_{i}+b(1-T/T_{ci})} for T > T_{min}$$

14

- 15 $\Delta_{vap}H_i^*(T_1)$ Heat of vaporization at temperature T_1
- 16 **Table S6**. The parameters of Watson equation used to calculate heat of vaporization

Components $\Delta_{vap}H_i^*(T_1)$ T_1 a_i b T_{min}

CH ₃ OH	35277977	337.8	0.371655	0	175.5
H_2O	40683136	373.2	0.310646	0	273.2

1 (2) The DIPPR equation is used to calculate heat of vaporization

$$\Delta_{vap}H_i^* = C_{1i}(1 - T_{ri})^{(C_{2i} + C_{3i}T_{ri} + C_{4i}T_{ri}^2 + C_{5i}T_{ri}^3)} for C_{6i} < T < C_{7i}$$

3 Where

- $4 \quad T_{ri} = T/T_{ci}$
- 5 **Table S7.** The parameters of DIPPR equation used to calculate heat of vaporization

Components	1	2	3	4	5	6	7
M1	1.22E+08	0.395	0	0	0	293.05	764
M3	1.3E+08	1.1283	-1.3017	0.68949	0	303.05	762.2
C1	1.34E+08	0.39553	0	0	0	286.53	781
C2	1.35E+08	0.40785	0	0	0	268.15	775
C3	1.58E+08	0.6023	0	0	0	335.66	785
VE	1.78E+08	0.82989	-0.40978	-0.02118	0	276.15	964.3
ST	1.87E+08	1.0037	-0.67515	0.081215	0	443.15	953.6

6

(3) The NIST TDE Watson equation is used to calculate heat of vaporization

$$ln(\Delta_{vap}H_{i}^{*}) = C_{1i} + \sum_{m=2}^{nTerms} C_{mi} T_{r}^{m-2} ln(1-T_{r})$$

7

 $T_r = T/T_c$

9 Table S8. The parameters of NIST TDE Watson equation used to calculate heat of

10 vaporization

Components	C_{1i}	C_{2i}	C_{3i}	C_{4i}	T_{ci}	nTerms	T_{lower}	T_{upper}
M2	19.16569	1.90251	-1.46074	0.128814	773	4	233.9	773

11

12 In addition, we list some physical property parameters used in the calculated in Aspen

13 Plus.

14 **Table S9.** Pure component physical properties parameters

Parameters	DHVLB	GMUQQ	GMUQR	MUP	MW	PC	TB	TC	VB	VC	ZC
Units	cal/mol			debye		kPa	K	K	cc/mol	cc/mol	
СНЗОН	8426	1.432	1.4311	1.7	32.04216	8095.868	337.8	512.6	43.49642	117.9161	0.224
H2O	9717	1.4	0.92	1.8	18.01528	22048.32	373.2	647.3	19.63607	55.89534	0.229

M1		11	13.3619	1.588902	296.4936	1280	617	764		1059.99	0.214
M2		10.784	13.10086		294.4778	1215.06	551.32	773		1210.773	0.228901
M3		10.136	12.2479	1.588902	270.4558	1650	599.299	763		1150	0.224
C1		10.496	12.7456	1.439007	282.4668	1390	632	770		1000	0.214
C2		9.432	12.5135	1.217161	280.4509	1300	627	775		990	0.217
C3		9.632	11.6289	1.738801	256.4289	1500	624.15	775		916.998	0.212
VE	18771.21	13.896	19.3408	2.27543	430.7148	1080	787.8	964.3	698.722	1720	0.232
ST	18990.37	12.204	18.2334	1.930665	412.6995	1138	778	953.6	546.024	1440	0.207
1											

Parameters	description
DHVLB	enthalpy of vaporation at TB
GMUQQ	molecular area parameter for UNIQUAC activity coefficient model
GMUQR	molecular volume parameter for UNIQUAC activity coefficient model
MUP	dipole moment
MW	molecular weight
PC	critical pressure
TB	normal boiling point
TC	critical temperature
VB	liquid mole volume at TB
VC	critical volume
ZC	critical compressibility factor

2 Section 4. The input specifications used in base-case Aspen Plus simulations.

Component	Concentration wt %
Tocopherol	25
Sitosterol	25
Oleic Acid (C18:1)	25
Linoleic acid (C18:2)	5
Palmitic acid (C16:0)	20

Table S10 Quality composition of SODD feed stream in simulation process.

4

5

6

_

Table S11. The input specifications used in base-case Aspen Plus simulations.

Parameter	specification
Property method	UNIFAC-DMD
Interaction parameter value	UNIFAC (Table S3.)
Reaction kinetics	Table 5.
RADFRAC	
No. of stages	9
Rectifying stages	2
Reactive stages	3
Striping stages	2

1

Resident time per stage	120s
Valid phase	Vapor-liquid-liquid
Feed temperature and pressure	60°C and 1atm

2 Section 5. Equation of TAC and equipment sizing.

1

Table S12. Basis of economics estimation Column vessel column diameter(D) = Aspen tray sizingcolumn length(L) = NT trays with 2 ft spacing plus 20% extra length investment cost = 17640D1.066L0.802 where D and L are in m Reboilers heat transfer coefficient = 0.568kW/ (K m2) differential temperature = stream temperature – column base temperature investment cost=7286A0.65 where A is in m2 Condensers heat transfer coefficient =0.852Kw/ (K m2) differential temperature=log-mean temperature difference of inlet and outlet temperature differences investment cost =7296A0.65 where A is in m2 Utility prices low pressure steam $(160^{\circ}C) =$ \$7.78/GJ medium pressure steam (184 °C) = \$ 8.22/GJhigh pressure steam $(254^{\circ}C) = \$ 9.88/GJ$ cooling water = 0.354/GJTAC = (investment cost/payback period) + operating cost payback period = 3years