Supplementary Information

In Situ-Generated Halogen-Bonding Complex Enables Atom-Transfer Radical Addition (ATRA) Reactions of Olefins

Kazuki Matsuo, Eiji Yamaguchi* and Akichika Itoh* Laboratory of pharmaceutical synthetic chemistry, Gifu Pharmaceutical University 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan yamaguchi@gifu-pu.ac.jp; itoha@gifu-pu.ac.jp

Table of Contents	
Table S1. Screening of catalysts	S1
Table S2. Optimization of reaction conditions	S2
Figure S3. General Reaction Set Up	S4
Figure S4. The wave length and spectral irradiance of 3W 450 nm LED	S5
¹ H and ¹³ C{ ¹ H} NMR Spectra of 3	S6

Table S1. Screening of catalysts

Ph + CBr₄
1 2
100 mol% 0.1 mmol
$$3 W X nm LED Catalyst (5.0 mol%) + CH_2Cl_2 (1.0 mL), Ar, r.t., 20 h$$

$$3 W X nm LED Catalyst (5.0 mol%) + CH_2Cl_2 (1.0 mL), Ar, r.t., 20 h$$

Catalyst

		Α	в	С	D	Е	F	G	н	I	J	К	L	М	Ν	0
(mn X)	370	29	40	18	28	32	27	30	29	23	44	20	17	16	25	27
	380	41	14	17	34	34	24	34	25	24	38	32	17	38	26	6
ED	390	43	41	20	35	38	30	31	29	30	39	16	21	24	20	27
∟ ≷	400	49	43	28	42	42	37	35	42	34	56	26	23	53	37	47
	410	52	34	30	40	47	37	45	45	38	56	34	26	44	46	51
	420	51	27	37	46	43	37	44	45	43	52	49	29	44	40	53
	450	42	23	48	49	49	0	25	15	12	42	56	42	1	10	57
	470	5	10	36	49	2	0	0	1	3	34	5	41	0	5	20
	500	0	0	0	0	0	0	0	0	0	0	3	39	0	0	2

¹H NMR yields.

Table S2. Optimization of reaction conditions

	+ CBr.	3 W X nm LED 4-Ph-pyridine (Y mol%)			
Ph' 🔨	+ 0bi ₄ -	CH ₂ Cl ₂ (Z mL), Ar, r.t., 20 h			
1	2		3		
V mol%	W mol%				

1	2	3 W LED	4-Ph-pyridine	CH_2CI_2	Yields
(V mol%)	(W mol%)	(X nm)	(Y mol%)	(Z mL)	(%) ^a
100	100	450	5.0	1.0	57
110	100	450	5.0	1.0	69(61)
120	100	450	5.0	1.0	76(65)
130	100	450	5.0	1.0	58(57)
140	100	450	5.0	1.0	45(44)
150	100	450	5.0	1.0	70(62)
160	100	450	5.0	1.0	71(71)
170	100	450	5.0	1.0	56
180	100	450	5.0	1.0	53
190	100	450	5.0	1.0	44
200	100	450	5.0	1.0	55
100	110	450	5.0	1.0	41
100	120	450	5.0	1.0	60
100	130	450	5.0	1.0	57
100	140	450	5.0	1.0	66(61)
100	150	450	5.0	1.0	66(61)
100	160	450	5.0	1.0	66
100	170	450	5.0	1.0	65
100	180	450	5.0	1.0	70(68)
100	190	450	5.0	1.0	62
100	200	450	5.0	1.0	63
100	100	400	5.0	1.0	47
100	100	410	5.0	1.0	51
100	100	420	5.0	1.0	53
100	100	470	5.0	1.0	20
100	100	500	5.0	1.0	2
100	100	450	1.0	1.0	16
100	100	450	2.5	1.0	42
100	100	450	7.5	1.0	26

100	100	450	10.0	1.0	59
100	100	450	20.0	1.0	60
100	100	450	5.0	0.5	67
100	100	450	5.0	1.5	41
100	100	450	5.0	2.0	18
100	100	450	5.0	2.5	11
100	100	450	5.0	3.0	18

^{*a* ¹}H NMR yields. Numbers in parentheses are isolated yields.

Figure S3. General Reaction Set Up

The light source (450 nm LED) was assembled using parts purchased below.

3W LED (https://store.shopping.yahoo.co.jp/ledg/3whhrb.html)

3W LED driver (https://store.shopping.yahoo.co.jp/ledg/dc-12v-14v-constant-current-high-power-led-driver-600ma-3w-9w.html)

Heatsink (https://store.shopping.yahoo.co.jp/ledg/aluminum-heat-sink-plate-radiator-40mm.html)

¹H NMR (500 MHz, CDCl₃) spectra of 3a

¹³C{¹H} NMR (125 MHz, CDCI₃) spectra of 3a

¹H NMR (500 MHz, CDCI₃) spectra 3c

¹³C{¹H} NMR (125 MHz, CDCI₃) spectra 3c

¹³C NMR (125 MHz, CDCl₃) spectra of 3e

¹H NMR (500 MHz, CDCI₃) spectra of 3f

¹⁹F NMR (475 MHz, CDCI₃) spectra of 3f

X : parts per Million : Fluorine19

¹³C NMR (125 MHz, CDCI₃) spectra of 3g

¹H NMR (500 MHz, CDCl₃) spectra of 3h

¹³C NMR (125 MHz, CDCI₃) spectra of 3h

¹H NMR (500 MHz, CDCI₃) spectra of 3k

¹³C NMR (125 MHz, CDCl₃) spectra of 3k

¹H NMR (500 MHz, CDCI₃) spectra of 3I

¹H NMR (500 MHz, CDCl₃) spectra of 3n

¹³C NMR (125 MHz, CDCI₃) spectra of 3n

¹³C NMR (125 MHz, CDCI₃) spectra of 3q

¹³C NMR (125 MHz, CDCI₃) NMR spectra of 3t

¹H NMR (500 MHz, CDCI₃) spectra of 3y

¹³C NMR (125 MHz, CDCI₃) spectra of 3y

¹³C NMR (125 MHz, CDCI₃) spectra of 3z

¹³C NMR (125 MHz, CDCI₃) spectra of 3aa

¹H NMR (500 MHz, CDCI₃) spectra of 3ac

¹³C NMR (125 MHz, CDCI₃) spectra of 3ac

¹H NMR (500 MHz, CDCI₃) spectra of 3ad⁼

¹H NMR (500 MHz, CDCI₃) spectra of 3ae

