Supplementary Materials

Immobilization of pectinase onto porous hydroxyapatite/calcium alginate composite beads for improved performance of recycle

Danping Qi[†] Min Gao[†] Xiaoyuan Li[†] Jiangli Lin*,[†]

† Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &

Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical

Engineering, Xinjiang university, Urumqi, 830046, China

Corresponding author

Jiangli Lin,

E-mail: Linjiangli421@163.com

Contents

Figure S1 XRD results of the HAp powder samples heat-treated at 950°C (JCPDS card Number: 09-0432, Hydroxyapatite, syn., Ca₅(PO₄)₃(OH)).

Figure S2 Pore diameter distribution curves of the porous HAp determined by BET.

Figure S1 XRD results of the HApA powder samples heat-treated at 950°C (JCPDS card Number: 09-0432, Hydroxyapatite, syn., $Ca_5(PO_4)_3(OH)$)

Figure S2 Pore diameter distribution curves of the porous HAp determined by BET

parameter	Average pore	surface area	porous volume
	diameter (nm)	(m^2/g)	(cm ³ /g)
porous hydroxyapatite	7.20	8.3	0.2