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S.1 MCBJ Set-Up 

 
Figure S1. Images of MCBJ set-up. (a) Example of a lithographically defined MCBJ sample. (b) False 

color SEM image at 45° showing the suspended gold bridge in the center of a sample. (c) Side view of 

bending apparatus showing clamped-in sample with push rod underneath. (d) Top view of a clamped-in 

sample showing a Kalrez gasket placed around the center of the junction. 

 

S.2 Inter-Electrode Distance Calibration 

In an MCBJ set-up, the amount by which the two nano-electrodes pull apart (inter-electrode distance, 

𝛥𝑥) for a given vertical movement of the push rod (piezo distance, 𝛥𝑧) is given by the “attenuation ratio” 
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(𝑟 =  𝛥𝑥/𝛥𝑧). While 𝑟 can be calculated using a simple model of elastic bending, this result tends to be 

wrong by a factor of 2 to 4 due to the inhomogeneous elastic properties of real lithographically defined 

junctions.1 It is therefore preferable to experimentally determine the attenuation ratio via one of several 

possible calibration methods.2 Because the attenuation ratio depends on the exact length of the suspended 

gold bridge, which varies from sample to sample, we independently calibrated 𝑟 for each sample 

considered in this work. To enable this calibration, each sample was run “bare” (no molecules deposited, 

only pure solvent which quickly evaporates) for a few thousand traces, and the 𝑟 value calculated from 

these traces was then applied to all subsequent traces collected with that sample.   

For the calibration itself, we employ the method of the tunneling slope. For small bias voltages, the 

tunneling current between two nano-electrodes as a function of their separation, 𝑥, is well-approximated 

by 𝐼(𝑥) = 𝐼0exp (−𝐵𝑥), where 𝐵 is a constant depending on the effective work function of the electrodes.3 

A plot of 𝐿𝑜𝑔10(𝐺/𝐺0) vs. distance should therefore have a constant slope. By comparison to an STM-

BJ set-up, Hong et al. found that this slope is 5.5 to 6 decades/nm for breaking traces collected in argon.4 

In an independent study, Grüter et al. found that the tunneling slope is ~1.7 times smaller for traces 

collected in air compared to in vacuum.5  Based on high-quality data collected under vacuum,2 this implies 

traces collected in air should have a tunneling slope of ~6 decades/nm, in agreement with the Hong et al. 

result, and thus we use this value for our calibration.  
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Figure S2. Histogram of 3481 individual trace attenuations (blue) and Gaussian fit (dotted red) used to 

determine the attenuation ratio for sample 113-2. Bin width was set to 1.54×10-5 using the Freedman–

Diaconis rule.   

 

To perform the calibration, we first linearly fit the portion of each breaking trace below 2×10-4 G0, since 

this ensures that the tunneling slope is reliable,2 and above 10-5 G0, to be comfortably above the value of 

the noise floor of our amplifier.6 We then calculated an attenuation ratio for each trace by assuming that 

the tunneling slope is 6 decades/nm. Next, a histogram of these attenuation ratios was constructed using 

the Freedman–Diaconis rule to determine the bin width, and finally we fit this histogram with a single 

unrestricted Gaussian (e.g. Figure S2). The peak of this Gaussian was taken as the attenuation ratio for 

all traces collected with the same sample. Table S1 shows the number of tunneling traces used to calibrate 

each sample considered in this work and the resulting attenuation ratios.  
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Table S1. List of tunneling datasets considered in this work. One such tunneling dataset was collected for 

each MCBJ sample after depositing pure solvent (which quickly evaporates) but before depositing 

molecules. These tunneling datasets were used to determine an attenuation ratio for each sample, which 

was then applied to all subsequent datasets collected using that same sample.   

Dataset ID# Sample # 
Molecule Later 

Deposited on Sample 
# of Traces 

Attenuation 

Ratio/10-4 Solvent Used 

135 108-4 C6-2SMe 6460 1.01 Hexanes 

127 111-4 OPV2-2BT 1537 1.02 Dichloromethane 

130 108-5 OPV2-2BT 3847 1.52 Dichloromethane 

49 097-2 OPV3-BT-Br 3469 2.01 Dichloromethane 

82 106-1 OPV3-BT-Br 5777 1.96 Dichloromethane 

85 098-4 OPV3-BT-Cl 2148 1.18 Dichloromethane 

102 102-5 OPV3-BT-Cl 3881 2.30 Dichloromethane 

105 101-4 OPV3-BT-CN 7664 1.58 Dichloromethane 

112 101-3 OPV3-BT-CN 2084 1.55 Dichloromethane 

117 114-2 OPV3-BT-CN 2206 1.42 Dichloromethane 

120 103-2 OPV3-BT-CN 8009 1.98 Dichloromethane 

30 098-2 OPV3-BT-F 4113 1.36 Dichloromethane 

33 099-5 OPV3-BT-F 4894 1.47 Dichloromethane 

94 099-1 OPV3-BT-F 4580 2.03 Dichloromethane 

97 098-3 OPV3-BT-F 3454 1.72 Dichloromethane 

1 113-2 OPV3-BT-H 3481 1.47 Dichloromethane 

11 104-5 OPV3-BT-H 7122 1.17 Dichloromethane 

54 104-4 OPV3-BT-H 3567 1.84 Dichloromethane 

23 097-1 OPV3-BT-MeO 2523 1.27 Dichloromethane 

27 111-2 OPV3-BT-MeO 2480 0.96 Dichloromethane 

18 113-3 OPV3-BT-NO2 6269 1.21 Dichloromethane 

21 113-4 OPV3-BT-NO2 3497 1.59 Dichloromethane 

 

S.3 Additional Design Criteria for Segment Clustering 

S.3.1 Trace Starting and Ending Criteria. In the BUS segmentation process, the first segment of each 

trace is forced to start at the first data point. It is thus important to use consistent starting criteria for every 

trace in a dataset to avoid any influence from confounding variables. For this work, we begin each trace 

the last time it passes below 2.5 G0, to avoid issues with limited discrimination and accuracy of our 

amplifier at higher conductance values.6  Modifications to these starting criteria do not meaningfully affect 

our results (see section S.5.3). 
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The ending criteria for each trace are similarly important. We first exclude any conductances below the 

noise floor of our amplifier6 (typically 10-6 G0, but slightly higher in a few datasets; see section S.4 for 

details). Additionally, in cases where a trace drops below the noise floor but then later returns to a higher 

conductance, we end the trace the first time it drops below this level. This is necessary to avoid large 

empty gaps in traces, since BUS is not designed to work in such cases.  

S.3.2 Parameter Standardization. Standardizing the distribution of a variable typically involves 

dividing by the sample standard deviation. However, because the standard deviation is sensitive to outliers, 

this can skew the standardization process. In contrast, the range of the middle 80% of values in a dataset 

is quite insensitive to outliers, so we use this measure of spread to standardize the first three segment 

parameters (X0, Y0, and Log(L)). Because the θ and R2 parameters have limited possible ranges—(-90° to 

90°) and (0 to 1), respectively—we standardize them by dividing by 80% of those full possible ranges. 

This has the advantage of making the standardization process less dependent on a particular dataset.  

Finally, θ is only calculated after the inter-electrode distance and log(conductance) dimensions have 

already been standardized. This is necessary to ensure that θ is fully independent of the units on the x- and 

y-axes.  

S.3.3 Assignment of SOPTICS Parameter Values. The cL and cP SOPTICS parameters control how 

many random projections are performed, with larger values leading to a more stable and accurate 

approximation of the original OPTICS algorithm. The creators of SOPTICS found that cL = cP = 20 

produced excellent results;7 out of an abundance of caution, we use a higher value of cL = cP = 30 (see 

section S.5.1 for details).  

The minSize parameter helps control how the random projections are sampled to find nearby points.7  

Because SOPTICS is extremely insensitive to the value of minSize over a large range (see section S.5.2), 

we fix its value at 120.  
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S.3.4 Length-Weighting of Segments. Because OPTICS/SOPTICS is a density-based clustering 

algorithm, the density of segment parameters in 5-dimensional space ultimately determines how segments 

are clustered, with the densest regions forming the “cores” of key clusters. However, because segments 

are drawn from traces of roughly the same length, there will almost always be many more short segments 

than long ones. Perversely, this leads to a lower density of long segments, even though they represent 

many more data points from the original traces, making it difficult to form clusters of long segments. To 

remedy this issue, in the density calculations we apply a weighting factor to each segment that is 

proportional to its length. This ensures that the density of segments in parameter space corresponds to the 

density of raw data points rather than the number of segments themselves. In practice, this weighting is 

accomplished by duplicating each segment in proportion to its length before clustering. This step 

introduces another parameter, len_per_dup, that controls how many times a segment of a given length is 

duplicated. This parameter also serves as the minimum segment length, as we exclude segments that are 

not long enough for even a single duplicate. We set len_per_dup to 0.05 nm (e.g., segments between 0.20 

and 0.24 nm long will have 4 total copies) to ensure that all segments down to the length of a single bond 

will be included. We also note that the effects of changing len_per_dup are correlated with the effects of 

changing minPts, the parameter that defines how density is estimated (see section S.5.4). Therefore, 

because we use 12 different values of minPts, we are already capturing much of the possible variation 

from using different values of len_per_dup. Segment duplication is performed after the parameterization 

step.  

S.4 Dataset Collection and Construction 

Pausing a sample to re-deposit molecular solution often leads to a discrete, qualitative change in trace 

behavior—e.g., the fraction of traces displaying a molecular plateau (the “molecular yield”) may 

significantly increase or decrease after re-deposition, or the gold electrodes may undergo rearrangement, 
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as evidenced by a significant change in where bridge rupture occurs on the absolute push rod movement 

scale. Such changes may also occur when depositing pure solvent on a junction already containing 

molecules, or when “starting a new trial” by fully relaxing the push rod and junction, followed by 

restarting trace-collection. We therefore treat the traces collected during each deposition/trial combination 

for a given MCBJ sample as a separate dataset. In the context of clustering, splitting each sample into 

multiple datasets in this way is the conservative approach; if instead we clustered the traces from each 

sample as one big dataset, we would be much more likely to find “consistent” features because the 

algorithm might only identify the regions where multiple disparate features all overlap. Splitting datasets 

at the natural points where qualitative changes tend to occur challenges Segment Clustering by providing 

the most opportunities for it to be confounded by changes in the “background”.  

For this work, we did not consider datasets from samples which showed strong signs of contamination 

in their initial “pure tunneling” sections. We also excluded molecular datasets in which no molecular 

feature was apparent, insufficient traces were collected (significantly less than 1000), or obvious noise 

features were present. For the OPV3-2BT-X family, this left us with 43 different molecular datasets, each 

corresponding to an entire deposition/trial block of traces (Table S2). We observed no apparent correlation 

between the number of depositions or trials and junction conductance. In nearly all of these datasets, the 

noise floor was set to 10-6 G0, the nominal bottom end of the range for our amplifier.6  However, due to 

differences in calibration, a few samples displayed higher noise levels, requiring us to manually set a 

higher noise floor to prevent physically meaningless data from affecting clustering results (see Table S2).  
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Table S2. List of all OPV3-2BT-X datasets considered in this work. Each dataset corresponds to a full 

deposition/trial block of traces. All molecular solutions were 1 M. The top-to-bottom order of datasets in this table 

corresponds with the left-to-right order of points in Figure 7. 

Dataset ID# Sample # Trial # Deposition # # of Traces Molecule Name Noise Floor (G0) 

2 113-2 1 1 5424 OPV3-BT-H 1.0E-06 

3 113-2 1 2 9446 OPV3-BT-H 1.0E-06 

12 104-5 1 1 3545 OPV3-BT-H 1.0E-06 

13 104-5 1 2 4550 OPV3-BT-H 1.0E-06 

14 104-5 2 2 2997 OPV3-BT-H 1.0E-06 

15 104-5 3 2 6280 OPV3-BT-H 1.0E-06 

16 104-5 4 2 5062 OPV3-BT-H 1.0E-06 

58* 104-4 2 3 4113 OPV3-BT-H 1.0E-06 

59 104-4 3 3 6294 OPV3-BT-H 1.0E-06 

25 097-1 2 1 4065 OPV3-BT-MeO 1.0E-06 

26 097-1 2 2 3137 OPV3-BT-MeO 1.0E-06 

28 111-2 2 1 4051 OPV3-BT-MeO 1.0E-06 

29 111-2 2 2 6214 OPV3-BT-MeO 1.0E-06 

31 098-2 1 1 5182 OPV3-BT-F 1.0E-06 

95 099-1 1 1 7695 OPV3-BT-F 1.0E-06 

96 099-1 1 2 2147 OPV3-BT-F 1.0E-06 

34 099-5 1 1 7922 OPV3-BT-F 1.0E-06 

35 099-5 1 2 18568 OPV3-BT-F 1.0E-06 

37 099-5 2 3 3941 OPV3-BT-F 1.0E-06 

98 098-3 1 2 8661 OPV3-BT-F 1.0E-06 

99 098-3 1 4 8753 OPV3-BT-F 1.0E-06 

101 098-3 2 5 4120 OPV3-BT-F 1.0E-06 

86 098-4 2 1 2940 OPV3-BT-Cl 1.0E-06 

88 098-4 3 2 7670 OPV3-BT-Cl 1.0E-06 

103 102-5 1 1 6394 OPV3-BT-Cl 1.0E-06 

104 102-5 1 2 7841 OPV3-BT-Cl 1.0E-06 

50 097-2 1 1 8603 OPV3-BT-Br 1.0E-06 

51 097-2 1 2 10529 OPV3-BT-Br 1.0E-06 

83 106-1 1 1 9572 OPV3-BT-Br 1.0E-06 

84 106-1 1 2 15707 OPV3-BT-Br 1.0E-06 

19 113-3 1 1 7310 OPV3-BT-NO2 1.0E-06 

20 113-3 1 2 8083 OPV3-BT-NO2 1.0E-06 

22 113-4 1 1 7799 OPV3-BT-NO2 1.0E-06 

107 101-4 2 2 6679 OPV3-BT-CN 5.5E-06 

108 101-4 2 3 7449 OPV3-BT-CN 5.5E-06 

109 101-4 2 4 2309 OPV3-BT-CN 5.5E-06 

114* 101-3 1 2 2772 OPV3-BT-CN 1.0E-05 

116 101-3 2 3 5477 OPV3-BT-CN 1.0E-05 

118 114-2 1 3 4280 OPV3-BT-CN 3.0E-06 

121 103-2 1 1 10259 OPV3-BT-CN 1.0E-06 

123 103-2 2 2 3175 OPV3-BT-CN 1.0E-06 

125 103-2 3 3 2783 OPV3-BT-CN 1.0E-06 

126** 103-2 3 3 6548 OPV3-BT-CN 1.0E-06 

*Dataset not included in analysis; see section S.7 for details.  

**Pure dichloromethane was deposited between datasets #125 and #126; hence they are treated as distinct datasets even though they have 

the same trial number and number of molecular depositions.  
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For this work, we also considered five OPV2-2BT datasets and two C6-2SMe datasets (Table S3). In 

two of these cases, the dataset consisted of a subset of consecutive traces from a deposition/trial block in 

order to exclude clear noise features (see Table S3). We then constructed eight different 1:1 synthetic 

mixtures of these OPV2-2BT and C6-2SMe datasets by combining different sets of traces from different 

datasets. Because the OPV2-2BT datasets contained more traces, for each mixture we used all of the traces 

from one of the C6-2SMe datasets and then added an equivalent number of consecutive traces from a 

subset of one of the OPV2-2BT datasets (see Table S4 for details).  

Table S3. List of all OPV2-2BT and C6-2SMe datasets considered in this work. “Subset” refers to datasets 

corresponding to a consecutive subset of traces from an entire deposition/trial block, taken to exclude clear 

noise features. All noise floors are 10-6 G0. 

Dataset 

ID# 

Sample 

# 

Trial 

# 

Deposition 

# 
Subset 

# of 

Traces 

Molecule 

Name 

Solution 

Concentration (μM) 
Solvent Used 

128 111-4 1 1 No 3234 OPV2-2BT 1 Dichloromethane 

129 111-4 1 2 No 2680 OPV2-2BT 1 Dichloromethane 

132 108-5 1 2 Yes 2400 OPV2-2BT 1 Dichloromethane 

133 108-5 3 5 No 6562 OPV2-2BT 1 Dichloromethane 

134 108-5 4 1* No 5807 OPV2-2BT 10 Dichloromethane 

136 108-4 1 2 Yes 1315 C6-2SMe 10 Hexanes 

137 108-4 2 2 No 1065 C6-2SMe 10 Hexanes 

*1st deposition of a 10 μM solution, but 6th depositon overall (first 5 depositions were each with a 1 μM solution). 

 

Since each sample has a slightly different attenuation ratio, the density of data points on the inter-

electrode distance scale is also different for each sample. This is an issue for constructing synthetic mixture 

datasets because it would cause the denser dataset to have extra weight in what is supposed to be a 1:1 

mixture. We therefore used linear interpolation to resample all OPV2-2BT and C6-2SMe traces at a rate 

of one data point per 4×10-4 nm of inter-electrode distance. This resampling was performed before 

clustering the pure datasets and before the construction and clustering of the synthetic mixture datasets.  
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Table S4. List of the eight different 1:1 OPV2-2BT:C6-2SMe synthetic mixture datasets created for this 

work, along with details of their construction. Dataset ID #s refer to Table S3. Mixture #1 is the dataset 

used for Figure 8g-i.  

Mixture # Total # of Traces 
Dataset ID for OPV2-

2BT Traces 

Dataset ID for 2,9-

dithiadecane 

Traces Used from 

OPV2-2BT Dataset 

1 2630 134 136 1-1315 

2 2130 134 137 1-1065 

3 2630 133 136 1-1315 

4 2630 128 136 1-1315 

5 2630 132 136 1-1315 

6 2130 132 137 1-1065 

7 2630 129 136 1-1315 

8 2630 134 136 1500-2814 

 

S.5 Robustness of OPV3-2BT-X Results to Clustering Parameters 

S.5.1 Robustness to Random Seed. The SOPTICS algorithm employs random projections in order to 

achieve its improved clustering times, and even regular OPTICS, when properly implemented, uses a 

random choice for the first point in the cluster order. If the clustering structure extracted by these 

algorithms is truly inherent to the dataset, then the clustering results should not be meaningfully affected 

by using a different set of random numbers. To confirm that this is the case for our OPV3-2BT-X results, 

we re-clustered one of our datasets (ID# 3 in Table S2) using ten different random seeds for MatLab’s 

pseudo-random number generator. This is also a good way to evaluate our choice for the parameters cL 

and cP; because these parameters control how many different random projections are used by SOPTICS, 

we know that their values are suitably large when the clustering outputs for different random seeds all 

converge to give the same results. We therefore repeated this random seed testing for three different values 

of cL = cP. For this testing we fixed the value of minPts at 85.  

We used two different methods to evaluate the similarity of these different clustering results. First, we 

simply compared the peak conductance value for the main plateau cluster in this dataset, as this peak 

conductance is what we are ultimately interested in for our analysis of the OPV3-2BT-X family. Second, 
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we used a similarity index developed by Rand to compare the entire clustering solutions that each main 

plateau cluster belongs to. The Rand similarity index is a pairwise comparison that ranges from 0 to 1, 

with 1 meaning that every data point was assigned to the same cluster in both clustering solutions and 0 

meaning that every data point was assigned to a different cluster in one solution vs. the other.8  Because 

this method compares the overall clustering structure instead of just the peak value of a single cluster, it 

provides a more stringent test of the similarity of different clustering results.  

 
Figure S3. Comparison of fitted peak conductance values for the main plateau cluster for a single 

OPV3-2BT-H dataset clustered using 10 different random seeds and three different values for the 

parameters cL = cP, with the minPts parameter fixed at 85 (left axis). For the right axis, the clustering 

solution which contained the main plateau cluster for each of the 30 clustering outputs was first 

identified. Each of these solutions was then compared to the solution for a random seed of 9001 using 

the Rand similarity index. These results demonstrate both that SOPTICS is not affected meaningfully by 

random seed choice and that cL = cP is set to a sufficiently large value. 

 

The results of these evaluation methods for our random seed testing are summarized in Figure S3. Even 

for cL = cP = 20, changing the random seed has essentially no effect, with the conductance peak varying 
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by less than 0.003 decades and the Rand Similarity Index always greater than 0.985. Our decision to use 

cL = cP = 30, where the convergence is even tighter, is thus clearly a very safe choice.  

In addition, these results demonstrate that in our implementation SOPTICS is essentially unaffected by 

the set of random numbers used, and is thus behaving properly. For the clustering results discussed in the 

main body of the paper and for all subsequent testing, we therefore used the last digits of the system time 

to generate a different random seed for each clustering run.  

S.5.2 Robustness to minSize. To ensure that our OPV3-2BT-X results are not dependent upon our 

choice for the minSize parameter, we re-clustered another dataset (ID# 25 in Table S2) using 17 different 

values of minSize. We again fixed the value of minPts at 85 for this testing.  

 
Figure S4. Comparison of fitted peak conductance values for the main plateau cluster for a single OPV3-

2BT-MeO dataset clustered using 17 different values for the parameter minSize, with the minPts parameter 

fixed at 85 (left axis). For the right axis, the clustering solution which contained the main plateau cluster 

for each of the 17 clustering outputs was first identified. Each of these solutions was then compared to the 

solution for minSize = 120 using the Rand similarity index. These results demonstrate that the exact value 

of minSize is not very important for the behavior of SOPTICS, and so it is safe to use a single fixed value 

for this parameter. 
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We used the same two evaluation methods (main plateau cluster peak conductance and Rand similarity 

index) described in section S.5.1 to compare these different clustering results. As shown in Figure S4, the 

clustering output is extremely insensitive to the choice of minSize over quite a large range. This justifies 

our choice to fix the value of minSize at 120.   

S.5.3 Robustness to Trace Starting Criteria. As described in section S.3.1, to ensure consistent 

starting criteria before the segmentation step, we begin each trace the last time it passed below a 

conductance of 2.5 G0. To check that our OPV3-2BT-X results do not depend on this choice, we re-

clustered another of our datasets (ID# 19 in Table S2) using six different values for this “TopChop” 

conductance value.  

Because changing the TopChop affects the segmentation step, these different clustering outputs do not 

contain the exact same objects for clustering, and so cannot be compared using the Rand similarity index. 

However, comparing the peak conductance of the main plateau cluster for each of these results (Figure 

S5a) shows that the choice of the TopChop value does not meaningfully impact our results.  

As an additional test, we also considered a different type of starting criteria: instead of a “TopChop”, a 

“LeftChop” in which we begin each trace at zero inter-electrode distance. Comparing the results for six of 

our datasets for these two different chop methods (Figure S5b) again confirms that our OPV3-2BT-X 

conclusions are not dependent upon our choice of starting criteria. We note that this left chop at zero 

significantly improves clustering time by reducing the number of data points, and so may be preferred in 

some situations.  
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Figure S5. Demonstration of the insensitivity of OPV3-2BT-X clustering results to trace starting criteria. 

(a) Peak conductance values for the main plateau cluster of the same OPV3-2BT-NO2 dataset clustered 

using 9 different “TopChop” values (only the portion of each trace after the last time its conductance 

passes below TopChop is included for clustering). (b) Comparison of the peak conductance values for the 

main plateau clusters for six different OPV3-2BT-X datasets (dataset ID#s refer to Table S2) clustered 

using a TopChop of 2.5 G0 (red) or a “LeftChop” (blue), in which only the portion of each trace after zero 

inter-electrode distance is included for clustering. 

 

S.5.4 Robustness to len_per_dup and Correlation with minPts. As described in section S.3.4, the 

parameter len_per_dup controls how often each segment is duplicated in proportion to its length (and also 

sets the minimum segment length). Decreasing len_per_dup increases the density of data points in all 

regions, and is thus expected to have a similar effect to decreasing the value of minPts. To confirm this, 

we re-clustered one of our datasets (ID# 2 in Table S2) at a variety of combinations of minPts and 

len_per_dup parameter values. The clustering solutions containing the main plateau cluster were then 

compared using the Rand similarity index as well as the peak plateau conductance (Figure S6a,b), as 

described in section S.5.1. Because len_per_dup also controls the minimum segment length, clustering 

runs with larger len_per_dup values used slightly fewer segments for clustering. Therefore, for each 
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pairwise comparison only those segments present in both clustering results were considered when 

computing the Rand similarity index.  

 
Figure S6. Comparison of outputs for a single OPV3-2BT-H dataset clustered using 120 different 

combinations of the minPts and len_per_dup parameters. (a) Rand similarity index for the clustering 

solution from each output which contained the main plateau cluster, compared to the chosen solution for 

the minPts = 85 and len_per_dup = 0.05 nm output. The fact that most of the index values are close to 

one shows that the clustering is relatively insensitive to these two parameters, and the northwest-to-

southeast “ridge” demonstrates that they are positively correlated with each other. (b) Fitted peak 

conductance values for the main plateau cluster for each output, demonstrating that this measurement is 

quite insensitive to both parameters. 

 

The high Rand similarity indices (Figure S6a) and similar peak conductance values (Figure S6b) that 

are found across a wide range of len_per_dup values indicate that clustering results are quite robust to 

changes in this parameter. More importantly, however, Figure S6a demonstrates that there is indeed a 

strong correlation between the effects of changing the len_per_dup and minPts parameters, as expected. 

This helps justify our decision to fix the value of len_per_dup, because it means that by using multiple 

values of minPts we are already capturing much of the variation that would be caused by changes to 

len_per_dup.  

S.5.5 Robustness to Settings of Iterative L-Method. One of the advantages to using the Iterative L-

Method as a stopping criterion for Bottom-Up Segmentation is that it is described as being parameter-free. 
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However, the algorithm does rely on a value, minimum_cutoff_size, which the authors argue can be 

considered a constant instead of a parameter because a value of 20 yields good results in a wide variety of 

contexts.9  Out of an abundance of caution, we also tried re-clustering a handful of our datasets using a 

smaller (16) or larger (24) value of minimum_cutoff_size.  

 
Figure S7. Comparison of the peak conductance values for the main plateau clusters for six different 

OPV3-2BT-X datasets (dataset ID#s refer to Table S2) clustered after using the “standard” segmentation 

procedure (blue); after segmentation with the minimum_cutoff_size value set to 16 (red) or 24 (green) 

instead of its standard value of 20; and after using the “Global” instead of the “Greedy” Iterative L-Method 

as stopping criteria for segmentation (black). These results demonstrate that slight variations in how the 

segmentation algorithm is implemented do not meaningfully affect our OPV3-2BT-X results. 

 

Additionally, the authors actually present two slight variations of the Iterative L-Method: “Global” and 

“Greedy”. As mentioned above, we use the “Greedy” Iterative L-Method because it was generally found 

to produce superior results.9  However, again out of an abundance of caution, we also tried re-clustering 

these same datasets using the “global” Iterative L-Method instead. As shown in Figure S7, neither the 
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changes to minimum_cutoff_size nor the switch from “Greedy” to “Global” meaningfully affect our results 

for the OPV3-2BT-X molecules.  

S.6 Selecting Clusters from Multiple Cluster Outputs for the Same Dataset 

As discussed in the main text, each dataset in this work was re-clustered twelve times using different 

values of the parameter minPts in order to account for uncertainty in the “optimal” setting for this 

parameter. For the figures in this work, we calculated and show each clustering output for minPts = 85 

(roughly in the center of the 12 different minPts values).  

After selecting a particular full-valley cluster of interest in the minPts = 85 output of a given dataset 

(e.g. the main plateau cluster for each OPV3-2BT-X dataset), we employed an automated algorithm to 

identify the analogous full-valley cluster in each of the other eleven clustering outputs for that same 

dataset. This algorithm first calculates the median value of each normalized segment parameter for the 

manually chosen cluster as well as for every full-valley cluster in the other eleven outputs. It then selects 

the single full-valley cluster from each of those outputs with the smallest Euclidean distance between its 

“median centroid” and that of the manually chosen cluster. The clusters identified with this automated 

algorithm matched the unambiguous assignments that would have been made by eye.  

When the distributions for chosen clusters were fit to determine peak conductance values, the clusters 

from the twelve different outputs for each dataset were fit independently to obtain twelve different peak 

values. To represent the peak conductance of a single dataset (specifically, in Figure 7, Figure S5, Figure 

S7, and Figure S17), we use the median from among these twelve peak values, along with error bars 

representing the range of the middle eight of the twelve values (i.e. the middle 66.7%).  

S.7 Selection of Main Plateau Clusters for OPV3-2BT-X Datasets 

Of the 43 OPV3-2BT-X datasets listed in Table S2, one dataset (ID# 114) did not produce any full-

valley clusters that came close to corresponding to the molecular feature in the 2D histogram (possibly 
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because the percentage of junctions containing a molecule was too low), and so was excluded from 

subsequent analysis. In 31 cases, only a single full-valley cluster had any similarity to the molecular 

feature, and each of these clusters was quite similar to the main plateau cluster shown in Figure 4h. We 

therefore unambiguously assigned each of these clusters as the analogous “main plateau cluster” for their 

respective datasets.  

In 10 of the OPV3-2BT-X datasets, two full-valley clusters were found which might correspond well to 

the molecular feature region in the 2D histogram. However, in each of these cases, one of the clusters 

consisted of mostly flat segments like the main plateau clusters in the 31 datasets mentioned above (e.g. 

Figure S8a,d,g,j), whereas the second cluster consisted of more angled segments at slightly higher 

conductance (e.g. Figure S8b,e,h,k). Moreover, the valley corresponding to each flatter cluster always 

showed up in a similar location in its reachability plot as the other identified main plateau clusters (e.g. 

Figure S8c,f,i,l), suggesting that it represents an analogous component of the dataset’s hierarchical 

structure.  Therefore, in these 10 datasets there was still a single unambiguous choice for which full-valley 

cluster was the analogous feature to the cluster in Figure 4h and should thus be assigned as the main 

plateau cluster. Figure S8 compares the chosen main plateau clusters with the angled clusters for four 

examples from these 10 datasets to demonstrate how clear these choices were.  
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Figure S8. (a) Main plateau cluster chosen for dataset #59 (see Table S2). (b) Second full-valley cluster 

discovered in dataset #59 which corresponds well with the molecular feature from the 2D histogram, but 

is qualitatively distinct from the other identified main plateau clusters due to its higher conductance and 

more-angled segments. (c) Reachability plot for dataset #59 with the valleys corresponding to the clusters 
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in (a) and (b) highlighted, showing how they fit into the hierarchical clustering structure. (d-f) Analogous 

plots for dataset #103. (g-i) Analogous plots for the dataset #104. (j-l) Analogous plots for dataset #37. 

Together, these four examples demonstrate that even in the datasets containing multiple molecule-like 

full-valley clusters, there was consistently an unambiguous choice for which cluster was structurally most 

analogous to the cluster in Figure 4h and should thus be assigned as the main plateau cluster (i.e., the 

flatter clusters in the first column).  

 

Finally, in one OPV3-2BT-H dataset (ID# 58), only a single full-valley cluster corresponding to the 

molecular feature was found (Figure S9), but this cluster resembled the angled clusters discussed above 

much more than the main plateau clusters identified in the other 41 datasets. This is therefore the second 

OPV3-2BT-X dataset that we excluded from subsequent analysis because this cluster does not appear to 

belong in the same category as the other 41. No qualitative change to our conclusions would have resulted 

from inclusion of this dataset.  

 
Figure S9. The only full-valley cluster from dataset #58 (see Table S2) which corresponds to the molecular 

feature in the 2D histogram. Because this feature seems to match the “secondary”, angled clusters in 

Figure S8 more than all other chosen main plateau clusters, it was excluded from subsequent analysis. 

 

It is intriguing to note that the higher-conductance, more-angled clusters discovered in the 11 datasets 

discussed above appear qualitatively similar to the “class 2” traces identified by Cabosart et al. for a 
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structurally similar molecule using a completely different clustering approach. In an additional similarity, 

Cabosart et al. also found a lower-conductance, flatter cluster (“class 3” traces) which they assign to the 

“standard” binding configuration and find to be a consistent representation of the molecular 

conductance.10  This perhaps suggests that these two features might be a conserved motif of rod-like 

conjugated molecules, and full atomistic calculations are needed to investigate this question in more detail. 

On a more general level, the fact that significantly different clustering methods identify similar molecular 

features supports the view that clustering analysis is an appropriate means of revealing intrinsic data 

structure. 

S.8 Peak Fitting 

In order to have a point of comparison to our main plateau cluster peak fits, we pursued the standard 

approach of fitting the molecular peak in each raw 1D histogram with a single Gaussian. However, due to 

the complex and asymmetric peak shape, fitting within the conductance range surrounding the molecular 

peak typically leads to unreasonable results (e.g. dotted green line in Figure S10), and moreover can 

strongly depend on exactly how this conductance range is defined. Therefore, to fit the raw 1D histogram 

molecular peaks for our OPV3-2BT-H datasets, we used an iterative approach to set the conductance 

bounds for fitting. Each histogram is first fit with a single Gaussian peak while only considering the 

conductance range -5.5 G0 to -2.5 G0 (e.g. the dotted green line in Figure S10). Ten more restricted fits 

are then performed, with the conductance bounds modified each time based on the results of the previous 

fit. At each iteration, the conductance bounds are centered around the peak value from the previous fit, 

and the width of this fitting region is 2 decades for the first two iterations, 1.5 decades for the next four, 

and 1 decade for the last four. This process was empirically found to produce reasonable fits for the eight 

OPV3-2BT-H datasets we applied it to (e.g. dashed red line in Figure S10), and the peak value always 

fully converged by the tenth iteration.   
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Figure S10. Raw 1D histogram for the OPV3-2BT-H dataset from Figure 1 (blue), along with a single 

Gaussian fit to only the range -5.5 G0 to -2.5 G0 (dotted green), and the result of an iterative process 

described in the text for determining the fitting range (dashed red).  

 

For fitting the distributions of conductance values from specific clusters, in every case we used a single, 

unrestricted Gaussian fit. In the majority of cases, these distributions matched a Gaussian peak shape 

extremely well (e.g. Fig. 5). Some of the distributions displayed minor asymmetry or increased kurtosis, 

and thus fit a Gaussian peak shape less well; Figure S11 shows the worst examples from the OPV3-2BT-

X datasets. However, even in these cases, the single unrestricted Gaussian fit provided very reasonable 

approximations to the peaks and peak centers. A more complex fitting function would likely tighten the 

distributions of peak values in Figure 7; for example, adding a second fitting peak for the OPV3-2BT-Br 

and OPV3-2BT-Cl main plateau cluster distributions shown in Figure S11c and Figure S11e, 

respectively, would increase the conductance of the “main” peak, and these two datasets are both mild 

outliers on the low side in Figure 7.  
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For all histogram fitting in this work, the histogram bin width was determined based on the Freedman–

Diaconis rule.  

 
Figure S11. Main plateau cluster distributions (blue) and their respective unrestricted Gaussian fits (dotted 

red) for the six OPV3-2BT-X datasets in which these distributions were least Gaussian-shaped. The 

substituent, -X, and the ID# (from Table S2) for each dataset are inset for each plot. 

 

S.9 Investigating OPV3-2BT-X Main Plateau Cluster Lengths 

To help support our hypothesis that the main plateau cluster for each OPV3-2BT-X dataset represents 

the primary molecular feature, we investigated the maximum junction gap sizes implied by these clusters 

with two similar approaches. In the first method, we focus only on the actual trace pieces represented by 

the segments in the main plateau cluster. The end points of these trace pieces represent the maximum 

extent of each identified molecular plateau. However, it is possible that the linear features identified by 

Segment Clustering do not represent the entire time the molecule spent in the junction (e.g. the 

conductance may vary significantly during the detachment process). Therefore, in the second method we 

consider each entire trace containing a segment assigned to the main plateau cluster. The last time each 
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trace drops to a low value well below the conductance of the molecule (here the value of 5∙10-6 G0 is used) 

is an alternative way to represent the distance at which the molecule fully breaks off. Both methods are 

demonstrated for an example OPV3-2BT-H dataset in Figure S12a-d.  

 
Figure S12. Examples of distance investigation methods using the OPV3-2BT-H dataset from Figure 1c. 

(a) 2D histogram of just the trace pieces whose linear segments were assigned to the main plateau cluster. 

(b) 1D histogram of the endpoints of the trace pieces in (a), fit with a single Gaussian peak (red). (c) 2D 

histogram of all traces containing segments which were assigned to the main plateau cluster. (d) 1D 

histogram of the distances at which each trace in (c) last crossed below the conductance value 5∙10-6 G0, 

fit with a single Gaussian peak (red). (e) 2D histogram of all traces in the dataset. (f) Analogous to (d), 

but for the traces shown in (e); fit with two Gaussians (purple and red, total fit in gray).  

 

For comparison, we also show the results of applying the “trace-cross” method to all traces in the dataset 

(Figure S12e,f). This entire-dataset distance distribution exhibits two peaks, typically attributed to the 

break-off of tunneling traces and to molecular traces respectively.11–14 As shown in Table S5, both 

distance distributions for the main plateau cluster are quite similar to the second peak in the entire-dataset 

distribution, providing clear evidence that what we label the “main plateau cluster” corresponds to what 

is generally considered to be the “primary” molecular feature. Similar results were obtained for the other 

OPV3-2BT-X datasets considered in this work. The moderate variation that was observed between 
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datasets is likely due in large part to small systematic errors in attenuation ratios, and the overall pattern 

did not suggest any systematic differences in length between different substituents.  

The fairly broad distributions seen in Figure S12b,d indicate that not all junctions reach the same degree 

of elongation before breaking off. The distribution peaks are somewhat shorter than what would be 

expected for fully-elongated molecular junctions, which is consistent with previous results for molecules 

with –BT linker groups.15 This suggests that molecules with this linker group may in general not reach 

full extension. 

Table S5. The peak and half-width at half-maximum (HWHM) values for the red Gaussian fits shown in 

Figure S12 panels b, d, and f, respectively.  

 Peak (nm) HWHM (nm) 

Segment End Points 0.91 0.27 

Segment-Containing Trace Crosses 1.06 0.41 

All Trace Crosses 0.95* 0.33* 
*For the higher-distance of the two Gaussian fits (red in Figure S12f).  
 

S.10 Selection of Main Plateau Clusters for OPV2-2BT and C6-2SMe 

Figure S13 shows all of the full-valley clusters discovered in the OPV2-2BT dataset from Figure 8d. 

The cluster in Figure S13i can be unambiguously chosen as the main plateau cluster for the high-

conductance feature. None of the full-valley clusters corresponds well to the low-conductance feature in 

this dataset (the cluster in Figure S13f is the closest, but does not align well with the low-conductance 

feature on either axis in the 2D histogram). Similar main plateau clusters were identified in the other four 

OPV2-2BT datasets considered in this work (Table S3).  
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Figure S13. (a) Reachability plot for the OPV2-2BT dataset from Figure 8d with all full-valley clusters 

hierarchically filled in. (b-i) Segment clusters for each color coded valley from (a), with the cluster in (i) 

unambiguously identified as the main plateau cluster.  

 

Figure S14 shows full-valley clusters for the C6-2SMe dataset from Figure 8a. The cluster in Figure 

S14l can be unambiguously chosen as the main plateau cluster for this dataset. While the cluster in Figure 

S14k bears a superficial resemblance to the molecular feature, closer inspection reveals that it is much 

smaller and is composed of very angled segments which are unlikely to correspond to clean molecular 
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plateaus. A similar main plateau cluster to Figure S14l was identified in the other C6-2SMe dataset 

considered in this work (Table S3).  

 
Figure S14. (a) Reachability plot for the C6-2SMe dataset from Figure 8a with all full-valley clusters 

hierarchically filled in. (b-l) Segment clusters for most of the color coded valleys from (a) (less-important 

clusters omitted for clarity), with the cluster in (l) identified as the main plateau cluster. 

 

S.11 Cluster Selection for OPV2-2BT/C6-2SMe 1:1 Synthetic Mixture #1 

When finding all full-valley clusters for a dataset, the minimum valley size should be set according to 

the specific context and what types of clusters the user is interested in. For the pure molecular datasets 

considered in this work, we found that a minimum valley size of 1% of the total number of data points 

worked well. However, in our synthetic mixture datasets each molecular feature is “diluted” by a factor 

of two. Moreover, because the C6-2SMe feature is so short, it represents a relatively small number of data 

points. Therefore, in this context a smaller minimum valley size is appropriate. To demonstrate this, 
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Figure S15 shows full-valley clusters from the “Mixture #1” dataset from Figure 8g with a minimum 

valley size of 1%. Although a main plateau cluster can be easily identified (Figure S15o), this cluster 

contains features from both molecules. However, if the minimum valley size is lowered to ~0.5%, then 

the hierarchical structure produced by Segment Clustering reveals that the cluster from Figure S15o is 

composed of two main sub-valleys (Figure S15p). These two sub-valleys represent the clusters shown in 

Figure 8h, and, as discussed in the main text, correspond to the two different molecular features.  

 
Figure S15. (a) Reachability plot for the Mixture #1 dataset (Fig. 8g) with all full-valley clusters 

hierarchically filled in. (b-o) Segment clusters for most of the color coded valleys from (a) (less-important 
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clusters omitted for clarity). The red cluster in (o) is a composite plateau cluster for both molecular 

features. (p) By lowering the minimum valley size, the cluster in (o) is found to have substructure 

consisting of two separate valleys, corresponding to the two clusters plotted in Figure 8h. 

 

S.12 Clustering of Additional Synthetic Mixtures 

In addition to the OPV2-2BT/C6-2SMe mixture dataset discussed in the main text, 7 additional 1:1 

synthetic mixture datasets (for a total of 8) were constructed (see Table S4 for details) and analyzed in 

the same way. In seven of these eight total cases, two full-valley clusters were identified that correspond 

to the main OPV2-2BT and C6-2SMe molecular features (Figure S16). Just as with mixture #1 (see 

section S.11), in each of these cases a “composite” main plateau cluster was first unambiguously identified 

at the 1% valley size cut-off (analogous to Figure S15o), and then lowing of this cut-off revealed two 

primary sub-valleys (analogous to Figure S15p) corresponding to the two molecular features. The clusters 

identified in this way are shown in Figure S16, and their sizes are listed in Table S6. The one exception 

was Mixture #6, where the plateau cluster contained both molecular features did not possess any 

hierarchical sub-structure (Figure S16f). This illustrates the potential drawback of density-based 

clustering methods mentioned in the main text that dissimilar groups of data may in some cases end up in 

a single cluster if there is a continuous spread of data between them. We speculate that this issue occurs 

for this dataset because an error in the attenuation ratios results in similar apparent lengths for both 

molecules.  
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Figure S16. (a-h) Identified molecular plateau clusters for synthetic mixtures #1-8, respectively. In each 

case, a composite molecular plateau cluster analogous to Figure S15o was unambiguously identified (not 

shown). In 7 out of 8 cases, the valley for that composite cluster was found to contain two sub-valleys, 

analogous to Figure S15p, which were assigned as the OPV2-2BT plateau cluster (pink) and the C6-

2SMe plateau cluster (yellow). As shown in Figure S17 and Table S6, these assignments proved to be 

quite accurate, demonstrating the robustness of Segment Clustering’s ability to separate overlapping 

molecular features. The composite cluster for mixture #6, shown in red in (f), did not contain any 

hierarchical sub-structure, and so could not be separated. 

 

Just as with Mixture #1 in the main text, each of the OPV2-2BT (C6-2SMe) clusters in Figure S16 was 

evaluated for accuracy by calculating how many of the data points assigned to it were from the traces 

belonging to the OPV2-2BT (C6-2SMe) half of the mixture (Table S6). This demonstrates that these 

separations of overlapping features were successful. While the C6-2SMe clusters again appear to display 

higher “error rates”, as explained in the main text, this is unsurprising given the shorter plateaus for this 

molecule; the fact that a cluster of short C6-2SMe-like segments is not found in any of the pure OPV2-

2BT datasets demonstrates that the source of the “erroneously” included segments is random chance, not 

mistaken feature identification by the algorithm. Finally, to summarize all of these mixture separation 

results, Figure S17 compares the peak conductance values for the two identified molecular clusters from 

each mixture dataset with the peak conductance values from the main plateau clusters in the pure OPV2-

2BT and C6-2SMe datasets.  
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Figure S17. Peak conductance values for the main plateau clusters for the 5 different pure OPV2-2BT 

datasets considered in this work (red) and the two pure C6-2SMe datasets considered in this work (green). 

For comparison are plotted the peak conductances of the OPV2-2BT (pink) and C6-SMe (yellow) clusters 

identified in the seven successfully separated 1:1 synthetic mixture datasets shown in Figure S16.  

 

Table S6. For each of the eight mixture datasets considered in this work, the size of the identified C6-

2SMe and OPV2-2BT clusters (as a percentage of total data points) and the “accuracy” of each cluster 

(i.e. how many data points belonging to the cluster come from traces collected in the presence of the 

molecule that the cluster is assigned to). Each value represents the median from among the twelve different 

clustering outputs (using different values of the minPts parameter) for each dataset. Separate C6-2SMe 

and OPV2-2BT clusters could not be identified for mixture #6 

Mixture # 
Data Points Contained in Cluster Data Points from Correct Half of Dataset 

C6-2SMe OPV2-2BT C6-2SMe OPV2-2BT 

1 0.5% 3.2% 84% 97% 

2 1.4% 1.6% 84% 99% 

3 1.4% 0.3% 60% 91% 

4 0.4% 0.9% 67% 98% 

5 1.0% 0.4% 69% 90% 

6 NA NA NA NA 

7 0.8% 0.7% 59% 96% 

8 0.5% 1.8% 76% 95% 

AVERAGE 0.9% 1.3% 71% 95% 
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