SUPPORTING INFORMATION

Effect of PEG-induced molecular crowding on the enzymatic activity and thermal stability of β galactosidase from *Kluyveromyces lactis*.

Verónica Nolan[§], Alejandro Colin[§], Carolina Rodriguez, and María A. Perillo*

- ^aUniversidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales. ICTA and Departamento de Química, Cátedra de Química Biológica. Av. Vélez Sársfield 1611, 5016 Córdoba, Argentina.
- ^bCONICET-Universidad Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT). Córdoba, Argentina.
- * Corresponding author mperillo@unc.edu.ar
- [§] These authors contributed equally.

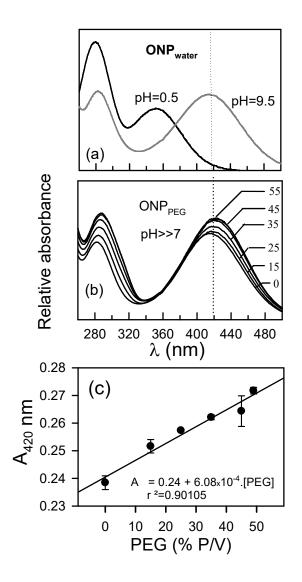
CONTENTS (S1 to S6 refer to page numbers)

- S 1 Title, authors, affiliations and description of Supporting Information content
- S2. Experimental conditions for β -Gal activity measurement in the presence of PEG₆₀₀₀
- S2. Effect of PEG₆₀₀₀ on the spectroscopic characteristics of ONP
- S2 Chemical stability of ONP in the presence of PEG 6000
- S3. Figure S1. Effect of PEG₆₀₀₀ on the UV-vis absorbance spectrum of ONPx.
- S3 Testing different inactivators of β -Gal to stop the chemical reaction
- S4. Figure S2. Effect of the addition of NaOH on the β -Gal induced hydrolysis of ONPG.
- S5. Effect of PEG₆₀₀₀ on ONPG non-enzymatic hydrolysis and β -Gal inactivation treatment induced by NaOH.
- S5 Table S1. Linear regression analysis of the time-dependent ONPG hydrolysis in the presence and absence of β -Gal using NaOH as inactivator.
- S6 Optimal time and enzyme concentration determination
- S7 Figure S3. Eadie-Hoftee analysis of *Kluyveromyces lactis* catalyzed reaction rate as a function of [ONPG]. Effect of PEG.
- S8 Statistical analysis
- S19. References

Experimental conditions for β-Gal activity measurement in the presence of PEG₆₀₀₀

a) Effect of PEG₆₀₀₀ on the spectroscopic characteristics of ONP.

Aqueous disolutions of *ortho*-nitro phenol (ONP) were prepared in the absence (PEG₀) or in the presence of PEG₆₀₀₀ at final concentrations ranging from 15 to 55 % w/v. The absorbance of the *ortho*-nitrophenoxide (ONPx) formed was determined, in a Beckman DU 700 (Fullerton, C. A.) spectrophotometer, at 420 nm (A₄₂₀) or within the range 260-500 nm. In some experiments a temporal variation of the absorbance at 377 nm (A₃₇₇) was registered.


b) Chemical stability of ONP in the presence of PEG 6000.

The hypothesis that PEG_{6000} could have induced changes on the spectral behaviour of ONP was explored more deeply. The absorbance spectra of ONP was analysed at two extreme pH. Only at basic pH (a condition that resembles that of the enzymatic study) the typical peak at 420 nm was shown due to the presence of the dissociated species (*o*-nitrophenoxide, ONPx) (Fig.1a). In the presence of PEG₆₀₀₀ and at an alkaline pH the maximum in the ONPx spectra exhibited a hyperchromic and bathochromic shift (Fig. 1b). Taking into account that the acid-base titration curves of ONP showed an increase in the intensity without a change in the position of the peak at 420 nm⁻¹, it could be suggested that the presence of PEG₆₀₀₀ not only favours the displacement of the ONP acid-base equilibrium towards the dissociated species (ONPx) but also may modify the polarity of the solution.

A straight line was fitted to the absorbance at 420 nm vs. PEG concentration data (Fig.1c). After transforming A₄₂₀ into molar extinction coefficients values (ϵ_{ONP}), the regression equation (eq.S1) allowed calculate ϵ_{ONP} at 420 nm at different PEG₆₀₀₀ concentrations which varied from 4,809.6 M⁻¹ cm⁻¹ at 0% w/v PEG₆₀₀₀ to 5,478.32 M⁻¹ cm⁻¹ at 45 % w/VvPEG₆₀₀₀).

$$\varepsilon_0 = 4809.6 \text{ M}^{-1} \text{cm}^{-1} + 12.15 \text{M}^{-1} \text{cm}^{-1} \text{ x} [\text{PEG}_{6000}]$$
 [S1]

These values were used to estimate the correct amount of product obtained through the β -Gal enzymatic activity in the presence of PEG₆₀₀₀.

Fig.S1. Effect of PEG₆₀₀₀ on the UV-vis absorbance spectrum of ONPx.

Absorbance spectra of ONPx in water at two extreme pH (a) and at alkaline pH in solutions containing PEG_{6000} at the concentrations indicated (b). In (c) a linear regression analysis of ONP absorbance at 420 nm vs. PEG concentration in an alkaline solution is shown. The regression equation is also depicted.

c) Testing different inactivators of β -Gal to stop the chemical reaction

In the present paper, β -Gal enzymatic activity in the absence and in the presence of different concentrations of PEG₆₀₀₀ was measured using ONPG as substrate. Usually, those enzymatic assays where ONP is the reaction product use Na₂CO₃ to stop the hydrolysis of the substrate (ONPG in the present case). At the same time, this procedure induces a sudden pH increase that displaces the ONP acid-base equilibrium towards the *ortho*-nitrophenoxide (ONPx), the dissociated form of ONP (Fig.1a). Different from ONP ($\lambda_{max} \sim 352$ nm in water), ONPx has an absorption peak within the visible region ($\lambda_{max} \sim 420$ nm in water) of the electromagnetic spectrum which allows its quantification based on spectrophotometric measurements avoiding the interference of other chemical species present in the reaction state of the state of the species present in the reaction state of the species present in the reaction based of the reaction

mixture. However, in the presence of PEG₆₀₀₀, Na₂CO₃ induces turbidity and a liquid-liquid phase separation, generating an interface where the enzyme and/or the product can be adsorbed ²⁻³. Hence, instead of using Na₂CO₃, in the present paper we evaluated the efficacy of NaOH to inactivate the enzyme (Fig.2), after the incubation of ONPG in the presence of β -Gal, with or without 30% w/v PEG (PEG₃₀ and PEG₀, respectively) and in optimal conditions for the enzyme activity (0.1 M sodium phosphate buffer pH 6.8 and 37 °C). After the addition of NaOH, the absorbance of ONPx at 377 nm (A₃₇₇) was continuously recorded during 30 min to confirm the reaction arrest. Time zero was defined as the start of the inactivation procedure. Similar experiments were done using Na₂CO₃ as inactivator. The choice of 377 nm as the detection wavelength was due to the fact that this is an isosbestic point in the family of ONP spectra at different PEG concentrations (Fig.1b) (this reflect an independence of ONPx absorbance values on [PEG] at this λ).

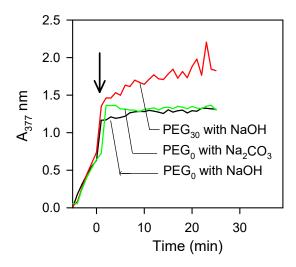


Fig. S2 Effect of the addition of inactivator on the β -Gal induced hydrolysis of ONPG.

The incubation system contained 8 mM [ONPG] and 1.27×10^{-3} mg/ml protein (β -Gal preparation) with or without 30% w/v PEG. After 10 min incubation at 37°C, the inactivator (0.35 M NaOH) was added to the incubation system at the time indicated by the arrow (time zero), in a 1:0.4 volume ratio with respect to the initial volume of incubation system. Due to its effect as phase separation inducer, 0.4 M Na₂CO₃ was also tested as inactivator only in the absence of PEG.

 A_{420} vs. time data, starting at time zero, was submitted to a linear regression analysis. Table 1 shows the results obtained. Ordinates ("a") are A_{420} values at the enzyme inactivation time, and represent the maximum amount of ONPx produced during the initial incubation period. Slopes ("b") values close to zero reflect the efficacy of the inactivation procedure.

d) Effect of PEG₆₀₀₀ on ONPG non-enzymatic hydrolysis and β-Gal inactivation treatment induced by NaOH.

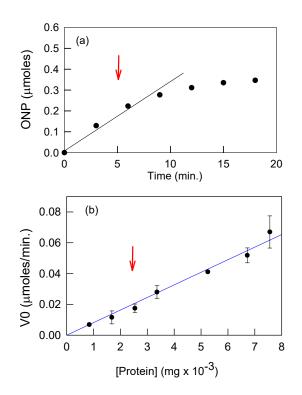

[PEG6000]	Regression	Sample treatment					
(% w/v)	parameter	- β-Gal	+β-Gal				
0	b	$0.005\pm \ 0.0004$	$0.001 \pm \ 0.004$				
0	a	$-0.004 \pm \ 0.001$	$0.35 \pm 0.12 \#$				
21	b	$0.008 \pm \ 0.005$	$0.001 \pm \ 0.009$				
31	a	$0.18 \pm 0.12 *$	$0.45~\pm~0.20$				
45	b	$0.018 \pm \ 0.008$	$0.014 \pm \ 0.009$				
43	a	$0.24 \pm 0.17 *$	$0.39~\pm~0.19$				

Table S1. Linear regression analysis of the time-dependent ONPG hydrolysis in the presence and absence of β-Gal using NaOH as inactivator.

Samples (8 mM ONPG with or without β -Gal) were incubated at 37°C during 10 min. After that, 0.4M NaOH was added and A₄₂₀ was measured for 30 min. A linear equation was fitted to the experimental data. *Significantly different with respect to the control without PEG₆₀₀₀; #significantly different with respect to the control without enzyme. b, slope; a, ordinate.

At 0% w/v PEG₆₀₀₀, in the presence or in the absence of β -Gal, slopes were not statistically different from zero. This was a clear indication that, in non-crowded media, this procedure was effective as an enzyme inactivator. As expected, the ordinate values ("a") were zero in the absence of β -Gal and higher in samples containing β -Gal, due to the catalytic action of the enzyme on ONPG.

In the absence of the enzyme, the presence of PEG_{6000} , mainly at the highest concentration assayed (45% w/v), induced an increase in the slope "b" values with respect to those without PEG_{6000} , suggesting that a non-enzymatic PEG-dependent ONPG hydrolysis was occurring. In these samples, ordinates were also higher than those in the absence of PEG, strongly indicating that enzymatic ONPG hydrolysis was enhanced in crowded media, although effects on the spectroscopic behaviour of ONP could not be excluded.

e) Optimal time and enzyme concentration determination

Fig.S3 Determination of optimal conditions of *K.lactis* β -Gal catalyzed ONPG hydrolysis. (a) Rate as a function of the incubation time in the presence of 2.54 x 10⁻³ mg/ml of enzyme and (b) Initial rate as a function of enzyme concentration measured at 5 min incubation time.

Eadie-Hofstee analysis of *Kluyveromyces lactis* catalyzed reaction rate as a function of [ONPG]. Effect of PEG

The shapes of these plots ratify the michaelian-type kinetics in the absence and in the presence of 15 and 25% w/v PEG (Fig.S3a) and the cooperative kinetics in the presence of 35% w/v PEG (Fig.3b). For comparisons of line shapes and types of kinetics involved, see the article of Hutzler and Tracy, $(2001)^4$.

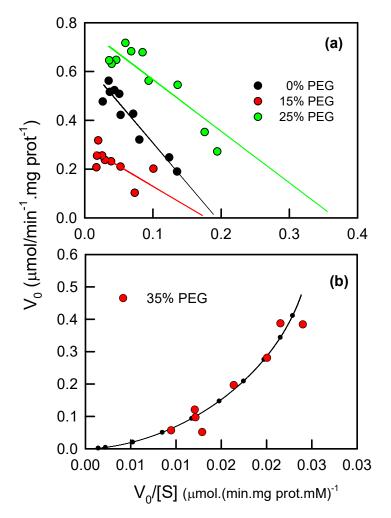


Fig.S4. Eadie-Hofstee plots. Data are the same shown in rate as а function of ONPG concentration depicted in Fig.1. a) Straight lines were fitted to data in the absence (\bullet) and in the presence of 15% (•) and 25% PEG (•) as expected from Michaelis-Menten hyperbolictype kinetics. Lines correspond to the linear regressions. ANOVA produced p=0.003, 0.001 y 0.067, respectively.

b) This Eadie-Hofstee plot has the shape expected from a sigmoidal kinetics. Red dots correspond to experimental points. Small black dots are calculated values.

Figure 2. Effect of PEG₆₀₀₀ on the thermal stability of β -Gal.

STATISTICAL ANALYSIS (ANOVA + TEST DE TUKEY) PARA "for raw data" All Pairwise Multiple Comparison Procedures (Tukey Test):

Comparisons for factor: temp within 0% PEG								
Comparison	Diff of Means	р	q	Р	P<0.050			
20.000 vs. 50.000	2.044	5	24.864	< 0.001	Yes			
20.000 vs. 45.000	1.998	5	24.302	< 0.001	Yes			
20.000 vs. 40.000	1.337	5	16.270	< 0.001	Yes			
20.000 vs. 30.000	0.406	5	4.934	0.007	Yes			
30.000 vs. 50.000	1.638	5	19.929	< 0.001	Yes			
30.000 vs. 45.000	1.592	5	19.367	< 0.001	Yes			
30.000 vs. 40.000	0.932	5	11.336	< 0.001	Yes			
40.000 vs. 50.000	0.706	5	8.594	< 0.001	Yes			
40.000 vs. 45.000	0.660	5	8.032	< 0.001	Yes			
45.000 vs. 50.000	0.0462	5	0.562	0.995	No			

Comparisons for factor: temp within 15%PEG

Comparison	Diff of Means	р	q	Р	P<0.050
20.000 vs. 50.000	2.254	5	27.415	< 0.001	Yes
20.000 vs. 45.000	1.828	5	22.242	< 0.001	Yes
20.000 vs. 40.000	1.137	5	13.836	< 0.001	Yes
20.000 vs. 30.000	0.190	5	2.311	0.481	No
30.000 vs. 50.000	2.064	5	25.104	< 0.001	Yes
30.000 vs. 45.000	1.638	5	19.932	< 0.001	Yes
30.000 vs. 40.000	0.947	5	11.525	< 0.001	Yes
40.000 vs. 50.000	1.116	5	13.579	< 0.001	Yes
40.000 vs. 45.000	0.691	5	8.406	< 0.001	Yes
45.000 vs. 50.000	0.425	5	5.173	0.004	Yes

Comparisons for factor: temp within 25%PEG

Comparison	Diff of Means	р	q	Р	P<0.050
20.000 vs. 50.000	2.541	5	30.911	< 0.001	Yes
20.000 vs. 45.000	1.828	5	22.232	< 0.001	Yes
20.000 vs. 40.000	0.573	5	6.969	< 0.001	Yes
20.000 vs. 30.000	0.374	5	4.546	0.016	Yes
30.000 vs. 50.000	2.167	5	26.365	< 0.001	Yes
30.000 vs. 45.000	1.454	5	17.686	< 0.001	Yes
30.000 vs. 40.000	0.199	5	2.423	0.432	No
40.000 vs. 50.000	1.968	5	23.942	< 0.001	Yes
40.000 vs. 45.000	1.255	5	15.263	< 0.001	Yes
45.000 vs. 50.000	0.713	5	8.679	< 0.001	Yes

Comparisons for factor: temp within 35%PEG

Comparison	Diff of Means	р	q	Р	P<0.050
20.000 vs. 50.000	3.184	5	38.739	< 0.001	Yes
20.000 vs. 45.000	2.193	5	26.679	< 0.001	Yes
20.000 vs. 40.000	0.818	5	9.946	< 0.001	Yes
20.000 vs. 30.000	0.693	5	8.435	< 0.001	Yes
30.000 vs. 50.000	2.491	5	30.304	< 0.001	Yes
30.000 vs. 45.000	1.500	5	18.243	< 0.001	Yes
30.000 vs. 40.000	0.124	5	1.511	0.822	No
40.000 vs. 50.000	2.367	5	28.793	< 0.001	Yes
40.000 vs. 45.000	1.375	5	16.732	< 0.001	Yes
45.000 vs. 50.000	0.991	5	12.061	< 0.001	Yes

Р

P<0.050

35.000 vs. 0.000	1.152	4	14.012	< 0.001	Yes
35.000 vs. 15.000	0.936	4	11.392	< 0.001	Yes
35.000 vs. 25.000	0.635	4	7.729	< 0.001	Yes
25.000 vs. 0.000	0.517	4	6.283	< 0.001	Yes
25.000 vs. 15.000	0.301	4	3.664	0.054	No
15.000 vs. 0.000	0.215	4	2.620	0.257	No
Comparisons for factor				D	D :0.050
Comparison	Diff of Means	р	q	P	P<0.050
35.000 vs. 0.000	0.864	4	10.511	< 0.001	Yes
35.000 vs. 15.000	0.433	4	5.268	0.002	Yes
35.000 vs. 25.000	0.316	4	3.839	0.040	Yes
25.000 vs. 0.000	0.548	4	6.671	< 0.001	Yes
25.000 vs. 15.000	0.117	4	1.428	0.744	No
15.000 vs. 0.000	0.431	4	5.243	0.002	Yes
Comparisons for factor	or: PEG within 40°	°C			
Comparison	Diff of Means	р	q	Р	P<0.050
35.000 vs. 0.000	1.672	4	20.336	< 0.001	Yes
35.000 vs. 15.000	1.256	4	15.282	< 0.001	Yes
35.000 vs. 25.000	0.391	4	4.751	0.007	Yes
25.000 vs. 0.000	1.281	4	15.584	< 0.001	Yes
25.000 vs. 15.000	0.866	4	10.531	< 0.001	Yes
15.000 vs. 0.000	0.415	4	5.053	0.003	Yes
Comparisons for fact	or: PEG within 45°	°C			
Comparison	Diff of Means	р	q	Р	P<0.050
35.000 vs. 0.000	0.956	4	11.635	< 0.001	Yes
35.000 vs. 15.000	0.572	4	6.956	< 0.001	Yes
35.000 vs. 25.000	0.270	4	3.282	0.102	No
25.000 vs. 0.000	0.687	4	8.353	< 0.001	Yes
25.000 vs. 15.000	0.302	4	3.674	0.053	No
15.000 vs. 0.000	0.385	4	4.679	0.008	Yes
Comparisons for factor		°C			
Comparison	Diff of Means	р	q	Р	P<0.050
25.000 vs. 0.000	0.0194	4	0.236	0.998	No
25.000 vs. 15.000	0.0138	4	0.168	0.999	Do Not Test

0.00820

0.0112

0.00560

0.00560

Comparisons for factor: PEG within 20°C

Comparison

25.000 vs. 35.000

35.000 vs. 0.000

35.000 vs. 15.000

15.000 vs. 0.000

Diff of Means

р

q

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

0.0998

0.136

0.0681

0.0681

1.000

1.000

1.000

1.000

4

4

4

4

Do Not Test

Do Not Test

Do Not Test

Do Not Test

STATISTICAL ANALYSIS (ANOVA + TEST DE TUKEY) "for percentages" All Pairwise Multiple Comparison Procedures (Tukey Test):

Comparisons for factor: PEG								
Comparison	Diff of Means	р	q	Р	P<0.050			
25.000 vs. 0.000	14.200	4	12.833	< 0.001	Yes			
25.000 vs. 15.000	5.800	4	5.242	0.004	Yes			
25.000 vs. 35.000	1.663	4	1.503	0.714	No			
35.000 vs. 0.000	12.537	4	11.330	< 0.001	Yes			
35.000 vs. 15.000	4.137	4	3.738	0.055	No			
15.000 vs. 0.000	8.400	4	7.591	< 0.001	Yes			

Comparisons for factor: Temp								
Comparison	Diff of Means	р	q	Р	P<0.050			
20.000 vs. 50.000	96.079	5	77.663	< 0.001	Yes			
20.000 vs. 45.000	77.000	5	62.241	< 0.001	Yes			
20.000 vs. 40.000	39.500	5	31.929	< 0.001	Yes			
20.000 vs. 30.000	15.500	5	12.529	< 0.001	Yes			
30.000 vs. 50.000	80.579	5	65.134	< 0.001	Yes			
30.000 vs. 45.000	61.500	5	49.712	< 0.001	Yes			
30.000 vs. 40.000	24.000	5	19.400	< 0.001	Yes			
40.000 vs. 50.000	56.579	5	45.734	< 0.001	Yes			
40.000 vs. 45.000	37.500	5	30.312	< 0.001	Yes			
45.000 vs. 50.000	19.079	5	15.422	< 0.001	Yes			

Comparisons for factor: Temp within 0%PEG

Comparison	Diff of Means	р	q	Р	P<0.050
20.000 vs. 50.000	96.000	5	38.799	< 0.001	Yes
20.000 vs. 45.000	94.000	5	37.991	< 0.001	Yes
20.000 vs. 40.000	63.000	5	25.462	< 0.001	Yes
20.000 vs. 30.000	19.000	5	7.679	<0.001	Yes
30.000 vs. 50.000	77.000	5	31.120	< 0.001	Yes
30.000 vs. 45.000	75.000	5	30.312	< 0.001	Yes
30.000 vs. 40.000	44.000	5	17.783	< 0.001	Yes
40.000 vs. 50.000	33.000	5	13.337	< 0.001	Yes
40.000 vs. 45.000	31.000	5	12.529	< 0.001	Yes
45.000 vs. 50.000	2.000	5	0.808	0.979	No

Comparisons for factor: Temp within 15%PEG

Comparison	Diff of Means	р	q	Р	P<0.050
20.000 vs. 50.000	96.000	5	38.799	< 0.001	Yes
20.000 vs. 45.000	78.000	5	31.525	< 0.001	Yes
20.000 vs. 40.000	48.000	5	19.400	< 0.001	Yes
20.000 vs. 30.000	8.000	5	3.233	0.171	No
30.000 vs. 50.000	88.000	5	35.566	< 0.001	Yes
30.000 vs. 45.000	70.000	5	28.291	< 0.001	Yes
30.000 vs. 40.000	40.000	5	16.166	< 0.001	Yes
40.000 vs. 50.000	48.000	5	19.400	< 0.001	Yes
40.000 vs. 45.000	30.000	5	12.125	< 0.001	Yes
45.000 vs. 50.000	18.000	5	7.275	< 0.001	Yes

Comparisons for factor: Temp within 25%PEG								
Comparison	Diff of Means	р	q	Р	P<0.050			
20.000 vs. 50.000	96.000	5	38.799	< 0.001	Yes			
20.000 vs. 45.000	69.000	5	27.887	< 0.001	Yes			

20.000 vs. 40.000	22.000	5	8.892	< 0.001	Yes
20.000 vs. 30.000	14.000	5	5.658	0.002	Yes
30.000 vs. 50.000	82.000	5	33.141	< 0.001	Yes
30.000 vs. 45.000	55.000	5	22.229	< 0.001	Yes
30.000 vs. 40.000	8.000	5	3.233	0.171	No
40.000 vs. 50.000	74.000	5	29.908	< 0.001	Yes
40.000 vs. 45.000	47.000	5	18.996	< 0.001	Yes
45.000 vs. 50.000	27.000	5	10.912	< 0.001	Yes

Comparisons for factor: Temp within 35%PEG

Comparison	Diff of Means	р	q	Р	P<0.050
20.000 vs. 50.000	96.317	5	38.927	< 0.001	Yes
20.000 vs. 45.000	67.000	5	27.079	< 0.001	Yes
20.000 vs. 40.000	25.000	5	10.104	< 0.001	Yes
20.000 vs. 30.000	21.000	5	8.487	< 0.001	Yes
30.000 vs. 50.000	75.317	5	30.440	< 0.001	Yes
30.000 vs. 45.000	46.000	5	18.591	< 0.001	Yes
30.000 vs. 40.000	4.000	5	1.617	0.783	No
40.000 vs. 50.000	71.317	5	28.823	< 0.001	Yes
40.000 vs. 45.000	42.000	5	16.975	< 0.001	Yes
45.000 vs. 50.000	29.317	5	11.849	< 0.001	Yes

Comparisons for factor: PEG within 20°C (correspond to the control; 100%)

Comparison	Diff of Means	р	q	Р	P<0.050
0.000 vs. 35.000	0.000	4	0.000	1.000	No
0.000 vs. 25.000	0.000	4	0.000	1.000	Do Not Test
0.000 vs. 15.000	0.000	4	0.000	1.000	Do Not Test
15.000 vs. 35.000	0.000	4	0.000	1.000	Do Not Test
15.000 vs. 25.000	0.000	4	0.000	1.000	Do Not Test
25.000 vs. 35.000	0.000	4	0.000	1.000	Do Not Test

Comparisons for factor: PEG within 30°C

Comparison	Diff of Means	р	q	Р	P<0.050
15.000 vs. 35.000	13.000	4	5.254	0.003	Yes
15.000 vs. 0.000	11.000	4	4.446	0.016	Yes
15.000 vs. 25.000	6.000	4	2.425	0.330	No
25.000 vs. 35.000	7.000	4	2.829	0.205	No
25.000 vs. 0.000	5.000	4	2.021	0.489	Do Not Test
0.000 vs. 35.000	2.000	4	0.808	0.940	Do Not Test

Comparisons for factor: PEG within 40°C

Comparison	Diff of Means	р	q	Р	P<0.050
25.000 vs. 0.000	41.000	4	16.571	< 0.001	Yes
25.000 vs. 15.000	26.000	4	10.508	< 0.001	Yes
25.000 vs. 35.000	3.000	4	1.212	0.827	No
35.000 vs. 0.000	38.000	4	15.358	< 0.001	Yes
35.000 vs. 15.000	23.000	4	9.296	< 0.001	Yes
15.000 vs. 0.000	15.000	4	6.062	< 0.001	Yes

Comparisons for factor: PEG within 45°C

Comparison	Diff of Means	р	q	Р	P<0.050
35.000 vs. 0.000	27.000	4	10.912	< 0.001	Yes
35.000 vs. 15.000	11.000	4	4.446	0.016	Yes
35.000 vs. 25.000	2.000	4	0.808	0.940	No

25.000 vs. 0.000	25.000	4	10.104	< 0.001	Yes
25.000 vs. 15.000	9.000	4	3.637	0.064	No
15.000 vs. 0.000	16.000	4	6.467	< 0.001	Yes

Comparisons for factor: PEG within 50°C									
Comparison	Diff of Means	р	q	Р	P<0.050				
0.000 vs. 35.000	0.317	4	0.128	1.000	No				
0.000 vs. 25.000	4.441E-016	4	1.795E-016	1.000	Do Not Test				
0.000 vs. 15.000	0.000	4	0.000	1.000	Do Not Test				
15.000 vs. 35.000	0.317	4	0.128	1.000	Do Not Test				
15.000 vs. 25.000	4.441E-016	4	1.795E-016	1.000	Do Not Test				
25.000 vs. 35.000	0.317	4	0.128	1.000	Do Not Test				

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

Fig.3. Effect of PEG₆₀₀₀ on the thermal inactivation kinetics of β -Gal.

Time	Catalytic activity (µM.min⁻¹) (Preincubation at 30°C, PEG 0%)							
(min)	Sample 1	Sample 2	Sample 3	Media	s.e.m.			
0	3.65	3.94	3.98	3.85	0.102			
10	3.36	3.93	3.93	3.74	0.189			
20	3.06	3.49	4.01	3.52	0.275			
30	3.18	3.82	3.85	3.62	0.217			
40	3.23	3.51	3.39	3.38	0.081			
50	2.92	3.26	3.23	3.14	0.110			
60	2.89	3.55	3.17	3.20	0.192			
70	2.91	2.98	2.92	2.94	0.229			
80	3.10	3.30	3.29	3.23	0.630			

Raw data

Time	Catalytic activity (μM.min ⁻¹) (Preincubation at 30°C, PEG 25%)							
(min)	Sample 1	Sample 2	Sample 3	Media	s.e.m.			
0	5.94	4.90	5.64	5.50	0.309			
10	5.80	6.17	6.28	6.08	0.145			
20	7.12	5.37	5.19	5.90	0.616			
30	5.47	5.75	5.43	5.55	0.100			
40	5.82	5.89	6.24	5.99	0.128			
50	5.75	5.69	5.45	5.63	0.928			
60	4.96	5.71	5.80	5.49	0.267			
70	6.52	5.11	5.54	5.73	0.417			
80	5.42	5.38	5.93	5.58	0.176			

Time	Catalytic activity (µM.min⁻¹) (Preincubation at 45°C, PEG 0%)							
(min)	Sample 1	Sample 2	Sample 3	Media	s.e.m.			
0	2.06	2.04	2.07	2.06	0.00705			
10	0.495	0.452	0.623	0.524	0.0512			
20	0.47	0.408	0.434	0.437	0.0178			
30	0.439	0.366	0.388	0.398	0.0217			
40	0.452	0.546	0.366	0.454	0.0521			
50	0.366	0.36	0.373	0.366	0.00371			
60	0.408	0.387	0.37	0.388	0.0109			
70	0.369	0.36	0.401	0.377	0.0124			
80	0.388	0.359	0.375	0.374	0.00826			

Time	Catalytic activity (μM.min ⁻¹) (Preincubation at 45°C, PEG 25%)							
(min)	Sample 1	Sample 2	Sample 3	Media	s.e.m.			
0	2.65	3.83	3.21	3.23	0.34			
10	1.71	1.8	1.71	1.74	0.0275			
20	1.36	1.33	0.878	1.19	0.156			
30	1.06	1.03	1.11	1.07	0.0249			
40	0.827	0.864	0.907	0.866	0.0232			
50	0.758	0.884	0.723	0.789	0.049			
60	0.801	0.636	0.639	0.692	0.0547			
70	0.541	0.527	0.578	0.549	0.0152			
80	0.44	0.476	0.448	0.455	0.0109			

Two Way Analysis of Variance

Data source: Data 1 in Fig 3 paper K lactis.JNB Balanced Design

Dependent Variable: 0%PEG 30°C

Equal Variance Test:	Passed (P = 0.567)						
Source of Variation	DF	SS	MS	F	Р		
Time	8	1.965	0.246	1.421	0.221		
PEG %	1	72.153	72.153	417.484	< 0.001		
Time x PEG %	8	1.427	0.178	1.032	0.431		
Residual	36	6.222	0.173				
Total	53	81.766	1.543				

The difference in the mean values among the different levels of Time is not great enough to exclude the possibility that the difference is just due to random sampling variability after allowing for the effects of differences in PEG %. There is not a statistically significant difference (P = 0.221).

The difference in the mean values among the different levels of PEG % is greater than would be expected by chance after allowing for effects of differences in Time. There is a statistically significant difference (P = <0.001). To isolate which group(s) differ from the others use a multiple comparison procedure.

The effect of different levels of Time does not depend on what level of PEG % is present. There is not a statistically significant interaction between Time and PEG %. (P = 0.431)

Power of performed test with alpha = 0.0500: for Time : 0.168Power of performed test with alpha = 0.0500: for PEG % : 1.000Power of performed test with alpha = 0.0500: for Time x PEG % : 0.0567

Least square means for Time :

Group Mean 0.000^{-1} 4.675 10.000 4.912 20.000 4.707 30.000 4.583 40.000 4.680 50.000 4.383 60.000 4.347 70.000 4.330 80.000 4.403 Std Err of LS Mean = 0.170 Least square means for PEG % : Group Mean 0.000 3.402 25.000 5.714 Std Err of LS Mean = 0.0800Least square means for Time x PEG % : Group Mean 0.000 x 0.000 3.857 0.000 x 25.000 5.493 10.000 x 0.000 3.740 10.000 x 25.000 6.083 20.000 x 0.000 3.520 20.000 x 25.000 5.893 30.000 x 0.000 3.617 30.000 x 25.000 5.550 40.000 x 0.000 3.377 40.000 x 25.000 5.983 50.000 x 0.000 3.137 50.000 x 25.000 5.630 60.000 x 0.000 3.203 60.000 x 25.000 5.490 70.000 x 0.000 2.937

 70.000 x 25.000
 5.723

 80.000 x 0.000
 3.230

 80.000 x 25.000
 5.577

 Std Err of LS Mean = 0.240

All Pairwise Multiple Comparison Procedures (Tukey Test):

Comparisons for factor: Time						
Comparison	Diff of Means	р	q	Р	P<0.050	
10.000 vs. 70.000	0.582	9	3.427	0.303	No	
10.000 vs. 60.000	0.565	9	3.329	0.339	Do Not Test	

10.000 vs. 50.000	0.528	9	3.113	0.426	Do Not Test	
10.000 vs. 80.000	0.508	9	2.995	0.478	Do Not Test	
10.000 vs. 30.000	0.328	9	1.935	0.902	Do Not Test	
10.000 vs. 0.000	0.237	9	1.394	0.985	Do Not Test	
10.000 vs. 40.000	0.232	9	1.365	0.987	Do Not Test	
10.000 vs. 20.000	0.205	9	1.208	0.994	Do Not Test	
20.000 vs. 70.000	0.377	9	2.219	0.815	Do Not Test	
20.000 vs. 60.000	0.360	9	2.121	0.848	Do Not Test	
20.000 vs. 50.000	0.323	9	1.905	0.910	Do Not Test	
20.000 vs. 80.000	0.303	9	1.787	0.935	Do Not Test	
20.000 vs. 30.000	0.123	9	0.727	1.000	Do Not Test	
20.000 vs. 0.000	0.0317	9	0.187	1.000	Do Not Test	
20.000 vs. 40.000	0.0267	9	0.157	1.000	Do Not Test	
40.000 vs. 70.000	0.350	9	2.062	0.867	Do Not Test	
40.000 vs. 60.000	0.333	9	1.964	0.895	Do Not Test	
40.000 vs. 50.000	0.297	9	1.748	0.943	Do Not Test	
40.000 vs. 80.000	0.277	9	1.630	0.961	Do Not Test	
40.000 vs. 30.000	0.0967	9	0.570	1.000	Do Not Test	
40.000 vs. 0.000	0.00500	9	0.0295	1.000	Do Not Test	
0.000 vs. 70.000	0.345	9	2.033	0.876	Do Not Test	
0.000 vs. 60.000	0.328	9	1.935	0.902	Do Not Test	
0.000 vs. 50.000	0.292	9	1.719	0.948	Do Not Test	
0.000 vs. 80.000	0.272	9	1.601	0.965	Do Not Test	
0.000 vs. 30.000	0.0917	9	0.540	1.000	Do Not Test	
30.000 vs. 70.000	0.253	9	1.493	0.977	Do Not Test	
30.000 vs. 60.000	0.237	9	1.394	0.985	Do Not Test	
30.000 vs. 50.000	0.200	9	1.178	0.995	Do Not Test	
30.000 vs. 80.000	0.180	9	1.061	0.998	Do Not Test	
80.000 vs. 70.000	0.0733	9	0.432	1.000	Do Not Test	
80.000 vs. 60.000	0.0567	9	0.334	1.000	Do Not Test	
80.000 vs. 50.000	0.0200	9	0.118	1.000	Do Not Test	
50.000 vs. 70.000	0.0533	9	0.314	1.000	Do Not Test	
50.000 vs. 60.000	0.0367	9	0.216	1.000	Do Not Test	
60.000 vs. 70.000	0.0167	9	0.0982	1.000	Do Not Test	
Comparisons for fact	or: PEG %					
Comparison	Diff of Means	р	q	Р	P<0.050	
25.000 vs. 0.000	2.312	2	28.896	< 0.001	Yes	
Comparisons for factor: PEG % within 0						
Comparison	Diff of Means	р	a	Р	P<0.05	
25.000 vs. 0.000	1.637	2	q 6.819	< 0.001	Yes	
20.000 (8. 0.000	1.007	-	0.017	0.001	105	
Comparisons for factor: PEG % within 10						
Comparison	Diff of Means	p	q	Р	P<0.05	
25.000 vs. 0.000	2.343	2	9.763	< 0.001	Yes	
Comparisons for factor: PEG % within 20						
Comparison	Diff of Means	р	q	Р	P<0.05	
25.000 vs. 0.000	2.373	2	9.888	< 0.001	Yes	
Comparisons for factor: PEG % within 30						
Comparison	Diff of Means	р	q	Р	P<0.05	
25.000 vs. 0.000	1.933	2	8.055	< 0.001	Yes	

Comparisons for factor Comparison 25.000 vs. 0.000	r: PEG % within Diff of Means 2.607	40 p 2	q 10.860	P <0.001	P<0.05 Yes
Comparisons for factor Comparison 25.000 vs. 0.000	r: PEG % within Diff of Means 2.493	50 p 2	q 10.388	P <0.001	P<0.05 Yes
Comparisons for factor Comparison 25.000 vs. 0.000	r: PEG % within Diff of Means 2.287	60 p 2	q 9.527	P <0.001	P<0.05 Yes
Comparisons for factor Comparison 25.000 vs. 0.000	r: PEG % within Diff of Means 2.787	70 p 2	q 11.610	P <0.001	P<0.05 Yes
Comparisons for factor Comparison 25.000 vs. 0.000	r: PEG % within Diff of Means 2.347	80 p 2	q 9.777	P <0.001	P<0.05 Yes
Comparisons for factor	r: Time within 0%	6 PEG	, F		
Comparison	Diff of Means	р	q	Р	P<0.05
0.000 vs. 70.000	0.920	' 9	3.833	0.180	No
0.000 vs. 50.000	0.720	9	3.000	0.476	Do Not Test
0.000 vs. 60.000	0.653	9	2.722	0.602	Do Not Test
	0.605				
0.000 vs. 80.000	0.627	9	2.611	0.653	Do Not Test
0.000 vs. 80.000 0.000 vs. 40.000	$0.627 \\ 0.480$	9 9	2.611 2.000	0.653 0.885	Do Not Test Do Not Test
0.000 vs. 40.000	0.480	9	2.000	0.885	
0.000 vs. 40.000 0.000 vs. 20.000	0.480 0.337	9 9	2.000 1.403	$0.885 \\ 0.984$	Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000	0.480 0.337 0.240	9 9 9	2.000 1.403 1.000	0.885 0.984 0.998	Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000	0.480 0.337 0.240 0.117	9 9 9 9	2.000 1.403	0.885 0.984 0.998 1.000	Do Not Test Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 0.000 vs. 10.000	0.480 0.337 0.240	9 9 9	2.000 1.403 1.000 0.486	0.885 0.984 0.998 1.000 0.332	Do Not Test Do Not Test Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 0.000 vs. 10.000 10.000 vs. 70.000	0.480 0.337 0.240 0.117 0.803	9 9 9 9	2.000 1.403 1.000 0.486 3.347	0.885 0.984 0.998 1.000	Do Not Test Do Not Test Do Not Test Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 0.000 vs. 10.000 10.000 vs. 70.000 10.000 vs. 50.000	0.480 0.337 0.240 0.117 0.803 0.603	9 9 9 9 9	2.000 1.403 1.000 0.486 3.347 2.514	$\begin{array}{c} 0.885\\ 0.984\\ 0.998\\ 1.000\\ 0.332\\ 0.696\end{array}$	Do Not Test Do Not Test Do Not Test Do Not Test Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 0.000 vs. 10.000 10.000 vs. 70.000 10.000 vs. 50.000 10.000 vs. 60.000	0.480 0.337 0.240 0.117 0.803 0.603 0.537	9 9 9 9 9 9	2.000 1.403 1.000 0.486 3.347 2.514 2.236	0.885 0.984 0.998 1.000 0.332 0.696 0.808	Do Not Test Do Not Test Do Not Test Do Not Test Do Not Test Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 0.000 vs. 10.000 10.000 vs. 70.000 10.000 vs. 50.000 10.000 vs. 60.000 10.000 vs. 80.000	0.480 0.337 0.240 0.117 0.803 0.603 0.537 0.510	9 9 9 9 9 9 9	2.000 1.403 1.000 0.486 3.347 2.514 2.236 2.125	$\begin{array}{c} 0.885\\ 0.984\\ 0.998\\ 1.000\\ 0.332\\ 0.696\\ 0.808\\ 0.847\\ \end{array}$	Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 0.000 vs. 10.000 10.000 vs. 70.000 10.000 vs. 50.000 10.000 vs. 60.000 10.000 vs. 80.000 10.000 vs. 40.000	$\begin{array}{c} 0.480\\ 0.337\\ 0.240\\ 0.117\\ 0.803\\ 0.603\\ 0.537\\ 0.510\\ 0.363\end{array}$	9 9 9 9 9 9 9	2.000 1.403 1.000 0.486 3.347 2.514 2.236 2.125 1.514	$\begin{array}{c} 0.885\\ 0.984\\ 0.998\\ 1.000\\ 0.332\\ 0.696\\ 0.808\\ 0.847\\ 0.975\\ \end{array}$	Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 0.000 vs. 10.000 10.000 vs. 70.000 10.000 vs. 50.000 10.000 vs. 60.000 10.000 vs. 80.000 10.000 vs. 40.000 10.000 vs. 20.000	$\begin{array}{c} 0.480\\ 0.337\\ 0.240\\ 0.117\\ 0.803\\ 0.603\\ 0.537\\ 0.510\\ 0.363\\ 0.220\\ \end{array}$	9 9 9 9 9 9 9 9	2.000 1.403 1.000 0.486 3.347 2.514 2.236 2.125 1.514 0.917	$\begin{array}{c} 0.885\\ 0.984\\ 0.998\\ 1.000\\ 0.332\\ 0.696\\ 0.808\\ 0.847\\ 0.975\\ 0.999\\ \end{array}$	Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 10.000 vs. 10.000 10.000 vs. 70.000 10.000 vs. 50.000 10.000 vs. 60.000 10.000 vs. 80.000 10.000 vs. 40.000 10.000 vs. 20.000 10.000 vs. 30.000	$\begin{array}{c} 0.480\\ 0.337\\ 0.240\\ 0.117\\ 0.803\\ 0.603\\ 0.537\\ 0.510\\ 0.363\\ 0.220\\ 0.123\\ \end{array}$	9 9 9 9 9 9 9 9 9	$\begin{array}{c} 2.000\\ 1.403\\ 1.000\\ 0.486\\ 3.347\\ 2.514\\ 2.236\\ 2.125\\ 1.514\\ 0.917\\ 0.514 \end{array}$	$\begin{array}{c} 0.885\\ 0.984\\ 0.998\\ 1.000\\ 0.332\\ 0.696\\ 0.808\\ 0.847\\ 0.975\\ 0.999\\ 1.000\\ \end{array}$	Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 10.000 vs. 10.000 10.000 vs. 70.000 10.000 vs. 50.000 10.000 vs. 60.000 10.000 vs. 80.000 10.000 vs. 40.000 10.000 vs. 20.000 10.000 vs. 30.000 30.000 vs. 70.000	$\begin{array}{c} 0.480\\ 0.337\\ 0.240\\ 0.117\\ 0.803\\ 0.603\\ 0.537\\ 0.510\\ 0.363\\ 0.220\\ 0.123\\ 0.680\\ \end{array}$	9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 2.000\\ 1.403\\ 1.000\\ 0.486\\ 3.347\\ 2.514\\ 2.236\\ 2.125\\ 1.514\\ 0.917\\ 0.514\\ 2.833 \end{array}$	$\begin{array}{c} 0.885\\ 0.984\\ 0.998\\ 1.000\\ 0.332\\ 0.696\\ 0.808\\ 0.847\\ 0.975\\ 0.999\\ 1.000\\ 0.551 \end{array}$	Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 10.000 vs. 10.000 10.000 vs. 70.000 10.000 vs. 50.000 10.000 vs. 60.000 10.000 vs. 80.000 10.000 vs. 40.000 10.000 vs. 20.000 10.000 vs. 30.000 30.000 vs. 50.000	$\begin{array}{c} 0.480\\ 0.337\\ 0.240\\ 0.117\\ 0.803\\ 0.603\\ 0.537\\ 0.510\\ 0.363\\ 0.220\\ 0.123\\ 0.680\\ 0.480 \end{array}$	9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 2.000\\ 1.403\\ 1.000\\ 0.486\\ 3.347\\ 2.514\\ 2.236\\ 2.125\\ 1.514\\ 0.917\\ 0.514\\ 2.833\\ 2.000 \end{array}$	$\begin{array}{c} 0.885\\ 0.984\\ 0.998\\ 1.000\\ 0.332\\ 0.696\\ 0.808\\ 0.847\\ 0.975\\ 0.999\\ 1.000\\ 0.551\\ 0.885\end{array}$	Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 10.000 vs. 10.000 10.000 vs. 70.000 10.000 vs. 50.000 10.000 vs. 60.000 10.000 vs. 40.000 10.000 vs. 20.000 10.000 vs. 30.000 30.000 vs. 50.000 30.000 vs. 60.000	$\begin{array}{c} 0.480\\ 0.337\\ 0.240\\ 0.117\\ 0.803\\ 0.603\\ 0.537\\ 0.510\\ 0.363\\ 0.220\\ 0.123\\ 0.680\\ 0.480\\ 0.413\\ \end{array}$	9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.000 1.403 1.000 0.486 3.347 2.514 2.236 2.125 1.514 0.917 0.514 2.833 2.000 1.722	$\begin{array}{c} 0.885\\ 0.984\\ 0.998\\ 1.000\\ 0.332\\ 0.696\\ 0.808\\ 0.847\\ 0.975\\ 0.999\\ 1.000\\ 0.551\\ 0.885\\ 0.947\\ \end{array}$	Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 10.000 vs. 10.000 10.000 vs. 70.000 10.000 vs. 50.000 10.000 vs. 60.000 10.000 vs. 40.000 10.000 vs. 20.000 10.000 vs. 30.000 30.000 vs. 50.000 30.000 vs. 60.000 30.000 vs. 80.000	$\begin{array}{c} 0.480\\ 0.337\\ 0.240\\ 0.117\\ 0.803\\ 0.603\\ 0.537\\ 0.510\\ 0.363\\ 0.220\\ 0.123\\ 0.680\\ 0.480\\ 0.413\\ 0.387\end{array}$	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 2.000\\ 1.403\\ 1.000\\ 0.486\\ 3.347\\ 2.514\\ 2.236\\ 2.125\\ 1.514\\ 0.917\\ 0.514\\ 2.833\\ 2.000\\ 1.722\\ 1.611 \end{array}$	$\begin{array}{c} 0.885\\ 0.984\\ 0.998\\ 1.000\\ 0.332\\ 0.696\\ 0.808\\ 0.847\\ 0.975\\ 0.999\\ 1.000\\ 0.551\\ 0.885\\ 0.947\\ 0.964 \end{array}$	Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 10.000 vs. 10.000 10.000 vs. 70.000 10.000 vs. 50.000 10.000 vs. 60.000 10.000 vs. 40.000 10.000 vs. 20.000 10.000 vs. 30.000 30.000 vs. 50.000 30.000 vs. 60.000 30.000 vs. 80.000 30.000 vs. 40.000	$\begin{array}{c} 0.480\\ 0.337\\ 0.240\\ 0.117\\ 0.803\\ 0.603\\ 0.537\\ 0.510\\ 0.363\\ 0.220\\ 0.123\\ 0.680\\ 0.420\\ 0.413\\ 0.387\\ 0.240\\ \end{array}$	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 2.000\\ 1.403\\ 1.000\\ 0.486\\ 3.347\\ 2.514\\ 2.236\\ 2.125\\ 1.514\\ 0.917\\ 0.514\\ 2.833\\ 2.000\\ 1.722\\ 1.611\\ 1.000 \end{array}$	$\begin{array}{c} 0.885\\ 0.984\\ 0.998\\ 1.000\\ 0.332\\ 0.696\\ 0.808\\ 0.847\\ 0.975\\ 0.999\\ 1.000\\ 0.551\\ 0.885\\ 0.947\\ 0.964\\ 0.998 \end{array}$	Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 0.000 vs. 10.000 10.000 vs. 70.000 10.000 vs. 50.000 10.000 vs. 60.000 10.000 vs. 80.000 10.000 vs. 20.000 10.000 vs. 70.000 30.000 vs. 60.000 30.000 vs. 80.000 30.000 vs. 40.000 30.000 vs. 20.000 20.000 vs. 70.000 20.000 vs. 50.000	$\begin{array}{c} 0.480\\ 0.337\\ 0.240\\ 0.117\\ 0.803\\ 0.603\\ 0.537\\ 0.510\\ 0.363\\ 0.220\\ 0.123\\ 0.680\\ 0.480\\ 0.413\\ 0.387\\ 0.240\\ 0.0967 \end{array}$	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 2.000\\ 1.403\\ 1.000\\ 0.486\\ 3.347\\ 2.514\\ 2.236\\ 2.125\\ 1.514\\ 0.917\\ 0.514\\ 2.833\\ 2.000\\ 1.722\\ 1.611\\ 1.000\\ 0.403 \end{array}$	$\begin{array}{c} 0.885\\ 0.984\\ 0.998\\ 1.000\\ 0.332\\ 0.696\\ 0.808\\ 0.847\\ 0.975\\ 0.999\\ 1.000\\ 0.551\\ 0.885\\ 0.947\\ 0.964\\ 0.998\\ 1.000\\ \end{array}$	Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 10.000 vs. 10.000 10.000 vs. 70.000 10.000 vs. 50.000 10.000 vs. 60.000 10.000 vs. 40.000 10.000 vs. 20.000 10.000 vs. 70.000 30.000 vs. 50.000 30.000 vs. 80.000 30.000 vs. 40.000 30.000 vs. 20.000 20.000 vs. 50.000 20.000 vs. 50.000	$\begin{array}{c} 0.480\\ 0.337\\ 0.240\\ 0.117\\ 0.803\\ 0.603\\ 0.537\\ 0.510\\ 0.363\\ 0.220\\ 0.123\\ 0.680\\ 0.420\\ 0.413\\ 0.387\\ 0.240\\ 0.0967\\ 0.583\\ 0.383\\ 0.317\\ \end{array}$	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 2.000\\ 1.403\\ 1.000\\ 0.486\\ 3.347\\ 2.514\\ 2.236\\ 2.125\\ 1.514\\ 0.917\\ 0.514\\ 2.833\\ 2.000\\ 1.722\\ 1.611\\ 1.000\\ 0.403\\ 2.430\\ 1.597\\ 1.319 \end{array}$	$\begin{array}{c} 0.885\\ 0.984\\ 0.998\\ 1.000\\ 0.332\\ 0.696\\ 0.808\\ 0.847\\ 0.975\\ 0.999\\ 1.000\\ 0.551\\ 0.885\\ 0.947\\ 0.964\\ 0.998\\ 1.000\\ 0.732\\ \end{array}$	Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 0.000 vs. 10.000 10.000 vs. 70.000 10.000 vs. 50.000 10.000 vs. 60.000 10.000 vs. 40.000 10.000 vs. 20.000 10.000 vs. 30.000 30.000 vs. 70.000 30.000 vs. 60.000 30.000 vs. 40.000 30.000 vs. 20.000 20.000 vs. 50.000 20.000 vs. 60.000 20.000 vs. 60.000	0.480 0.337 0.240 0.117 0.803 0.603 0.537 0.510 0.363 0.220 0.123 0.680 0.480 0.413 0.387 0.240 0.0967 0.583 0.383 0.317 0.290	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 2.000\\ 1.403\\ 1.000\\ 0.486\\ 3.347\\ 2.514\\ 2.236\\ 2.125\\ 1.514\\ 0.917\\ 0.514\\ 2.833\\ 2.000\\ 1.722\\ 1.611\\ 1.000\\ 0.403\\ 2.430\\ 1.597\\ 1.319\\ 1.208 \end{array}$	0.885 0.984 0.998 1.000 0.332 0.696 0.808 0.847 0.975 0.999 1.000 0.551 0.885 0.947 0.964 0.998 1.000 0.732 0.966 0.989 0.994	Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 0.000 vs. 10.000 10.000 vs. 70.000 10.000 vs. 50.000 10.000 vs. 60.000 10.000 vs. 40.000 10.000 vs. 20.000 10.000 vs. 30.000 30.000 vs. 70.000 30.000 vs. 60.000 30.000 vs. 80.000 30.000 vs. 50.000 20.000 vs. 60.000 20.000 vs. 60.000 20.000 vs. 80.000 20.000 vs. 80.000	0.480 0.337 0.240 0.117 0.803 0.603 0.537 0.510 0.363 0.220 0.123 0.680 0.480 0.413 0.387 0.240 0.0967 0.583 0.383 0.317 0.290 0.143	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 2.000\\ 1.403\\ 1.000\\ 0.486\\ 3.347\\ 2.514\\ 2.236\\ 2.125\\ 1.514\\ 0.917\\ 0.514\\ 2.833\\ 2.000\\ 1.722\\ 1.611\\ 1.000\\ 0.403\\ 2.430\\ 1.597\\ 1.319\\ 1.208\\ 0.597\end{array}$	0.885 0.984 0.998 1.000 0.332 0.696 0.808 0.847 0.975 0.999 1.000 0.551 0.885 0.947 0.964 0.998 1.000 0.732 0.966 0.989 0.994 1.000	Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 0.000 vs. 10.000 10.000 vs. 70.000 10.000 vs. 50.000 10.000 vs. 60.000 10.000 vs. 40.000 10.000 vs. 20.000 10.000 vs. 30.000 30.000 vs. 70.000 30.000 vs. 60.000 30.000 vs. 80.000 30.000 vs. 50.000 20.000 vs. 60.000 20.000 vs. 60.000 20.000 vs. 80.000 20.000 vs. 40.000 20.000 vs. 40.000	0.480 0.337 0.240 0.117 0.803 0.603 0.537 0.510 0.363 0.220 0.123 0.680 0.480 0.413 0.387 0.240 0.0967 0.583 0.383 0.317 0.290 0.143 0.440	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 2.000\\ 1.403\\ 1.000\\ 0.486\\ 3.347\\ 2.514\\ 2.236\\ 2.125\\ 1.514\\ 0.917\\ 0.514\\ 2.833\\ 2.000\\ 1.722\\ 1.611\\ 1.000\\ 0.403\\ 2.430\\ 1.597\\ 1.319\\ 1.208\\ 0.597\\ 1.833\\ \end{array}$	0.885 0.984 0.998 1.000 0.332 0.696 0.808 0.847 0.975 0.999 1.000 0.551 0.885 0.947 0.964 0.998 1.000 0.732 0.966 0.989 0.994 1.000 0.926	Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 0.000 vs. 10.000 10.000 vs. 70.000 10.000 vs. 50.000 10.000 vs. 60.000 10.000 vs. 40.000 10.000 vs. 20.000 10.000 vs. 30.000 30.000 vs. 70.000 30.000 vs. 60.000 30.000 vs. 80.000 30.000 vs. 50.000 20.000 vs. 60.000 20.000 vs. 60.000 20.000 vs. 60.000 20.000 vs. 40.000 20.000 vs. 40.000 40.000 vs. 70.000	0.480 0.337 0.240 0.117 0.803 0.603 0.537 0.510 0.363 0.220 0.123 0.680 0.480 0.413 0.387 0.240 0.0967 0.583 0.383 0.317 0.290 0.143 0.440 0.240	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 2.000\\ 1.403\\ 1.000\\ 0.486\\ 3.347\\ 2.514\\ 2.236\\ 2.125\\ 1.514\\ 0.917\\ 0.514\\ 2.833\\ 2.000\\ 1.722\\ 1.611\\ 1.000\\ 0.403\\ 2.430\\ 1.597\\ 1.319\\ 1.208\\ 0.597\\ 1.833\\ 1.000\\ \end{array}$	0.885 0.984 0.998 1.000 0.332 0.696 0.808 0.847 0.975 0.999 1.000 0.551 0.885 0.947 0.964 0.998 1.000 0.732 0.966 0.989 0.994 1.000 0.926 0.998	Do Not Test Do Not Test
0.000 vs. 40.000 0.000 vs. 20.000 0.000 vs. 30.000 0.000 vs. 10.000 10.000 vs. 70.000 10.000 vs. 50.000 10.000 vs. 60.000 10.000 vs. 40.000 10.000 vs. 20.000 10.000 vs. 30.000 30.000 vs. 70.000 30.000 vs. 60.000 30.000 vs. 80.000 30.000 vs. 50.000 20.000 vs. 60.000 20.000 vs. 60.000 20.000 vs. 80.000 20.000 vs. 40.000 20.000 vs. 40.000	0.480 0.337 0.240 0.117 0.803 0.603 0.537 0.510 0.363 0.220 0.123 0.680 0.480 0.413 0.387 0.240 0.0967 0.583 0.383 0.317 0.290 0.143 0.440	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 2.000\\ 1.403\\ 1.000\\ 0.486\\ 3.347\\ 2.514\\ 2.236\\ 2.125\\ 1.514\\ 0.917\\ 0.514\\ 2.833\\ 2.000\\ 1.722\\ 1.611\\ 1.000\\ 0.403\\ 2.430\\ 1.597\\ 1.319\\ 1.208\\ 0.597\\ 1.833\\ \end{array}$	0.885 0.984 0.998 1.000 0.332 0.696 0.808 0.847 0.975 0.999 1.000 0.551 0.885 0.947 0.964 0.998 1.000 0.732 0.966 0.989 0.994 1.000 0.926	Do Not Test Do Not Test

80.000 vs. 70.000	0.293	9	1.222	0.994	Do Not Test
80.000 vs. 50.000	0.0933	9	0.389	1.000	Do Not Test
80.000 vs. 60.000	0.0267	9	0.111	1.000	Do Not Test
60.000 vs. 70.000	0.267	9	1.111	0.997	Do Not Test
60.000 vs. 50.000	0.0667	9	0.278	1.000	Do Not Test
50.000 vs. 70.000	0.200	9	0.833	1.000	Do Not Test

Comparisons for factor: Time within 25% PEG

Comparison	Diff of Means	р	q	Р	P<0.05
10.000 vs. 60.000	0.593	9	2.472	0.714	No
10.000 vs. 0.000	0.590	9	2.458	0.720	Do Not Test
10.000 vs. 30.000	0.533	9	2.222	0.814	Do Not Test
10.000 vs. 80.000	0.507	9	2.111	0.852	Do Not Test
10.000 vs. 50.000	0.453	9	1.889	0.914	Do Not Test
10.000 vs. 70.000	0.360	9	1.500	0.976	Do Not Test
10.000 vs. 20.000	0.190	9	0.792	1.000	Do Not Test
10.000 vs. 40.000	0.1000	9	0.417	1.000	Do Not Test
40.000 vs. 60.000	0.493	9	2.055	0.869	Do Not Test
40.000 vs. 0.000	0.490	9	2.042	0.873	Do Not Test
40.000 vs. 30.000	0.433	9	1.805	0.932	Do Not Test
40.000 vs. 80.000	0.407	9	1.694	0.952	Do Not Test
40.000 vs. 50.000	0.353	9	1.472	0.979	Do Not Test
40.000 vs. 70.000	0.260	9	1.083	0.997	Do Not Test
40.000 vs. 20.000	0.0900	9	0.375	1.000	Do Not Test
20.000 vs. 60.000	0.403	9	1.680	0.954	Do Not Test
20.000 vs. 0.000	0.400	9	1.667	0.956	Do Not Test
20.000 vs. 30.000	0.343	9	1.430	0.982	Do Not Test
20.000 vs. 80.000	0.317	9	1.319	0.989	Do Not Test
20.000 vs. 50.000	0.263	9	1.097	0.997	Do Not Test
20.000 vs. 70.000	0.170	9	0.708	1.000	Do Not Test
70.000 vs. 60.000	0.233	9	0.972	0.999	Do Not Test
70.000 vs. 0.000	0.230	9	0.958	0.999	Do Not Test
70.000 vs. 30.000	0.173	9	0.722	1.000	Do Not Test
70.000 vs. 80.000	0.147	9	0.611	1.000	Do Not Test
70.000 vs. 50.000	0.0933	9	0.389	1.000	Do Not Test
50.000 vs. 60.000	0.140	9	0.583	1.000	Do Not Test
50.000 vs. 0.000	0.137	9	0.569	1.000	Do Not Test
50.000 vs. 30.000	0.0800	9	0.333	1.000	Do Not Test
50.000 vs. 80.000	0.0533	9	0.222	1.000	Do Not Test
80.000 vs. 60.000	0.0867	9	0.361	1.000	Do Not Test
80.000 vs. 0.000	0.0833	9	0.347	1.000	Do Not Test
80.000 vs. 30.000	0.0267	9	0.111	1.000	Do Not Test
30.000 vs. 60.000	0.0600	9	0.250	1.000	Do Not Test
30.000 vs. 0.000	0.0567	9	0.236	1.000	Do Not Test
0.000 vs. 60.000	0.00333	9	0.0139	1.000	Do Not Test

A result of "Do Not Test" occurs for a comparison when no significant difference is found between two means that enclose that comparison. For example, if you had four means sorted in order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1). Note that not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated as if there is no significant difference between the means, even though one may appear to exist.

References

- (1) Turina, A. V.; Sanchez, J. M.; Perillo, M. A. In *Localization of ortho-nitrophenol within the lipid bilayer*, Congreso Conjunto de Sociedades Biomédicas de la Argentina, Mar del Plata, Argentina, Medicina: Mar del Plata, Argentina, 2004; p 234.
- (2) Farruggia, B.; Nerli, B.; Picó, G., Study of the serum albumin-polyethyleneglycol interaction to predict the protein partitioning in aqueous two-phase systems. *Journal of Chromatography B* **2003**, *798* (1), 25-33.
- (3) Ferreira, L.; Fan, X.; Mikheeva, L. M.; Madeira, P. P.; Kurgan, L.; Uversky, V. N.; Zaslavsky, B. Y., Structural features important for differences in protein partitioning in aqueous dextranolyethylene glycol two-phase systems of different ionic compositions. *Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics* **2014**, *1844* (3), 694-704.
- (4) Hutzler, J. M.; Tracy, T. S., Atypical Kinetic Profiles in Drug Metabolism Reactions. *Drug Metabolism and Disposition* **2002**, *30* (4), 355-362.