Supporting Information

Nonspecific Heme-Binding Cyclase, AbmU, Catalyzes [4 + 2] Cycloaddition During Neoabyssomicin Biosynthesis

Qinglian Li,*^{,†} Wenjuan Ding,^{†,‡} Jiajia Tu,[†] Changbiao Chi,[§] Hongbo Huang,[†] Xiaoqi Ji,^{†,‡} Ziwei Yao,^{†,‡} Ming Ma,[§] and Jianhua Ju^{*, †,‡}

[†]CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Rd., Guangzhou 510301, China [‡]College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China

[§]State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China.

*liql@scsio.ac.cn; *jju@scsio.ac.cn.

Table of Contents		
Figure S1.	Selection of known abyssomicins.	S3
Figure S2.	Structure-based sequence alignments of AbmU and AbyU.	S4
Figure S3.	In-frame deletion of <i>abmU</i> .	S 5
Figure S4.	(–) HR-ESI-MS spectrum of compound 5 .	S6
Figure S5.	The key COSY, HMBC and NOESY correlations of 5 .	S7
Figure S6.	NMR spectra of compound 5.	S8-S10
Figure S7.	Evaluations of protein over-expression.	S11
Figure S8.	Mass spectrum of AbmU-catalyzed reaction product.	S12
Figure S9.	Kinetic investigation of AbmU activity under oxidizing conditions.	S13
Figure S10.	UV-Vis spectra of AbmU.	S14
Figure S11.	The effect of heme content on the activity of AbmU.	S15
Figure S12.	Assessment of AbmU activity and products under oxidizing and reducing conditions.	S16–S18
Figure S13.	AbmU-catalyzed reactions under aerobic and anaerobic conditions.	S19
Figure S14.	Mutagenesis and reaction analysis of putative AbmU heme ligands.	S20
Figure S15.	The modeling of substrate 5 of AbmU in the active site.	S21
Table S1.	Summary of ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data for compound 5 in DMSO- d_6 .	S22
Table S2.	X-ray diffraction data collection and refinement statistics.	S23
Table S3.	Bacteria and plasmids used in this study.	S24
Table S4.	Primers used in this study.	S25–S26
Supporting References		S27

Supporting Figures

Figure S1. Selection of known abyssomicin congeners.

S3

Figure S2. Structure-based sequence alignments of AbmU and AbyU.

Figure S3. In-frame deletion of *abmU* in WT *S. koyangensis* SCSIO 5802 via PCR-targeting. (A) Schematic representation for in-frame deletion of *abmU*. (B) PCR analyses of the WT strain and the *abmU* double-cross mutant were carried out using the primers listed in **Table S2**. Marker: DNA molecular ladder; W: using the genomic DNA of *S. koyangensis* SCSIO 5802 as template; M: using the genomic DNA of *AabmU* mutant as template.

Figure S4. (–) HR-ESI-MS spectrum of compound 5.

Figure S5. Structure of 5 and the key COSY, HMBC and NOESY correlations of 5.

Figure S6. NMR spectra of compound **5**. (**A**) ¹H NMR spectrum. (**B**) ¹³C NMR spectrum. (**C**) Dept 135 spectrum. (**D**) ¹H-¹H COSY spectrum. (**E**) HSQC spectrum. (**F**) HMBC spectrum. (**G**) NOESY spectrum.

S8

Е

S9

F

Figure S7. Evaluation of protein overexpressions. SDS-PAGE analyses of wild-type (WT) AbmU and its 17 mutant variants purified from LB medium supplemented with the heme precursor 5-aminolevulinic acid (5-ALA).

Figure S8. Mass spectrum of AbmU-catalyzed reaction product. Positive ion mode ESI-MS of compound recovered from AbmU-catalyzed [4 + 2] cycloaddition reaction (see **Figure 3C**, trace vi). The product mass is consistent with the proposed structure of abyssomicin 6 (4) with m/z of $[M + H]^+ = 331.12$ (calculated 331.15).

Figure S9. Kinetic investigations of AbmU activity under oxidizing conditions. All data points represent the mean value \pm SD.

Figure S10. UV-Vis spectra of AbmU. (**A**) Pyridine hemochrome assay of AbmU showing the characteristic spectrum of heme *b*. (**B**) UV-vis spectra of AbmU purified from LB medium supplemented with 5-ALA (termed as-purified AbmU) and oxidized AbmU. The concentration of each protein is 100 μ M. To generate the oxidized AbmU, 500 μ M potassium ferricyanide (K₃[Fe(CN)₆]) was added to the as-purified AbmU. Since K₃[Fe(CN)₆] absorbs strongly in the UV-vis region, the spectrum of oxidized AbmU shown here is actually the difference spectrum of potassium ferricyanide (K₃[Fe(CN)₆])-oxidized AbmU minus K₃[Fe(CN)₆] (500 μ M).

Figure S11. The effect of heme content on the activity of AbmU. (**A**) Comparison of the color and the UV-vis spectrum of AbmU purified from minimal LB medium (~0.1 % heme content) relative to that purified from LB medium supplemented with heme precursor 5-ALA (~ 1.5 % heme content). (**B**) HPLC analysis of the reaction mixtures of linear substrate **5** (200 μ M) with AbmU (1 μ M). i: AbmU purified from LB medium in the presence of 2 μ M hemin; ii: AbmU purified from minimal LB medium; iii: AbmU purified LB medium supplemented with 5–ALA. The activity assays were performed in three independent replicates (each had at least two parallel samples); the set of traces shown is representative of the full dataset. There were no obvious differences in catalytic efficiencies for the AbmU purified from minimal LB medium and that purified LB medium supplemented with 5–ALA (traces ii and iii); however, additional supply of hemin (2 μ M) in the reaction mixture inhibited the activity of AbmU purified from LB medium (traces i and ii), demonstrating that the non-specific binding of heme moiety at His160 residue facing the barrel precluded the substrate binding and thus catalysis.

Figure S12. AbmU employs either heme iron oxidation state (+2 or +3) during the course of [4+2] cycloaddition. (**A**) HPLC analyses of AbmU-catalyzed reactions under oxidized or reduced conditions. As-purified AbmU (trace ii), sodium dithionite (1 mM)-reduced AbmU (trace iv), heme *b* (trace viii) and sodium dithionite (1 mM)-reduced heme *b* (trace ix) were each incubated with 200 μ M **5** in Tris-HCl buffer (50 mM, pH 8.0) at 30 °C for 10 min. In the above reactions, the concentration of AbmU or heme *b* was set in 1 μ M. In addition, authentic standard **4** (200 μ M) was similarly subjected to the same reducing reaction condition (devoid of AbmU) comprising 1 mM sodium dithionite in Tris-HCl buffer (50 mM, pH 8.0), and used as a control (trace vii). (**B**) HPLC-HRESIMS analysis of the AbmU reaction product under reducing conditions. The formula of the product **6** was determined to be C₁₉H₂₄O₈S (*m*/*z* 413.1270 [M + H]⁺, calcd 413.1265) on the basis of LC-HRESIMS. Compound **6** is proposed to be spontaneously derived from AbmU-catalyzed [4 + 2] cycloaddition adduct **4** *via* a Michael-type addition of bisulfite to the C8-C9 olefin of **4**. (**C**) Summary of ¹H NMR (700 MHz) data for compound **6** in CD₃OD. (**D**) The ¹H NMR (700 MHz) spectrum of compound **6** in CD₃OD. (**E**) The ¹H-¹H COSY spectrum of compound **6** in CD₃OD.

С

D

Figure S13. AbmU-catalyzed reactions under aerobic and anaerobic conditions. The as-purified AbmU (1 μ M), sodium dithionite (1 mM)-reduced AbmU (1 μ M) were each incubated with **5** (200 μ M) in Tris-HCl buffer (50 mM, pH 8.0) at 30 °C for 10 min, and then subjected to HPLC analyses.

Figure S14. Mutagenesis and reaction analysis of putative AbmU heme ligands. A total of 16 amino residues were each mutated to nonpolar residues (alanine, phenylalanine or leucine). Each (1 μ M) of the mutant proteins was incubated with substrate **5** (200 μ M) in Tris-HCl buffer (50 mM, pH 8.0) at 30 °C for 10 min, and then subjected to HPLC analyses.

Figure S15. The modeling of substrate 5 of AbmU in the active site. (A) The enlarged details for the Hbond interactions between the tetronate moiety of 5 (cyan) with key residues of AbmU. H-bonds were labeled with yellow dashed lines. The four residues of AbmU with H-bonds to the tetronate moiety were labeled as yellow sticks. (B) The enlarged details for the hydrophobic interactions between the terminal $\Delta^{8,9}$, $\Delta^{10,11}$, $\Delta^{12,13}$ -triene moiety of 5 (cyan) and residues (yellow sticks) of AbmU.

Supporting Tables

compound 5				
position	$\delta_{ m C}$	type	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	
1	167.9	С		
2	97.6	С		
3	197.5	С		
4	35.5	CH_2	2.66,m	
5	27.8	CH ₂	1.49, m; 1.81, m	
6	42.3	СН	2.80, m	
7	202.5	С		
8	127.3	СН	6.28, overlapped	
9	143.3	СН	7.22, dd (13.3, 6.0)	
10	124.2	СН	6.33, overlapped	
11	146.4	СН	6.74, d (14.1)	
12	134.6	С		
13	132.8	СН	5.84, q (5.4)	
14	91.0	CH_2	4.96, s; 5.06,s	
15	151.8	С		
16	182.6	С		
17	17.1	CH ₃	1.06, dd (6.2, 3.0)	
18	11.6	CH ₃	1.75, s	
19	14.2	CH ₃	1.77, d (5.4)	

Table S1. Summary of ¹H (500 MHz) and ¹³C (125 MHz) NMR data for compound 5 in DMSO-*d*₆.

Table S2. X-ray diffraction data collection and refinement statistics.

	SeMet-AbmU
Data collection	
Wavelength	0.97893
Space group	$P2_1$
Cell dimensions	
<i>a, b, c</i> (Å)	66.61, 65.35, 101.40
α, β, γ (°)	90.00, 90.19, 90.00
Resolution (Å)	50.00-2.51 (2.58-2.51) ^a
No. of unique reflections	29528
R _{merge} ^b	0.081 (0.498)
I/σ_I	13.9 (3.0)
Completeness (%)	98.2 (98.9)
Redundancy	6.8 (7.0)
Refinement	
$R_{\rm work}/R_{\rm free}$	0.19/ 0.23
No. atoms	6427
Protein	6245
Water	182
B-factors	
Protein	51.4
Water	41.6
Ramachandran	
Favored (%)	98.1
Allowed (%)	1.6
Outlier (%)	0.0
RMSD	
Bond lengths (Å)	0.012
Bond angles (°)	1.426
Protein Data Bank entry	6LE0

^a Numbers in parentheses are values for the highest-resolution bin. ^b $R_{merge} = \sum_{hkl} \sum_{i} |I_i(hkl) - \langle I(hkl) \rangle | / \sum_{hkl} \sum_{i} I_i(hkl)$, where $I_i(hkl)$ is the *i*th observation of reflection *hkl*, and $\langle I(hkl) \rangle$ is the weighted average intensity for all observations of that reflection *hkl*.

Table S3. Bacteria and plasmids used in this study.

Strains/Plasmids	Description	Source/[Refer ences
Streptomycetes		
Streptomyces koyangensis SCSIO 5802	WT producer of neoabyssomicins/abyssomicins (1–3)	This work
$\Delta abmU$	<i>abmU</i> in-frame deletion mutant; <i>S. koyangensis</i> SCSIO 5802 with a 459 bp fragment of <i>abmU</i> deleted	This work
$\Delta abmU$:: $abmU$	$\Delta abmU$ complementation strain, expression of $abmU$ under the control of a strong constitutive promoter $ermE^*p$	This work
E. coli		
DH5a	Host strain for general clone	
BW25113/pIJ790	K-12 derivative: <i>araBAD</i> , <i>rhaBAD</i> ; host strain for Red/ET-mediated recombination	[1]
ET12567/pUZ8002	<i>dam</i> , <i>dcm</i> , <i>hsdM</i> , <i>hsdS</i> , <i>hsdR</i> , <i>cat</i> ^R , <i>tet</i> ^R ; donor strain for conjugation between <i>E</i> . <i>coli</i> and <i>Streptomyces</i>	[2]
Plasmids		
pIJ773	<i>aac</i> (3) <i>IV</i> , <i>oriT</i> ; used for amplifying the <i>aac</i> (3) <i>IV</i> - <i>oriT</i> gene cassette for gene inactivation	[3]
pL646	Derived from pSET152, containing <i>ermE</i> *P promoter and the ribosome- binding site of the <i>tuf1</i> gene	[4]
cosmid 7-6F	A cosmid which contains partial abm biosynthetic cluster, used for in- frame deletion of $abmU$	[5]
7-6F-UKO	A 459 bp fragment of <i>abmU</i> in cosmid 7-6F was replaced by the <i>aac(IV)</i> + <i>oriT</i> cassette	This work
7-6F-UKOIF	The <i>aac(IV)</i> + <i>oriT</i> cassette in 7-6F-UKO was removed	This work
7-6F-UKOIF-Apr	The kanamycin resistance gene neo was replaced by the $aac(IV) + oriT$ cassette	This work

Table S4. Primers used in this study.

Name	Sequence (5'-3')	Purpose	
abmU-DelF	GACCGAGGGGCCCACGAAGGCGCCGAGCAGCGACAGTGC <u>A</u> CTAGTATTCCGGGGATCCGTCGACC (<i>Spe</i> I site underlined)	For disrupting <i>abmU</i>	
abmU-DelR	TTCCTCGACCTGGCGCGAGCCGCGAGCGGCGATCCGGCC <u>AC</u> TAGTTGTAGGCTGGAGCTGCTTC (<i>Spe</i> I site underlined)		
abmU-TF	CCCGCCAGTTGCAGTTCTCG	For verifying the disruption	
abmU-TR	CGGTTCGTTCCGCGTCATG		
abmU-expF	AAATTTCCCATATGATGAACGAACGCTTCACC	For cloning and expression of <i>abmU</i>	
abmU-expR	ATATGGATCCTCAGGCGGTGCGCCCGGC		
AbmU-H10A-F	TTCACCCTGCCCgcCAGCCCCGCCCTCG	For construction of AbmU/	
AbmU-H10A-R	gcGGCGGGCAGGGTGAAGCGTTCGTTC		
AbmU-H48A-F	GAGAACCTCACGGAAgcCGTCTCGCTGGAC	For construction of AbmU/ H48A mutant	
AbmU-H48A-R	gcTTCCGTGAGGTTCTCCCAGACCGCGAGG		
AbmU-H61A-F	GCCAACCCGCCCGTGgcCGGTCCCGGCGAC	For construction of AbmU/ H61A mutant	
AbmU-H61A-R	gcCACGGGCGGGTTGGCGAACCGGTAGTC		
AbmU-H99A-F	CGTTCGTCGGACGCGgcCCTGATGATGTAC	For construction of AbmU/ H99A mutant	
AbmU-H99A-R	gcCGCGTCCGACGAACGCTCGTACAGGATG		
AbmU-H160A-F	ACCCCCGAGGCGCCGgcCAGCCTCTACCG	For construction of AbmU/ H160A mutant	
AbmU-H160A-R	gcCGGCGCCTCGGGGGTGGGCTGGAAGG		
AbmU-H166A-F	AGCCTCTACCGCACCgcCCTGGTGCTCCGG	For construction of AbmU/ H166A mutant	
AbmU-H166A-R	gcGGTGCGGTAGAGGCTGTGCGGCGCCTC		
AbmU-H176F-F	GAGATCCCCGGCGGGttCGGGCTGACCGAC	For construction of AbmU/	
AbmU-H176F-R	aaCCCGCCGGGGATCTCCCCGGAGCACCAG		
AbmU-M101L-F	TCGGACGCGCACCTGcTGATGTACTACCGC	For construction of AbmU/	
AbmU-M101L-R	gCAGGTGCGCGTCCGACGAACGCTCGTAC		
AbmU-M102A-F	GACGCGCACCTGATGgcGTACTACCGCGAG	For construction of AbmU/ M102A mutant	
AbmU-M102A-R	gcCATCAGGTGCGCGTCCGACGAACGCTCG		
AbmU-M146A-F	GGCCGGTACGGCTCCgcGATCGGGCTGCGC	For construction of AbmU/ M146A mutant	
AbmU-M146A-R	gcGGAGCCGTACCGGCCGCCCGACCCCAGG		
AbmU-Y53F-F	ACGTCTCGCTGGACTtCCCGGTTCGCCAAC	For construction of AbmU/ Y53F mutant	

AbmU-Y53F-R	aAGTCCAGCGAGACGTGTTCCGTGAGG	
AbmU-Y69F-F	GCGACTGGGACACGTtCGACAGCCGCTTC	For construction of AbmU/ Y69F mutant
AbmU-Y69F-R	aACGTGTCCCAGTCGCCGGGACCGTGC	
AbmU-Y92F-F	CCGGACGCATCCTGTtCGAGCGTTCGTCG	For construction of AbmU/ Y92F mutant
AbmU-Y92F-R	aACAGGATGCGTCCGGTGCCCTGGAGGG	
AbmU-Y103F-F	CGCACCTGATGATGTtCTACCGCGAGCAG	For construction of AbmU/ Y103F mutant
AbmU-Y103F-R	aACATCATCAGGTGCGCGTCCGACGAAC	
AbmU-Y104F-F	ACCTGATGATGTACTtCCGCGAGCAGCTG	For construction of AbmU/ Y104F mutant
AbmU-Y104F-R	aAGTACATCATCAGGTGCGCGTCCGACG	
AbmU-Y143F-F	GGTCGGGCGGCCGGTtCGGCTCCATGATC	For construction of AbmU/
AbmU-Y143F-R	aACCGGCCGCCCGACCCCAGGATGGGG	Y143F mutant
AbmU-Y163F-F	CGCCGCACAGCCTCTtCCGCACCCACC	For construction of AbmU/
AbmU-Y163F-R	aAGAGGCTGTGCGGCGCCTCGGGGGTGG	Y163F mutant

Supporting References

- Datsenko, K. A.; Wanner, B. L. One-step inactivation of chromosomal genes in *Escherichia Coli* K-12 using PCR products. *Proc. Natl. Acad. Sci.U.S.A.* 2000, 97, 6640-6645.
- MacNeil, D. J.; Gewain, K. M.; Ruby, C. L.; Dezeny, G.; Gibbons, P. H.; MacNeil, T. Analysis of *Streptomyces Avermitilis* genes required for avermectin biosynthesis utilizing a novel integration vector. *Gene* 1992, 111, 61-68.
- 3. Gust, B.; Kieser, T.; Chater, K. F. *Redirect Technology: PCR-Targeting System in Streptomyces coelicolor A3 (2);* John Innes Centre: Norwich, 2002.
- 4. Hong, B.; Phornphisutthimas, S.; Tilley, E.; Baumberg, S.; McDowall, K. J. Streptomycin production by *Streptomyces griseus* can be modulated by a mechanism not associated with change in the *adpA* component of the A-factor cascade. *Biotechnol. Lett.* **2007**, *29*, 57-64.
- Tu, J.; Li, S.; Chen, J.; Song, Y.; Fu, S.; Ju, J.; Li, Q. Characterization and heterologous expression of the neoabyssomicin/abyssomicin biosynthetic gene cluster from *Streptomyces koyangensis* SCSIO 5802. *Microb. Cell Fact.* 2018, 17, No. 28.