Total Synthesis of Ajudazol A by a Modular Oxazole Diversification Strategy

Philipp Wollnitzke, ^a Sebastian Essig,^{a,c} Jan Philipp Gölz, ^{a,d} Karin von Schwarzenberg ^b and

Dirk Menche*a

^a Kekulé-Institut for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany

- ^b Department of Pharmacy Center for Drug Research, Butenandstr. 5-13, 81377 Munich, Germany
- ^c Bayer AG, Wuppertal, Germany
- ^d dedica GmbH, Germany

Supporting Information

Table of Contents:

- 1. Materials and Methods
- 2. Selective Oxazole Functionalization
- 3. sp³-sp²-oxazole cross coupling studies
- 4. Implementation of previous protocols for analog synthesis
- 5. Total synthesis of ajudazol A
- 6. Additional studies
- 7. Biological studies
- 8. NMR-spectra

1. Materials and Methods

Solvents and reagents: Unless stated otherwise, solvents were purchased from the central chemical store (ZVE) of the University of Bonn. Cyclohexane (CH) and ethyl acetate (EA) were distilled over a Vigreux column. Dry solvents like dichloromethane, toluene, diethyl ether and acetonitrile were taken out of a solvent purification system MB-SPS 800 from MBraun, Garching. THF was freshly distilled over sodium/benzophenone before use. Reagents were purchased from the following companies: Acros Organics, Geel (Belgium); Alfa-Aesar, Ward Hill, MA (USA); Sigma-Aldrich, St. Louis, MO (USA) and TCI Chemicals, Antwerp (Belgium). Unless stated otherwise all of these chemicals were used without further purification.

The following reagents were prepared according to literature procedures: Andersen's reagent (**12**),^[1] IBX.^[2]

^[1] (a) Andersen, K. K. Tetrahedron Lett. **1962**, *3*, 93-95; (b) Solladié, G.; Hutt, J.; Girardin, A. Synlett **1987**, 173.

^[2] Figero, M.; Santagostino, M.; Sputore, S. J. Org. Chem. **1999**, *64*, 4537-4538.

Reaction handling: Unless stated otherwise, all non-aqueous reactions were performed in flamedried glassware under an argon atmosphere. All flasks were equipped with rubber septa or were sealed with a glass stopper and a PTFE-collar. Temperatures above r. t. (23–27 °C) refer to oil bath temperatures, which were controlled by a temperature modulator. The following baths were used for cooling: water/ice (0 °C), acetone/dry ice (–78 °C) and acetone/liquid nitrogen (–90 °C). Reactions were magnetically stirred and monitored by TLC, unless otherwise noted.

Microwave reactions were carried out on a Discover SP-D 80 microwave reactor from CEM in septum-sealed microwave vessels.

Analytical Thin Layer Chomatography (TLC) was carried out with "Polygram[®] Sil G/UV254" plastic sheets from Machery-Nagel GmbH & Co. KG, Düren. Detection was carried out using short wave UV-light (254 and 366 nm) and anisaldehyde staining solution (135 mL absolute ethanol, 5 mL concentrated sulfuric acid, 1.5 mL glacial acetic acid and 3.7 mL *p*-anisaldehyde), vanillin staining solution (2 g vanillin in 100 mL EtOH with 1 mL conc. H₂SO₄), potassium permanganate staining solution (1.5 g KMnO₄, 10 g K₂CO₃, 1.25 mL 10% aq. NaOH in 200 mL water) or cerium(IV)-sulfate staining solution (5 g ammonium dimolybdate, 200 mL H2O, 16 mL conc. H₂SO₄ with 2 g cerium(IV)-sulfate).

Flash column chromatography was accomplished according to the method introduced by G. Nill^[3,4] using silica gel (pore size 60 Å, 0.040 - 0.063 mm) purchased from Merck Millipore, Massachusetts (USA). The given yields refer to the purified products.

Preparative High Performance Liquid Chromatography (PHPLC) was carried out on a Smartline Series instrument from Knauer with a Eurospher II C18P 100-5, 5 μ m, 250 x 16 mm column with precolumn (30 x 16.0 mm) from Knauer. Operation and analysis were under control of Knauer ChromGate software (version 3.3.2).

Optical rotations were measured with a MCP 150 polarimeter (Anton Paar) in a 1 dm cuvette using a sodium lamp.

¹**H-NMR** spectra were recorded at room temperature (298 K) on Bruker Avance I spectrometers with a ¹H operating frequency of 300, 400 and 500 MHz and Bruker Avance III spectrometers with a ¹H operating frequency of 500 MHz and 700 MHz. Unless stated otherwise, all spectra were recorded at room temperature. All chemical shifts are given in δ units relative to the residual protiated solvent residual peak (CDCl₃: δ H = 7.26 ppm, CD₂Cl₂: δ H = 5.32 d₆-acetone: δ H = 2.05 ppm).^[5] Analyses followed first-order principles and the following abbreviations were used throughout: s = singlet, d =

^[3] Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. **1978**, 43, 2923

^[4] Helmchen, G.; Nill, G.; Flockerzi, D.; Youssef, M. S. K. Angew. Chem. Int. Ed. **1979**, *18*, 63-65.

^[5] Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. *Organometallics* **2010**, *29*, 2176-2179.

doublet, t = triplet, q = quartet, m = multiplet, br. = broad. Coupling constants through n bonds (ⁿJ) are given in Hertz [Hz].

¹³C-NMR spectra were recorded at room temperature on Bruker Avance I spectrometers with a ¹³C operating frequency of 75 and 100 MHz and Bruker Avance III spectrometers with a ¹³C operating frequency of 125 and 175 MHz. Unless stated otherwise, all spectra were recorded at room temperature. All chemical shifts are given in δ units relative to the residual protiated solvent residual peak (CDCl₃: δ H = 7.26 ppm, CD₂Cl₂: δ C = 53.84 ppm, d₆-acetone: δ H = 29.84 ppm).^[6]

* chem. shifts associated with the major rotamer are marked with an asterisk

[#] chem. shifts associated with the minor rotamer are marked with an asterisk

Gas-chromatography-Mass spectrometry (GC-MS) were recorded using a GCMS-QP2010 SE from *Shimadzu*, Duisburg (Germany).

Mass spectra (MS) and high-resolution- mass spectra (HR-MS) were recorded on a MAT 95 XL sector field device from Thermo Finnigan (Bremen), mircoTOF-Q from Bruker Daltonik (Bremen) and LTQ Orbitrap XL mass spectrometer from Thermo Fisher Scientific (Bremen). Ionization processes and mol peaks were given in combination with characteristic fragmentations.

2. Selective Oxazole Functionalization

2.1. 2-(Phenylthio)oxazole (8)

^{*n*}BuLi (2.5M in ^{*n*}hexane, 20.0 mL, 50.0 mmol, 1.20 equiv.) was added dropwise to a stirring solution of oxazole (**6**, 2.66 g, 38.5 mmol, 1.00 equiv.) in dry THF (250 mL) at -78 °C and stirred for 1 h. A solution of diphenyl disulfide (12.8 g, 58.4 mmol, 1.40 equiv.) in dry THF (140 mL) was slowly added and stirred for 1 h. The reaction mixture was allowed to warm to room temperature slowly and stirred for 43 h. Aq. sat. NH₄Cl solution (150 mL) was added and the aqueous phase was extracted with Et₂O (3x 50 mL). All organic phases were combined and washed with aq. sat. NaHCO₃ solution (80 mL) and brine (80 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 9:1) gave 2-(phenylthio)oxazole (**8**) as a yellow oil (6.24 g, 35.2 mmol, 91%).

R_f = 0.16 (CH/EA 9:1).

^[6]Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. *Organometallics* **2010**, *29*, 2176-2179.

¹**H-NMR (300 MHz, CDCl₃)**: δ [ppm] = 7.67 (d, *J* = 0.9 Hz, 1H), 7.53 – 7.62 (m, 2H), 7.13 (d, *J* = 0.9 Hz, 1H), 7.34 – 7.42 (m, 3H).

¹³C-NMR (**75.0** MHz, CDCl₃): δ [ppm] = 141.0, 133.3, 129.6, 129.3, 129.0. HRMS (ESI, 6.0 eV) m/z: [M+Na⁺] calcd for $[C_7H_9NOS+Na]^+$ = 200.0141; Found 200.0144.

The experimental data are in agreement with those previously published.^{[7}

2.2. 5-Bromo-2-(Phenylthio)oxazole (10)

ⁿBuLi (2.5M in ⁿhexane, 1.60 mL, 3.37 mmol, 1.10 equiv.) was slowly added to a stirring solution of (ⁱPr)₂NH (720 μL, 4.28 mmol, 1.40 equiv.) in dry THF (210 mL) at 0 °C. After 0.5 h the reaction mixture was cooled to -78 °C and oxazole 8 (1.6 g, 9.03 mmol, 1.00 equiv.) dissolved in THF (8 mL) was added. The reaction mixture was allowed to stir for 1 h at this temperature. A solution of NBS (600 mg, 3.37 mmol, 1.10 equiv.) in THF (10 mL) was slowly added dropwise and stirred for 0.5 h, before the solution was allowed to warm to room temperature slowly. Aq. sat. NH₄Cl solution (30 mL) was added, the layers were separated and the aqueous phase was extracted with Et₂O (3x 80 mL). All organic phases were combined and washed with brine (200 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography (CH/EA 9:1) gave 5-bromooxazole 10 as an orange-yellowish oil (1.31 g, 5.11 mmol, 57%).

R_f = 0.30 (CH/EA 9:1).

¹H-NMR (**300** MHz, CDCl₃): δ [ppm] = 7.60 – 7.51 (m, 2H), 7.43 – 7.36 (m, 3H), 6.99 (s, 1H). ¹³C-NMR (**75.0** MHz, CDCl₃): δ [ppm] = 160.1, 133.4, 129.7, 129.6, 129.2, 128.5, 122.9. HRMS (EI (+), 70.0 eV) m/z: [M⁺⁺] calcd for C₇H₈BrNOS⁺⁺ = 286.9353; Found 286.9350.

^[7] Williams, D. R.; Fu, L. Org. Lett. **2012**, 808-811.

2.3. 5-Iodo-2-(Phenylthio)oxazole (11)

^{*n*}BuLi (2.5M in ^{*n*}hexane, 9.93 mL, 24.8 mmol, 1.10 equiv.) was slowly added to a stirring solution of (^{*i*}Pr)₂NH (4.45 mL, 31.6 mmol, 1.40 equiv.) in dry THF (210 mL) at 0 °C and stirred for 15 min. The solution was cooled down to -78 °C and a solution of 2-(phenylthio)oxazole (**8**) (3.96 g, 22.3 mmol, 1.00 equiv.) in THF (30 mL) was added dropwise. The resulting yellow cloudy mixture stirred for 1 h at -78 °C and a solution of I₂ (6.83 g, 26.9 mmol, 1.20 equiv.) in dry THF (33 mL) was added slowly. The mixture stirred for 0.5 h before it was quenched with 30% aq. NaHSO₃ solution (120 mL) and was allowed to warm to room temperature slowly. The phases were separated and the aqueous layer was extracted with Et₂O (3x 100 mL). All organic extracts were combined and washed with brine (60 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and flash column chromatography over silica gel (CH/EA 9:1) gave 5-iodoxazoole **11** as a white-yellowish powder (6.15 g, 20.3 mmol, 91%).

R_f = 0.30 (CH/EA 9:1).

Mp.: 52-53 °C.

¹H-NMR (300 MHz, CDCl₃): δ [ppm] = δ 7.61 – 7.53 (m, 2H), 7.43 – 7.36 (m, 3H), 7.13 (s, 1H). ¹³C-NMR (75.0 MHz, CDCl₃): δ [ppm] = 163.0, 137.6, 133.5, 129.7, 129.6, 87.7. HRMS (EI (+), 70.0 eV) m/z: [M^{+•}] calcd for C₇H₈INOS^{+•} = 302.9215; Found 302.9215.

2.4. 4-Bromo-2-(phenylthio)oxazole (38)

(^{*i*}Pr)₂NH (270 µL, 1.92 mmol,1.40 equiv.) was dissolved in dry THF (11 mL) and cooled to 0 °C, then ^{*n*}BuLi (2.5M in ^{*n*}hexane,744 µL, 1.86 mmol, 1.30 equiv.) was added. After 5 min the solution was cooled down to –78 °C and halogenoxazole **10** (350 mg, 1.37 mmol, 1.00 equiv.) in THF (2.5 mL) was added and the reaction stirred for 50 min. Aq. sat. NH₄Cl solution (3 mL) and H₂O (6 mL) were added and the solution was allowed to warm to room temperature. The layers were separated and the aqueous layer was extracted with Et₂O (3x 10 mL) and the combined organic phases were dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash chromatography (CH/EA 9:1) yielded compound **38** as a yellow oil (313 mg, 1.22 mmol, 89%).

R_f = 0.36 (CH/EA 9:1).

¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 7.62 (s, 1H), 7.61 – 7.57 (m, 2H), 7.44 – 7.38 (m, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 159.7, 139.0, 133.8, 129.7, 127.9, 116.8. HRMS (EI (+), 70.0 eV) m/z: [M^{+•}] calcd for C₇H₈INOS^{+•} = 254.9353; Found 254.9350.

2.5. 4-Iodo-2-(phenylthio)oxazole (12)

A stirring solution of $({}^{P}P)_{2}NH$ (282 µL, 2.01 mmol, 2.00 equiv.) in dry THF (12 mL) was cooled to 0 °C and "BuLi (2.5M in "hexane, 720 µL, 1.81 mmol, 1.80 equiv.) was added. The solution was allowed to stir for 5 min at this temperature, before it was cooled to -78 °C. 5-Bromooxazole **10** (25.7 mg, 100 µmol, 0.10 equiv.) and 5-iodooxazole **11** (304 mg, 1.00 mmol, 1.00 equiv.) were solved in THF (6 mL) and cooled to -78 °C. The LDA solution was slowly transferred dropwise *via* cannula into the oxazole solution (addition time: 61 min) and stirred for 2 min. Aq. sat. NH₄Cl solution (3 mL) and water (3 mL) were added and the reaction was allowed to warm to r.t. slowly. The layers were separated and the aqueous phase was extracted with Et₂O (3x 15 mL). All organic extracts were combined and dried dried over MgSO₄. Concentration of the crude product *in vacuo* and purification of the residue by flash column chromatography (CH/EA 9:1) afforded 4-iodooxazole **12** as an orange oil containing 8% impurities of 4-bromooxazole **38** (268 mg, 884 µmol, 88%).^[8]

R_f = 0.36 (CH/EA 9:1).

¹H-NMR (400 MHz, CDCl₃): δ [ppm] = 7.65 (s, 1H), 7.56–7.59 (m, 2H), 7.38–7.42 (m, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 160.3, 144.8, 133.7, 129.7 (2C), 129.6, 128.1. HRMS (EI (+), 70.0 eV) m/z: [M⁺⁺] calcd for C₇H₈INOS⁺⁺ = 254.9353; Found 254.9350.

2.6. 4-Iodo-2-Phenylsulfonyloxazole (13)

Ammonium molybdate tetrahydrate (5.99 g, 4.84 mmol, 2.20 equiv.) was dissolved in aq. hydrogen peroxide solution (30% v/v, 25 mL, 2.20 equiv.) at 0 °C and stirred for 15 min. The resulting yellow

^[8] measured by GC-MS analysis

solution was added dropwise to a solution of thiooxazole **12** (673 mg, 2.22 mmol, 1.00 equiv.) in EtOH (36 mL) and the reaction was allowed to warm to r.t. and stirred over night (18 h). Et₂O (50 mL) was added, the layers were separated and the aqueous phase was extracted with Et_2O (3x 80 mL). All organic extracts were combined and washed with brine (20 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography (CH/EA 3:2) gave sulfonyloxazole **13** as white needles (744 mg, 2.22 mmol, quant.).

 $R_f = 0.38$ (CH:EA 3:2).

Mp.: 73 °C.

¹**H-NMR (400 MHz, CDCl₃)**: δ [ppm] = 8.14 – 8.06 (m, 2H), 7.78 (s, 1H), 7.76 – 7.69 (m, 1H), 7.67 – 7.59 (m, 2H).

¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 159.9, 145.9, 137.5, 135.4, 129.9, 129.2, 83.61.

HRMS (EI (+), 70.0 eV) m/z: $[M^{+*}]$ calcd for $C_7H_8INO_3S^{+*}$ = 334.9113, Found 334.9105.

2.7. 2-lodoprop-2-en-1-ol (39)

TMSCI (44 mL, 346 mmol, 2.00 equiv.), water (3.12 mL, 173 mmol, 1.00 equiv.) and propargyl alcohol (10 mL, 173 mmol, 1.00 equiv.) were added to a stirring solution of NaI (51.9 g, 346 mmol, 2.00 equiv.) in CH₃CN (430 mL) at 0 °C and stirred for 1.5 h. Water (150 ml) was added, the layers were separated and the aqueous phase was extracted with Et_2O (3x 150 mL). All organic phases were combined and washed with aq. sat. NaSO₃ solution (200 mL) and brine (200 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 5:1) yielded allyl alcohol **39** as an orange liquid (14.8 g, 80.4 mmol, 46%).

R_f = 0.26 (CH/EA 5:1).

¹**H-NMR (400 MHz, CDCl₃):** δ [ppm] = 6.39 (q, *J* = 1.7 Hz, 1H), 5.86 (q, *J* = 1.4 Hz, 1H), 4.18 (s, 2H), 2.07 (br. s, 1H).

¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = ¹³C NMR (101 MHz, Chloroform-*d*) δ 124.6, 110.6, 71.2. GC-MS (EI (+), 70.0 eV) m/z: [M]^{•+} calcd for C₃H₅IO^{•+} = 183.94; Found 183.85.

The experimental data are in agreement with those previously published.^[9]

^[9] Kamiya, N.; Chikami, Y.; Ishii, Y. *Synlett* **1990**, *11*, 375-676.

2.8. *tert*-Butyl((2-iodoallyl)oxy)dimethylsilane (15)

TBSOTF (6.37 mL, 27.7 mmol, 1.20 equiv.) was added dropwise to a solution of allyl alcohol **39** (4.25 g, 21.1 mmol, 1.00 equiv.) and 2,6-lutidine (6.44 mL, 55.4 mmol, 2.40 equiv.) in dry CH_2Cl_2 (83 mL) at 0 °C. The reaction was allowed to warm to r.t. and stirred for 1.5 h. Water (80 mL) was added, the phases were separated and the aqueous layer was extracted with CH_2Cl_2 (3x 50 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash column chromatography (CH/EA 99:1) yielded TBS ether **15** as a clear liquid (6.34 g, 21.3 mmol, 92%).

R_f = 0.48 (CH/EA 99:1).

¹**H-NMR (400 MHz, CDCl₃):** δ [ppm] = 6.42 (q, *J* = 1.8 Hz, 1H), 5.81 (q, *J* = 1.7 Hz, 1H), 4.17 (t, *J* = 1.8 Hz, 2H), 0.92 (s, 9H), 0.09 (s, 6H).

¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 123.1 , 109.9, 71.2, 26.0, 18.5, -5.2.

HRMS (EI (+), 70.0 eV) m/z: $[M]^+$ calcd for $[C_9H_{19}IOSi^{\bullet+}-{}^tBu^{\bullet}]^+ = 241.1223$ Found 241.1211.

2.9. 2-(3-((*tert*-Butyldimethylsilyl)oxy)prop-1-en-2-yl)oxazole (16)

ZnCl₂ (12.0 g, 87.9 mmol, 1.40 equiv.) was heated under vacuum until free-flowing, recooled to r.t. and suspended in dry THF (44 mL). "BuLi (2.5M in "hexane, 19.7 mL, 49.2 mmol, 1.68 equiv.) was added dropwise to a stirring solution of oxazole (**6**, 100 μ L, 1.52 mmol, 1.40 equiv.) in dry THF (190 mL) at -78 °C and stirred for 0.5 h. The solution was transferred *via* cannula to the ZnCl₂ suspension and was allowed to warm up to r.t. over a period of 15 min. A solution of iodoalkene **15** (8.74 g, 29.3 mmol, 1.00 equiv.) in dry THF (8.0 mL) was slowly added, followed by addition of Pd(PPh₃)₄ (847 mg, 733 μ mol, 2.5mol-%). The reaction was sealed, heated to 60 °C and stirred for 19 h and was concentrated *in vacuo*. EtOAc (150 mL) and aq. sat. NH₄Cl solution (100 mL). were added, the layers were separated and the aqueous layer was extracted with EtOAc (3x 100 mL). All organic phases were combined and washed with brine (150 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography (CH/EA 19:1) yielded oxazole **16** as a colourless liquid (2.97 g, 12.4 mmol, 42%).

R_f = 0.18 (CH/EA 19:1).

¹H-NMR (500 MHz, CDCl₃): δ [ppm] = 7.60 (d, J = 0.8 Hz, 1H), 7.12 (d, J = 0.8 Hz, 1H), 6.08 (q, J = 1.9 Hz, 1H), 5.77 (td, J = 2.1, 1.4 Hz, 1H), 4.62 (t, J = 2.1 Hz, 2H), 0.95 (s, 9H), 0.12 (s, 6H). ¹³C-NMR (125 MHz, CDCl₃): δ [ppm] = 160.7, 138.3, 135.4, 127.9, 116.0, 61.7, 27.1, 26.1, 18.5, -5.3. HRMS (EI (+), 70.0 eV): [M]⁺ calcd for [C₁₂H₂₁NO₂Si⁺⁺-CH₃[•]]⁺ = 224.1101; Found 224.1106.

2.10. 2-(3-((tert-Butyldimethylsilyl)oxy)prop-1-en-2-yl)-5-iodooxazole (17)

^{*n*}BuLi (2.5M in ^{*n*}hexane, 5.15 mL, 12.9 mmol, 1.10 equiv.) was slowly added to a solution of ^{*i*}Pr₂NH (2.30 mL, 16.4 mmol, 1.40 equiv.) in dry THF (110 mL) at 0 °C and stirred for 15 min. A solution of oxazole **16** (2.80 g, 11.7 mmol, 1.00 equiv.) in dry THF (12 mL) was added at –78 °C and stirred for 1 h. I₂ (3.27 g, 12.9 mmol, 1.10 equiv.) in dry THF (33 mL) was slowly added dropwise and the reaction stirred for additional 30 min. The solution was poured into a separating funnel with aq. sat. NH₄Cl solution (100 mL) and aq. sat. Na₂SO₃ solution (100 mL) and was shaken vigorously until decolouration. The layers were separated and the aqueous phase was extracted with EtOAc (3x 100 mL). All organic phases were combined and washed with brine (150 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography (CH/EA 19:1) yielded 5-iodooxazole **17** as a yellow liquid (3.62 g, 9.92 µmol, 85%).

R_f = 0.36 (CH/EA 19:1).

¹**H-NMR (700 MHz, CD₂Cl₂):** δ [ppm] = 7.62 (s, 1H), 6.09 (q, *J* = 1.8 Hz, 1H), 5.80 (td, *J* = 2.2, 1.3 Hz, 1H), 4.58 (t, *J* = 2.1 Hz, 2H), 0.94 (s, 9H), 0.11 (s, 6H).

¹³C-NMR (175 MHz, CD₂Cl₂): δ [ppm] = 165.2, 136.5, 134.7, 116.9, 86.9, 61.4, 26.0, 18.5, -2.60, -5.3. HRMS (EI (+), 70.0 eV): [M⁺] calcd for [C₁₂H₂₀INO₂Si⁺⁺-CH₃[•]]⁺ = 350.0068; Found 350.0072.

2.11. 2-(3-((tert-Butyldimethylsilyl)oxy)prop-1-en-2-yl)-4-iodooxazole (18)

A stirring solution of $({}^{P}r)_{2}NH$ (700 µL, 4.97 mmol, 1.80 equiv.) in dry THF (30 mL) was cooled to 0 °C and ^{*n*}BuLi (2.5M in ^{*n*}hexane, 1.77 mL, 4.42 mmol, 1.60 equiv.) was added. The solution was allowed to stir for 15 min at this temperature, before it was cooled to -78 °C. 5-bromooxazole **10** (70.1 mg, 274 µmol, 0.10 equiv.) and 5-iodooxazole **17** (1.01 g, 2.76 mmol, 1.00 equiv.) were solved in THF (14 mL) and cooled to -78 °C. The LDA solution was transferred dropwise *via* a syringe pump into the oxazole solution over a period of 1 h and stirred for additional 2 min. Aq. sat. NH₄Cl solution (40 mL) was added and the reaction was allowed to warm to r.t. The layers were separated and the aqueous phase was extracted with Et₂O (3x 15 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 50:1) afforded 4-iodooxazole **18** as an orange liquid (875 mg, 2.39 mmol, 87%).

R_f = 0.33 (CH/EA 50:1).

¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = 7.62 (s, 1H), 6.09 (q, *J* = 1.8 Hz, 1H), 5.80 (td, *J* = 2.2, 1.3 Hz, 1H), 4.58 (t, *J* = 2.1 Hz, 2H), 0.94 (s, 9H), 0.11 (s, 6H).

¹³C-NMR (125 MHz, CDCl₃): δ [ppm] = 161.9, 142.2, 134.8, 117.1, 82.7, 61.5, 26.0, 18.5, -5.2. HRMS (EI (+), 70.0 eV): [M⁺] calcd for $[C_{12}H_{20}INO_2Si^{*+}-CH_3^{*}]^{+}$ = 350.0068; Found 350.0072.

3. sp³-sp²-oxazole cross coupling studies

3.1. *tert*-Butyldimethyl(((*1R,2S,5R*)-5-methyl-2-(prop-1-en-2-yl)cyclohexyl)oxy)silane (40)

TBSCI (2.58 g, 17.1 mmol, 1.50 equiv.) was added slowly to a solution of (–)-isopulegol (**19**, 2.02 g, 13.1 mmol, 1.00 equiv.) and imidazole (1.34 g, 19.7 mmol, 1.50 equiv.) in dry CH_2Cl_2 (20 mL) at 0 °C. The solution was allowed to warm to r.t. and stirred for 16 h. Water (10 mL) was added, the layers were separated and the aqueous phase was extracted with CH_2Cl_2 (3x 20 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the

residue by flash chromatography over silica gel (CH/EA 99:1) yielded TBS ether **40** as a colourless liquid (3.52 g, 13.1 mmol, quant.).

R_f = 0.55 (CH/EA 99:1).

 $[\alpha]_{D}^{23} = -31.1^{\circ} (CHCI_{3}, c = 1.0).$

¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = 4.74 (dt, *J* = 3.0, 1.4 Hz, 1H), 4.72 (td, *J* = 1.4, 0.7 Hz, 1H), 3.47 (ddd, *J* = 10.6, 9.8, 4.4 Hz, 1H), 1.87 (d, *J* = 22.5 Hz, 2H), 1.68 (t, *J* = 1.2 Hz, 3H), 1.64 – 1.57 (m, 2H), 1.49 – 1.37 (m, 1H), 1.37 – 1.23 (m, 1H), 1.00 (td, *J* = 12.3, 10.6 Hz, 1H), 0.91 (d, *J* = 6.6 Hz, 3H), 0.85 (s, 9H), 0.02 (s, 3H), -0.01 (s, 3H).

¹³**C-NMR (125 MHz, CDCl₃):** δ [ppm] = 148.1, 111.2, 73.5, 53.6, 45.3, 34.5, 31.8, 30.7, 26.0, 22.5, 21.0, 18.3, -3.7, -4.7.

HRMS (ESI (+), 6.0 eV): $[M+H]^+$ calcd for $[C_{16}H_{32}OSi+H]^+$ = 269.2295; Found 269.2290.

3.2. (R)-2-((1S,2R,4R)-2-((tert-Butyldimethylsilyl)oxy)-4-methylcyclohexyl)propan-1-ol (20)

BH₃ (1.0m in THF, 39 mL, 39 mmol, 1.50 equiv.) was slowly added to a stirring solution of protected alcohol **40** (9.39 g, 35.0 mmol, 1.0 equiv.) in dry THF (244 mL) at 0 °C and stirred for 3 h. Water (9 mL) was added, followed by careful addition of aq. NaOH solution (7.5m, 14 mL, 3.00 equiv.) and H₂O₂ (30 vol% in water, 13 mL, 3.00 equiv.). The reaction was allowed to warm to r.t. and stirred for 30 min. The layers were separated and the aqueous phase was extracted with Et₂O (3x 200 mL). All organic phases were combined and washed with brine (200 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 12:1) gave alcohol **20** as a colourless oil (8.82 g, 30.8 mmol, 88%, *dr* = 12:1).**R**_f = 0.22 (CH/EA 12:1).

$$[\alpha]_{D}^{20} = -17.9 (CHCl_{3}, c = 1.0).$$

Major epimer: ¹**H-NMR (700 MHz, CDCl₃):** δ [ppm] = 3.63 (dd, *J* = 10.6, 5.8 Hz, 1H), 3.54 (td, *J* = 10.3, 4.2 Hz, 1H), 3.46 – 3.42 (m, 1H), 2.04 (dqd, *J* = 12.9, 7.2, 2.3 Hz, 1H), 1.92 – 1.86 (m, 1H), 1.77 (s, 1H), 1.65 – 1.59 (m, 2H), 1.41 – 1.33 (m, 2H), 1.11 – 1.03 (m, 1H), 1.01 – 0.96 (m, 1H), 0.94 (dd, *J* = 7.2, 0.9 Hz, 3H), 0.91 – 0.88 (m, 12H), 0.88 – 0.79 (m, 1H), 0.09 (d, *J* = 1.2 Hz, 6H).

¹³**C-NMR (175 MHz, CDCl₃):** δ [ppm] = 72.7, 66.2, 48.1, 45.7, 36.5, 34.9, 31.7, 27.4, 26.2, 22.4, 18.3, 14.3, -3.4, d -4.1.

Minor epimer: ¹**H-NMR (700 MHz, CDCl₃):** δ [ppm] = 3.50 – 3.47 (m, 2H), 3.42 (td, *J* = 10.3, 4.3 Hz, 1H), 2.21 (hd, *J* = 7.1, 2.6 Hz, 1H), 1.88 (dtd, *J* = 12.4, 3.9, 2.0 Hz, 1H), 1.62 (dp, *J* = 12.7, 3.2 Hz, 1H), 1.52 (dq, *J* = 13.3, 3.4 Hz, 1H), 1.44 – 1.33 (m, 2H), 1.00 (dddd, *J* = 18.8, 13.0, 9.3, 3.4 Hz, 2H), 0.90 (d, *J* = 6.7 Hz, 3H), 0.89 (s, 9H), 0.77 (dt, *J* = 7.0, 0.8 Hz, 3H), 0.07 (s, 3H), 0.06 (s, 3H).

¹³**C-NMR (175 MHz, CDCl₃):** δ [ppm] = 72.1, 67.5, 45.5, 45.4, 34.5, 34.1, 31.7, 27.1, 23.8, 22.5, 18.2, 11.1, -3.6, -4.6.

HRMS (ESI (+), 6.0 eV): $[M+H]^+$ calcd for $[C_{16}H_{34}O_2Si+H]^+$ = 287.2401; Found 287.2409.

3.3. *tert*-Butyl(((1*R*,2*S*,5*R*)-2-((*R*)-1-iodopropan-2-yl)-5-methylcyclohexyl)oxy)dimethylsilane (21)

 I_2 (1.46 g, 5.76 mmol, 1.50 equiv.) was added to a stirring solution of triphenylphosphine (1.71 g, 6.53 mmol, 1.70 equiv.) and imidazole (784 mg, 11.5 mmol, 3.00 equiv.) in dry CH_2CI_2 at 0 °C and stirred for 15 min. A solution of alcohol **20** (1.13 g, 4.10 mmol, 1.00 equiv.) in dry CH_2CI_2 (84 mL) was added slowly and the reaction was allowed to warm to r.t. and stirred for 2.5 h. Aq. pH 7-buffer solution (7 mL) and aq. sat. Na_2SO_3 solution (7 mL) were added, the layers were separated and the aqueous phase was extracted with CH_2CI_2 (3x 35 mL). All organic phases were combined and washed with brine (60 mL). Drying over $MgSO_4$, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 99:1) yielded alkyl iodide **21** as a colourless liquid (1.10 g, 2.78 mmol, 68%).

R_f = 0.55 (CH/EA 99:1).

 $[\alpha]_{D}^{20} = -51.4$ (CHCl₃, c = 0.5).

¹**H-NMR (700 MHz, CDCl₃):** δ [ppm] = 3.47 (td, J = 10.3, 4.2 Hz, 1H), 3.34 (dd, J = 9.4, 3.5 Hz, 1H), 2.93 (dd, J = 11.0, 9.3 Hz, 1H), 2.32 (tp, J = 11.0, 7.4, 4.0 Hz, 1H), 1.91 – 1.84 (m, 1H), 1.63 (ddt, J = 13.2, 9.8, 3.2 Hz, 2H), 1.35 (td, J = 11.0, 10.3, 4.0 Hz, 2H), 1.09 (d, J = 7.0 Hz, 3H), 1.04 – 0.94 (m, 2H), 0.89 (d, J = 2.5 Hz, 12H), 0.88 – 0.79 (m, 1H), 0.09 (d, J = 13.9 Hz, 6H).

¹³**C-NMR (175 MHz, CDCl₃):** δ [ppm] = 72.3, 50.5, 45.5, 36.0, 34.6, 31.7, 26.2, 24.7, 22.4, 18.8, 18.2, 13.1, -3.4, -4.4.

HRMS (EI (+), 70.0 eV): $[M^{+}]$ calcd for $[C_{16}H_{33}OISi^{+}-{}^{t}Bu^{+}]^{+}= 339.0641$; Found 339.0640.

3.4. 4-((*S*)-2-((1*S*,2*R*,4*R*)-2-((*tert*-Butyldimethylsilyl)oxy)-4-methylcyclohexyl)propyl)-2-(phenylsulfonyl)oxazole (24)

9-BBN-OMe (1.0M in "hexane, 74 µL, 73.8 µmol, 1.50 equiv.) was added to a stirring solution of alkyl iodide **21** at -78 °C. ^tBuLi (1.7M in "pentane, 80 µL, 134 µmol, 2.80 equiv.) was added and the solution was allowed to warm to room temperature and stirred for 1 h. Aq. Cs₂CO₃ solution (3.0M in water, 43 µL, 2.74 equiv.) was added to a solution of iodoxazole **13** (15.7 mg, 46.9 µmol, 1.00 equiv.), AsPh₃ (4.31 mg, 14.1µmol, 0.30 equiv.) and Pd(dtpbpf)Cl₂ (3.06 mg, 4.69 µmol, 0.10 equiv.) in dry THF (280 µL). The solution was degassed *via* freeze-pump-thaw cycles (3x) and the reaction was sealed and covered in aluminium foil and was allowed to stir for 20 h at r.t. Water (2 mL) and Et₂O (4 mL) were added, the layers were separated and the aqueous phase was extracted with Et₂O (3x 3 mL). All organic phases were combined and washed with aq. sat. NaHCO₃ solution (4 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/CH₂Cl₂ 1:1) yielded alkyl oxazole **24** as a yellow oil (15.6 mg, 31.2 µmol, 69%).

R_f = 0.38 (CH:EA, 3:2).

 $[\alpha]_{D}^{20} = -20.0^{\circ} (CHCI_{3}, c = 0.3)$

¹**H-NMR (700 MHz, d₆-acetone)**: δ [ppm] = 8.08 - 8.04 (m, 2H), 7.94 (dd, *J* = 1.3, 0.7 Hz, 1H), 7.87 - 7.82 (m, 1H), 7.75 - 7.71 (m, 2H), 2.62 (ddd, *J* = 14.7, 3.4, 1.3 Hz, 1H), 2.46 - 2.38 (m, 1H), 2.24 (ddd, *J* = 14.6, 11.4, 0.7 Hz, 1H), 1.99 - 1.93 (m, 1H), 1.69 - 1.63 (m, 2H), 1.45 (ddt, *J* = 12.0, 6.9, 3.5 Hz, 1H), 1.26 - 1.20 (m, 1H), 1.11 - 1.03 (m, 1H), 1.01 - 0.93 (m, 1H), 0.91 - 0.89 (m, 3H), 0.88 (s, 10H), 0.83 (d, *J* = 7.0 Hz, 3H), 0.08 (s, 3H), 0.06 (s, 3H).

¹³**C-NMR (175 MHz, CDCl₃)**: δ [ppm] = 158.7, 144.2, 140.2, 139.4, 136.0, 130.7, 129.4, 72.5, 51.4, 46.5, 35.4, 32.2, 31.0, 28.4, 27.5, 26.5, 24.9, 22.6, 18.6, 18.1, -3.33, -4.3.

HRMS (ESI (+), 6.0 eV): $[M+H]^+$ cald for $[C_{25}H_{39}NO_4SSi+H]^+$ = 500.2261; Found 500.2267.

3.5. 4-((*S*)-2-((1*S*,2*R*,4*R*)-2-((*tert*-Butyldimethylsilyl)oxy)-4-methylcyclohexyl)propyl)-2-(3-((*tert*-butyldimethylsilyl)oxy)prop-1-en-2-yl)oxazole (25)

Anhydrous LiCl (12.7 mg, 300 µmol, 4.20 equiv.) was heated under vacuum at 150–170 °C for 5 min. Zinc powder (325 mesh, 9.15 mg, 140 µmol, 1.96 equiv.) was added and dried again under vacuum at 150–170 °C for 5 min. The reaction flask was flushed with argon (3x) and dry THF (160 µL) was added. $C_2H_4Br_2$ (0.2 g/mL in dry THF, 6 µL, 5.00 µmol, 0.07 equiv.) and TMSCI (7.5 mg/mL in dry THF, 16 µL, 1.00 µmol, 1.40 mol-%) were added to the stirring suspension and the reaction was heated to 50 °C for 10 min. A solution of alkyl iodide **21** (39.6 mg, 100 µmol, 1.40 equiv.) in dry THF (540 µL) was added and stirred for 2 h. The solution was allowed to cool down to r.t. and a solution of Pd(dtpbf)Cl₂ (12.6 mg, 19.3 µmol, 0.05 equiv.) in dry NMP (690 µL), a solution of AsPh₃ (35.4 mg, 116 µmol, 0.30 equiv) and iodooxazole **18** (26.1 mg, 71.4 µmol, 1.00 equiv.) in dry THF (690 µL) were added. The flask was covered in aluminium foil and the reaction was allowed to stir for 2 h. EtOAc (2 mL) and aq. sat. NH₄Cl solution (2 mL) were added, the layers were separated and the aqueous phase was extracted with EtOAc (3x 5 mL). All organic phases were combined, washed with water (2x 15mL) and brine (5 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH 100%→CH/EA 50:1) yielded alkyl oxazole **25** as a yellow oil (18.5 mg, 36.4 µmol, 51%).**R**_f = 0.38 (CH/EA 50:1).

 $[\alpha]_{D}^{20} = -24.4^{\circ} (CH_{2}CI_{2}, c = 0.9).$

¹**H-NMR (700 MHz, CD₂Cl₂):** δ [ppm] = 7.31 (q, *J* = 0.6 Hz, 1H), 5.96 (q, *J* = 1.9 Hz, 1H), 5.66 (q, *J* = 2.0 Hz, 1H), 4.62 (t, *J* = 2.0 Hz, 0H), 4.56 (t, *J* = 2.0 Hz, 2H), 3.56 (td, *J* = 10.2, 4.4 Hz, 1H), 2.54 (dd, *J* = 14.4, 3.3 Hz, 1H), 2.44 - 2.37 (m, 1H), 2.11 (dd, *J* = 14.1, 11.5 Hz, 1H), 1.96 - 1.91 (m, 1H), 1.71 - 1.63 (m, 2H), 1.41 (tqt, *J* = 16.6, 6.5, 3.4 Hz, 1H), 1.28 - 1.22 (m, 1H), 1.08 - 0.99 (m, 1H), 1.00 - 0.97 (m, 1H), 0.97 - 0.92 (m, 12H), 0.91 (s, 9H), 0.85 (d, *J* = 7.0 Hz, 3H), 0.12 (s, 3H), 0.11 (s, 6H), 0.10 (s, 3H).

¹³C-NMR (125 MHz, CD₂Cl₂): δ [ppm] = 160.1, 142.0, 136.5, 134.7, 114.8, 72.4, 62.3, 51.0, 46.2, 32.2, 30.7, 28.5, 27.5, 26.4, 26.2, 24.9, 22.6, 18.8, 18.5, 18.1, 1.3, -3.3, -4.2, -5.14.

HRMS (ESI (+), 6.0 eV): $[M+H]^+$ cald for $[C_{28}H_{53}NO_3Si_2+H]^+ = 508.3637$; Found 508.3642.

3.6. Additional Suzuki cross coupling studies

3.6.1. 2-(4-iodooxazol-2-yl)prop-2-en-1-ol (41)

(+)-CSA (27.8 mg, 120 μ mol, 0.10 equiv.) was added to a solution of TBS Ether **18** (440 mg, 1.20 mmol, 1.00 equiv.) in CH₂Cl₂/MeOH (2:1, 7.2 mL) at r.t. and stirred for 4 h. NEt₃ (500 μ L) was added and the solvent was removed *in vacuo*. Purification of the residue by flash column chromatography over silica gel (CH/EA 3:1) yielded allyl alcohol **41** as a yellowish oil (256 mg, 1.02 mmol, 85%).

R_f = 0.24 (CH/EA 3:1).

¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = 7.63 (s, 1H), 6.06 (t, *J* = 0.8 Hz, 1H), 5.67 (td, *J* = 1.3, 0.6 Hz, 1H), 4.52 (ddd, *J* = 6.8, 1.4, 0.7 Hz, 2H), 2.75 (t, *J* = 6.8 Hz, 1H).

¹³**C-NMR (125 MHz, CDCl₃):** δ [ppm] = 162.2, 142.5, 134.5, 119.1, 82.6, 63.2.

HRMS (ESI (+), 6.0 eV): $[M+Na]^+$ calcd for $[C_6H_6INO_2+Na]^+ = 273.9335$; Found 273.9344.

3.6.2. 4-Iodo-2-(3-((triethylsilyl)oxy)prop-1-en-2-yl)oxazole (26)

TESCI (200 µL, 1.20 mmol, 1.20 equiv.) was added to a solution of alcohol **41** (250 mg, 996 µmol, 1.00 equiv.) and imidazole (163 mg, 2.48 mmol, 2.50 equiv.) in dry CH_2Cl_2 (8 mL) at 0 °C. The solution was allowed to warm to r.t. and stirred for 3 h. Water (10 mL) was added, the layers were separated and the aqueous phase was extracted with CH_2Cl_2 (3x 4 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 50:1) yielded TES ether **26** as a yellow liquid (305 mg, 834 µmol, 84%).

R_f = 0.33 (CH/EA 50:1).

¹**H-NMR (400 MHz, CD₂Cl₂):** δ [ppm] = 7.70 (s, 1H), 6.11 (q, *J* = 1.7 Hz, 1H), 5.91 – 5.75 (m, 1H), 4.60 (t, *J* = 2.0 Hz, 2H), 1.01 (q, *J* = 8.3 Hz, 9H), 0.71 (q, *J* = 7.9 Hz, 6H).

¹³C-NMR (175 MHz, CD₂Cl₂): δ [ppm] = 161.7, 142.3, 134.8, 116.7, 82.5, 61.1, 6.5, 4.3.

HRMS (EI (+), 70.0 eV): $[M]^+$ calcd for $[C_{12}H_{20}INO_2Si^{+}-Et^{+}]^+ = 335.9917$; Found 335.9910.

3.6.3. 4-((*S*)-2-((1*S*,2*R*,4*R*)-2-((*tert*-butyldimethylsilyl)oxy)-4-methylcyclohexyl)propyl)-2-(3-((triethylsilyl)oxy)prop-1-en-2-yl)oxazole (28)

9-BBN-OMe (1.0M in ^{*n*}hexane, 24 µL, 73.8 µmol, 1.50 equiv.) was added to a stirring solution of alkyl iodide **21** at -78 °C. ^{*t*}BuLi (1.7M in ^{*n*}pentane, 26 µL, 43.9 µmol, 2.80 equiv.) was added and the solution was allowed to warm to room temperature and stirred for 1 h. A solution of Pd(dtbpf)Cl₂ (997 µg, 1.53 µmol, 0.10 equiv.) in dry DMF (28 µL), a solution of iodooxazole **26** (5.60 mg, 15.3 µmol, 1.00 equiv.) and AsPh₃ (1.41 mg, 4.60 µmol, 0.30 equiv.) were added, followed by addition of aq. Cs₂CO₃ solution (3.0m, 43 µL, 2.74 equiv.). The solution was degassed *via* freeze-pump-thaw cycles (3x), sealed and the flask was covered in aluminium foil. The reaction stirred overnight (20 h). Water (400 µL) and CH₂Cl₂ (600 µL) were added, the layers were separated and the aqueous phase was extracted with CH₂Cl₂ (3x 400 µL). All organic phases were combined and washed with aq. sat. NaHCO₃ solution (400 µL) and brine (400 µL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 100:0→50:1) yielded alkyl oxazole **28** as a yellow oil (5.80 mg, 11.4 µmol, 75%).

R_f = 0.28 (CH/EA 50:1).

 $[\alpha]_{D}^{23} = -15.7^{\circ} (CH_{2}CI_{2}, c = 1.0).$

¹**H-NMR (700 MHz, CD_2Cl_2):** δ [ppm] = 7.32 - 7.30 (m, 1H), 5.96 (q, *J* = 1.8 Hz, 1H), 5.69 (q, *J* = 2.0 Hz, 1H), 4.56 (t, *J* = 2.0 Hz, 2H), 3.56 (td, *J* = 10.2, 4.4 Hz, 1H), 2.54 (ddd, *J* = 14.4, 3.3, 1.3 Hz, 1H), 2.44 - 2.37 (m, 1H), 2.11 (dd, *J* = 14.4, 11.5 Hz, 1H), 1.97 - 1.90 (m, 1H), 1.71 - 1.62 (m, 2H), 1.41 (tdt, *J* = 11.8, 6.6, 3.4 Hz, 1H), 1.29 - 1.22 (m, 1H), 1.08 - 1.01 (m, 1H), 0.98 (td, *J* = 8.0, 1.4 Hz, 9H), 0.91 (s, 9H), 0.90 - 0.88 (m, 3H), 0.89 - 0.81 (m, 4H), 0.67 (q, *J* = 8.0 Hz, 6H), 0.13 (s, 3H), 0.10 (s, 3H).

¹³**C-NMR (175 MHz, CD₂Cl₂):** δ [ppm] = 160.1, 142.9, 142.0, 136.5, 134.7, 117.3, 114.8, 72.4, 61.9, 51.0, 46.2, 35.3, 32.2, 30.7, 28.5, 26.4, 24.9, 22.6, 18.5, 18.1, 7.1, 5.0, -3.3, -4.2.

HRMS (ESI (+), 6.0 eV): $[M+H]^{+}$ calcd for $[C_{28}H_{53}NO_{3}Si_{2}+H]^{+} = 508.3637$; Found 508.3634.

4. Implementation of previous protocols for analog synthesis of ajudazol A

4.1. 3-lodobut-3-en-1-ol (42)

TMSCI (78 mL), 616 mmol, 2.00 equiv.), water (5.55 mL), 308 mmol, 1.00 equiv,) and 3-butyn-1-ol (20 mL, 308 mmol, 1.00 equiv.) were added to a stirring solution of NaI (92.4 g, 616 mmol, 2.00 equiv.) in CH₃CN (590 mL) at 0 °C and stirred for 1.5 h. Aq. sat. Na₂SO₃ solution (150 mL) was added, the layers were separated and the aqueous phase was extracted with Et₂O (3x 200 mL). All organic phases were combined and washed with brine (400 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 4:1) yielded alcohol **42** as an orange liquid (14.8 g, 80.4 mmol, 46%).

 $R_{\rm f} = 0.22 \, (\rm CH/EA \, 4:1).$

¹**H-NMR (700 MHz, d₆-acetone):** δ [ppm] = 6.16 (q, *J* = 1.4 Hz, 1H), 5.76 (dt, *J* = 1.3, 0.6 Hz, 1H), 3.77 – 3.58 (m, 3H), 2.60 (tdd, *J* = 6.4, 1.3, 0.6 Hz, 2H).

¹³C-NMR (175 MHz, d₆-acetone): δ [ppm] = 127.9, 109.0, 61.4, 49.2.

HRMS (EI (+), 70.0 eV): [M]^{•+} calcd for [C₄H₇IO]^{•+} = 283.0015; Found 283.0013.

4.2. Triethyl((3-iodobut-3-en-1-yl)oxy)silane (43)

TESCI (3.61 mL, 21.5 mmol, 1.40 equiv.) was added dropwise to a stirring solution of alcohol **42** (3.04 g, 15.4 mmol, 1.00 equiv.) and imidazole (2.93 g, 93.8 mmol, 2.80 equiv.) in dry CH_2CI_2 (55 mL) at 0 °C. The reaction was allowed to warm to r.t. and stirred for 2 h. Water (40 mL) was added, the layers were separated and the aqueous phase was extracted with CH_2CI_2 (3x 40 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 99:1) yielded TES ether **43** as a yellow liquid (9.27 g, 31.1 mmol, quant.).

R_f = 0.43 (CH/EA 99:1).

¹H-NMR (700 MHz, d₆-acetone): δ [ppm] = 6.17 (q, J = 1.4 Hz, 1H), 5.78 (d, J = 1.4 Hz, 1H), 3.76 (t, J = 6.2 Hz, 2H), 2.60 (td, J = 6.2, 1.3 Hz, 2H), 1.02 – 0.91 (m, 9H), 0.62 (qd, J = 8.0, 1.2 Hz, 6H).
¹³C-NMR (175 MHz, d₆-acetone): δ [ppm] = 127.3, 107.8, 61.2, 48.2, 6.1, 4.1.

HRMS (EI (+), 70.0 eV): [M]^{*+} calcd for [C₁₀H₂₁IOSi]^{*+} = 283.0015; Found 283.0013.

4.3. 2-(4-((Triethylsilyl)oxy)but-1-en-2-yl)oxazole (44)

ZnCl₂ (5.94 g, 43.6 mmol, 1.40 equiv.) was heated under vacuum until free-flowing, recooled to r.t. and suspended in dry THF (22 mL). ^{*n*}BuLi (2.5M in ^{*n*}hexane, 9.77 mL, 24.4 mmol, 1.68 equiv.) was added dropwise to a stirring solution of oxazole (**6**, 1.34 mL, 20.4 mmol, 1.40 equiv.) in dry THF (80 mL) at -78 °C and stirred for 30 min. The solution was transferred via cannula to the ZnCl₂ suspension and was allowed to warm up to r.t. over a period of 15 min. A solution of iodoalkene **43** (4.54 g, 14.5 mmol, 1.00 equiv.) in dry THF (8.0 mL) was slowly added, followed by addition of Pd(PPh₃)₄ (420 mg, 360 µmol, 2.5mol-%). The reaction was sealed and heated to 60 °C, stirred for 2 h and was concentrated *in vacuo*. EtOAc (50 mL) and aq. sat. NH₄Cl solution (50 mL) were added, the layers were separated and the aqueous phase was extracted with EtOAc (3x 50 mL). All organic phases were combined and washed with brine (50 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography (CH/EA 19:1) yielded oxazole **44** as a colourless liquid (2.66 g, 10.5 mmol, 72%).

R_f = 0.18 (CH/EA 19:1).

¹**H-NMR (500 MHz, CD₂Cl₂):** δ [ppm] = 7.61 (d, *J* = 0.8 Hz, 1H), 7.12 (d, *J* = 0.8 Hz, 1H), 6.00 (d, *J* = 1.3 Hz, 1H), 5.43 (q, *J* = 1.2 Hz, 1H), 3.83 (t, *J* = 6.7 Hz, 2H), 2.74 (td, *J* = 6.7, 1.2 Hz, 2H), 0.93 (t, *J* = 8.0 Hz, 9H), 0.57 (q, *J* = 7.7 Hz, 6H).

¹³C-NMR (125 MHz, CD₂Cl₂): δ [ppm] = 162.8, 138.9, 133.7, 128.5, 119.3, 62.0, 36.9, 7.1, 4.9. HRMS (ESI (+), 6.0 eV): $[M+H]^+$ calcd for $[C_{13}H_{23}NO_2Si+H]^+$ = 254.1571; Found 254.1563.

4.4. 5-lodo-2-(4-((triethylsilyl)oxy)but-1-en-2-yl)oxazole (45)

^{*n*}BuLi (2.5M in ^{*n*}hexane, 4.36 mL, 10.9 mmol, 1.10 equiv.) was slowly added to a solution of ^{*i*}Pr₂NH (1.96 mL, 13.9 mmol, 1.40 equiv.) in dry THF (100 mL) at 0 °C and stirred for 15 min. The solution was

cooled to -78 °C and oxazole **44** (2.51 g, 9.90 mmol, 1.00 equiv.) in dry THF (11 mL) was added and the reaction stirred for 1 h. A solution of I₂ (3.27 g, 12.9 mmol, 1.10 equiv.) in dry THF (28 mL) was slowly added and the reaction stirred for additional 0.5 h. Aq. sat. NH₄Cl solution (30 mL) and aq. sat. Na₂SO₃ solution (30 mL) were added and the reaction was allowed to warm up to r.t. The layers were separated and aqueous phase was extracted with EtOAc (3x 80 mL). All organic phases were combined and washed with brine (80 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography (CH/EA 19:1) yielded 5-iodooxazole **45** as an orange solid (3.07 g, 8.09 mmol, 82%).

R_f = 0.39 (CH/EA 19:1).

Mp.: 39-41 °C

¹H-NMR (500 MHz, CD₂Cl₂): δ [ppm] = 7.15 (s, 1H), 5.99 (d, *J* = 1.0 Hz, 1H), 5.44 (q, *J* = 1.2 Hz, 1H), 3.81 (t, *J* = 6.7 Hz, 2H), 2.71 (td, *J* = 6.7, 1.2 Hz, 2H), 0.93 (t, *J* = 7.9 Hz, 9H), 0.57 (q, *J* = 7.9 Hz, 6H). ¹³C-NMR (125 MHz, CD₂Cl₂): δ [ppm] = 167.4, 137.2, 133.0, 120.2, 87.1, 61.9, 36.6, 7.1, 4.9. HRMS (EI (+), 70.0 eV): [M]⁺ calcd for $[C_{13}H_{22}INO_2Si^{*+}-Et^*]^+$ = 350.0068; Found 350.0076.

4.5. 4-lodo-2-(4-((triethylsilyl)oxy)but-1-en-2-yl)oxazole (27)

A stirring solution of $({}^{i}Pr)_{2}NH$ (1.90 mL, 13.4 mmol, 1.80 equiv.) in dry THF (80 mL) was cooled to 0 °C and "BuLi (2.5M in "hexane, 4.78 mL, 11.9 mmol, 1.60 equiv.) was added. The solution was allowed to stir for 15 min, before it was cooled to -78 °C. 5-bromooxazole **10** (191 mg, 746 µmol, 0.10 equiv.) and 5-iodooxazole **45** (2.83 g, 7.46 mmol, 1.00 equiv.) were solved in THF (37 mL) and cooled to -78 °C. The LDA solution was transferred dropwise *via* a syringe pump into the oxazole solution over a period of 1 h and was allowed to stir for additional 2 min. Aq. sat. NH₄Cl (80 mL) was added and the solution was allowed to warm to r.t. slowly. The layers were separated and the aqueous phase was extracted with EtOAc (3x 60 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 50:1) afforded 4-iodooxazole **27** as an orange liquid (2.44 g, 6.43 mmol, 86%).

R_f = 0.22 (CH/EA 50:1).

¹**H-NMR (500 MHz, CD_2Cl_2):** δ [ppm] = 7.64 (s, 1H), 6.03 (d, *J* = 0.9 Hz, 1H), 5.48 (q, *J* = 1.2 Hz, 1H), 3.82 (t, *J* = 6.6 Hz, 2H), 2.71 (td, *J* = 6.6, 1.2 Hz, 2H), 0.93 (t, *J* = 7.9 Hz, 9H), 0.57 (q, *J* = 7.9 Hz, 6H). ¹³**C-NMR (125 MHz, CD_2Cl_2):** δ [ppm] = 164.1, 142.9, 132.9, 130.2, 120.6, 83.2, 61.8, 36.6, 7.1, 4.9. **HRMS (EI (+), 70.0 eV)**: $[M]^+$ calcd for $[C_{13}H_{22}INO_2Si^{*+}-Et^*]^+ = 350.0068$; Found 350.0074.

4.6. 4-((*S*)-2-((1*S*,2*R*,4*R*)-2-((*tert*-Butyldimethylsilyl)oxy)-4-methylcyclohexyl)propyl)-2-(4-((triethylsilyl)oxy)but-1-en-2-yl)oxazole (29)

Anhydrous LiCl (159 mg, 3.75 mmol, 4.20 equiv.) was heated under vacuum at 150–170 °C for 5 min. Zinc powder (325 mesh, 114 mg, 1.75 mmol, 1.96 equiv.) was added and dried also under vacuum at 150–170 °C for 5 min. The reaction flask was flushed with argon (3x) and dry THF (360 μ L) was added. C₂H₄Br₂ (6 μ L, 62.5 μ mol, 0.07 equiv.) and TMSCl (0.07m in dry THF, 180 μ L, 13.8 μ mol, 1.40 mol%) were added to the stirring suspension and the reaction was heated to 50 °C for 10 min. A solution of alkyl iodide **21** (495 mg, 1.25 mmol, 1.40 equiv.) in dry THF (540 μ L) was added and stirred for 2 h. The solution was allowed to cool down to r.t. and a solution of Pd(dtpbf)Cl₂ (29.1 mg, 44.7 μ mol, 0.05 equiv.) in dry NMP (1.1 mL), followed by a solution of AsPh₃ (82.1 mg, 268 μ mol, 0.30 equiv) and iodooxazole **27** (339 mg, 893 μ mol, 1.00 equiv.) in dry THF (1.1 mL) were added. The flask was covered in aluminium foil and was allowed to stir for 2 h. EtOAc (4 mL) and aq. sat. NH₄Cl solution (4 mL) were added, the layers were separated and the aqueous phase was extracted with EtOAc (3x 9 mL). All organic phases were combined and washed with brine (10 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 50:1) yielded alkyl oxazole **29** as a yellow oil (321 mg, 615 μ mol, 69%).**R**_f = 0.26 (CH/EA 50:1).

$[\alpha]_{D}^{20} = -27.0$ (MeOH, c = 1.0).

¹**H-NMR (700 MHz, d₆-acetone):** δ [ppm] = 7.55 (d, *J* = 0.8 Hz, 1H), 5.93 (d, *J* = 1.4 Hz, 1H), 5.42 (q, *J* = 1.3 Hz, 1H), 3.87 (td, *J* = 6.6, 2.1 Hz, 2H), 3.66 (td, *J* = 10.2, 4.4 Hz, 1H), 2.73 (tdd, *J* = 6.6, 2.3, 1.1 Hz, 2H), 2.59 (ddd, *J* = 14.2, 3.4, 1.3 Hz, 1H), 2.56 – 2.49 (m, 1H), 2.19 – 2.12 (m, 1H), 1.99 (dddd, *J* = 12.2, 4.3, 3.4, 2.0 Hz, 1H), 1.73 – 1.65 (m, 2H), 1.47 (dddt, *J* = 15.3, 8.9, 6.6, 3.3 Hz, 1H), 1.27 (ddd, *J* = 11.9, 10.0, 3.7 Hz, 1H), 1.11 (qd, *J* = 14.5, 13.8, 4.1 Hz, 1H), 1.00 (td, *J* = 12.2, 10.5 Hz, 1H), 0.96 – 0.89 (m, 21H), 0.90 – 0.87 (m, 1H), 0.87 (d, *J* = 7.0 Hz, 3H), 0.57 (q, *J* = 7.9 Hz, 6H), 0.18 (s, 3H), 0.12 (s, 3H).

¹³**C-NMR (175 MHz, d₆-acetone):** δ [ppm] = 162.1, 142.4, 135.7, 134.3, 118.6, 72.5, 62.2, 51.5, 46.6, 37.3, 35.5, 32.3, 30.8, 28.3, 26.5, 24.9, 22.6, 18.7, 18.3, 7.1, 5.1, -3.3, -4.2.

HRMS (ESI (+), 5.0 eV): $[M+H]^+$ calcd for $[C_{29}H_{55}NO_3Si_2+H]^+ = 522.3793$; Found 522.3791.

4.7. 3-(4-((*S*)-2-((1*S*,2*R*,4*R*)-2-((*tert*-Butyldimethylsilyl)oxy)-4-methylcyclohexyl)propyl)-oxazol-2yl)but-3-en-1-ol (46)

 HCO_2H (5 wt-% in MeOH, 4 mL, 12.0 equiv.) was added to a stirring solution of TES ether **29** (215 mg, 413 µmol, 1.00 equiv.) in CH_2Cl_2 (2 mL) at 0°C and stirred for 1.5 h. Aq. sat. NaHCO₃ solution (9 mL) was added, the layers were separated and the aqueous phase was extracted with CH_2Cl_2 (3x 5 mL). All organic phases were combined, washed with brine (9 mL) and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash column chromatography (CH/EA 4:1) yielded alcohol **46** as a colourless oil (146 mg, 358 µmol, 87%).

R_f = 0.31 (CH/EA 4:1).

 $[\alpha]_{D}^{20} = -32.0$ (MeOH, c = 1.0).

¹**H-NMR (700 MHz, d₆-acetone):** δ [ppm] = 0.12 (s, 3H), 0.17 (s, 3H), 0.87 (d, *J* = 7.1 Hz, 4H), 0.91 (d, *J* = 6.6 Hz, 3H), 0.92 (s, 9H), 1.00 (td, *J* = 12.2, 10.5 Hz, 1H), 1.11 (qd, *J* = 14.4, 13.7, 4.1 Hz, 1H), 1.26 (tdd, *J* = 9.9, 3.2, 2.2 Hz, 1H), 1.47 (dddt, *J* = 15.3, 8.8, 6.6, 3.3 Hz, 1H), 1.65 – 1.73 (m, 2H), 1.99 (dddd, *J* = 12.3, 4.3, 3.4, 2.0 Hz, 1H), 2.12 – 2.19 (m, 1H), 2.46 – 2.54 (m, 1H), 2.59 (ddd, *J* = 14.3, 3.4, 1.3 Hz, 1H), 2.73 (tdd, *J* = 6.4, 4.9, 1.1 Hz, 2H), 3.66 (dd, *J* = 10.1, 4.6 Hz, 1H), 3.72 – 3.82 (m, 2H), 5.43 (q, *J* = 1.3 Hz, 1H), 5.92 (d, *J* = 1.3 Hz, 1H), 7.56 (dd, *J* = 1.4, 0.6 Hz, 1H).

¹³C-NMR (175 MHz, d₆-acetone): δ [ppm] = 162.4, 142.4, 135.7, 134.8, 118.5, 72.5, 61.5, 61.4, 51.5, 46.6, 37.4, 35.5, 32.3, 30.8, 28.4, 26.5, 24.9, 22.6, 18.3, -3.4, -4.2.

HRMS (ESI (+), 5.0 eV): $[M+H]^+$ calcd for $[C_{23}H_{41}NO_3Si+H]^+$ = 408.2928; Found 408.32924.

4.8. 3-(4-((*S*)-2-((1*S*,2*R*,4*R*)-2-((*ter*t-Butyldimethylsilyl)oxy)-4-methylcyclohexyl)propyl)oxazol-2yl)but-3-enal (47)

IBX (309 mg, 1.10 mmol, 3.00 equiv.) was added to a stirring solution of alcohol **46** (149.8 mg, 368 μmol, 1.00 equiv.) in EtOAc (3.7 mL) and refluxed for 4 h. The precipitate was filtered off over a plug of silica gel and rinsed with EtOAc. Concentration of the filtrate *in vacuo* yielded aldehyde **47** as a yellow oil (143 mg, 352 μmol, 96%).

R_f = 0.26 (CH/EA 15:1).

 $[\alpha]_{D}^{20} = -32.5$ (MeOH, c = 0.4).

¹**H-NMR (400 MHz, d₆-acetone):** δ [ppm] = 9.73 (t, J = 1.6 Hz, 1H), 7.60 (d, J = 1.3 Hz, 1H), 6.10 (d, J = 0.9 Hz, 1H), 5.56 (q, J = 1.1 Hz, 1H), 3.67 – 3.62 (m, 1H), 3.61 (dt, J = 7.6, 1.4 Hz, 2H), 2.57 (ddd, J = 14.2, 3.3, 1.4 Hz, 1H), 2.54 – 2.44 (m, 2H), 2.15 (dd, J = 14.2, 11.5 Hz, 1H), 1.98 (dtd, J = 12.2, 4.1, 1.9 Hz, 2H), 1.74 – 1.64 (m, 3H), 1.47 (ddddd, J = 16.4, 14.2, 11.2, 7.3, 3.9 Hz, 1H), 1.29 – 1.22 (m, 1H), 1.20 (td, J = 7.2, 1.8 Hz, 1H), 1.10 (qd, J = 14.2, 13.6, 3.9 Hz, 1H), 1.03 – 0.93 (m, 2H), 0.93 – 0.90 (m, 15H), 0.91 – 0.86 (m, 1H), 0.85 – 0.83 (m, 3H), 0.15 (s, 3H), 0.11 (s, 3H).

¹³C-NMR (175 MHz, d₆-acetone): δ [ppm] = 199.0, 161.7, 142.6, 136.3, 129.9, 120.7, 72.5, 51.5, 47.7, 46.6, 35.5, 32.3, 30.7, 28.2, 26.5, 24.8, 22.6, 18.7, 18.3, -3.4, -4.2.

HRMS (APCI (+), 5.0 eV): $[M+H]^+$ calcd for for $[C_{23}H_{39}NO_3Si+H]^+ = 406.2772$; Found 406.2772.

4.9. 4-((S)-2-((1S,2R,4R)-2-((tert-Butyldimethylsilyl)oxy)-4-methylcyclohexyl)propyl)2-((Z)-5-iodopenta-1,4-dien-2-yl)oxazole (30)

NaHMDS (1.0m in THF, 60 μ L, 1.30 equiv.) was added to a stirring suspension of (iodomethyl)triphenylphosphonium iodide (31.9 mg, 60.3 mmol, 1.30 equiv.) in dry THF (200 μ L) at r.t. and stirred for 5 min. The suspension was cooled to -78 °C and a solution of aldehyde **47** (18.8 mg, 46.3 μ mol, 1.00 equiv.) was added, followed by addition of dry DMI (50 μ L). The reaction stirred for 40 min before it was allowed to warm up to r.t. and stirred for additional 20 min. Cyclohexane (1 mL) and aq. sat. NH₄Cl solution (1 mL) were added, the layers were separated and the aqueous phase was extracted with cyclohexane (3x 1.5 mL). All organic phases were combined, washed with brine (1.5 mL) and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 50:1) yielded vinyl iodide **30** as a yellow oil (13.9 mg, 26.3 μ mol, 57%).

R_f = 0.39 (CH/EA 50:1).

 $[\alpha]_{D}^{20} = -26.7$ (MeOH, c = 0.2).

¹**H-NMR (500 MHz, d₆-acetone):** δ [ppm] = 7.60 (d, *J* = 1.2 Hz, 1H), 6.55 (dt, *J* = 7.4, 1.2 Hz, 1H), 6.49 (dt, *J* = 7.4, 6.7 Hz, 1H), 5.94 (q, *J* = 1.0 Hz, 1H), 5.44 (q, *J* = 1.3 Hz, 1H), 3.66 (td, *J* = 10.2, 4.4 Hz, 1H), 3.42 - 3.31 (m, 2H), 2.64 - 2.56 (m, 1H), 2.55 - 2.50 (m, 2H), 2.20 - 2.12 (m, 1H), 1.99 (dq, *J* = 12.2, 4.3, 3.4, 2.0 Hz, 1H), 1.75 - 1.64 (m, 3H), 1.47 (dddd, *J* = 15.3, 12.1, 6.7, 3.4 Hz, 0H), 1.33 - 1.21 (m,

3H), 1.11 (qd, *J* = 14.0, 13.4, 3.8 Hz, 1H), 1.00 (td, *J* = 12.2, 10.4 Hz, 1H), 0.93 (s, 8H), 0.91 (d, *J* = 6.7 Hz, 6H), 0.89 (d, *J* = 3.7 Hz, 0H), 0.87 (d, *J* = 7.0 Hz, 3H), 0.19 (s, 3H), 0.12 (s, 3H).

¹³C-NMR (125 MHz, d₆-acetone): δ [ppm] = 161.8, 142.5, 139.0, 136.1, 134.0, 117.4, 85.1, 72.5, 51.6, 46.6, 38.6, 35.5, 32.3, 30.7, 28.3, 24.8, 22.6, 18.3.

HRMS (ESI (+), 6.0 eV): $[M+H]^+$ calcd for $[C_{24}H_{40}INO_2Si+H^+] = 530.1946$; Found 530.1944.

4.10. Synthesis of Eastern fragment (31)

4.10.1. Pent-4-ynal (48)

A solution of DMSO (13.9 mL, 195 mmol, 2.50 equiv.) in dry CH_2CI_2 (29 mL) was added slowly dropwise to a stirring solution of $(COCI)_2$ (7.16 mL, 83.4 mmol, 1.15 equiv) in dry CH_2CI_2 (250 mL) at -78 °C and stirred for 0.5 h. A solution of 4-pentyn-1-ol in dry CH_2CI_2 (21 mL) was slowly added and stirred for 1 h. NEt₃ (40.0 mL, 290 mmol, 4.00 equiv.) was added and the solution stirred for 0.5 h before it was allowed to warm to r.t. over a period of 0.5 h. Water (200 mL) was added, the layers were separated and the aqueous phase was extracted with CH_2CI_2 (3x 100 mL). All organic phases were combined, washed with brine (2x 100 mL) and dried over MgSO₄. The crude product was concentrated *in vacuo*, the precipitate was filtered over a plug of silica gel and rinsed with CH_2CI_2 . Removal of the solvent yielded aldehyde **48** as a yellow liquid (5.11 g, 62.2 mmol, 86%).

R_f = 0.5 (CH/EA 9:1).

¹**H-NMR (400 MHz, CDCl₃):** δ [ppm] = 9.80 (t, *J* = 1.1 Hz, 1H), 2.70 (tt, *J* = 7.1, 0.8 Hz, 2H), 2.51 (tdd, *J* = 7.1, 2.7, 0.7 Hz, 2H), 1.99 (t, *J* = 2.7 Hz, 1H).

¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 200.2, 82.4, 69.4, 42.5, 11.8.

MS (EI (+), 70.0 eV): $[M]^+$ calcd for $[C_5H_6O^{+}-H^{+}]^+ = 81.0$; Found 81.0.

The experimental data are in agreement with those previously published.^[10]

 ^[10] (a) Essig, S.; Bretzke, S.; Müller, R.; Menche, D. J. Am. Chem. Soc. 2012, 134, 19362–19365. (b) Essig, S.;
 Schmalzbauer, B.; Bretzke, S.; Scherer, O.; Koeberle, A.; Werz, O.; Müller, R.; Menche, D. J. Org. Chem. 2016, 81, 1333–1357. (c) Essig, S.; Menche, D. J. Org. Chem. 2016, 81, 1943–1966.

4.10.2. Methyl (E)-hept-2-en-6-ynoate (49)

Methyl(triphenylphosphoranylidene)acetate (23.8 g, 71.2 mmol, 1.20 equiv.) was added to a stirring solution of aldehyde **48** (4.87 g, 59.3 mmol, 1.00 equiv.) at room temperature and stirred for 16 h. Sat. aq. NH_4CI (60 mL) was added, the layers were separated and the aqueous phase was extracted with CH_2Cl_2 (3x 70 mL). All organic phases were combined and washed with brine (60 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 15:1) yielded acrylate **49** as a colourless liquid (4.95 g, 35.8 mmol, 60%).

R_f = 0.24 (CH/EA 15:1)

¹H-NMR (700 MHz, CDCl₃): δ [ppm] = 6.98 (dt, *J* = 15.6, 6.8 Hz, 1H), 5.90 (dt, *J* = 15.7, 1.6 Hz, 1H), 3.74 (s, 3H), 2.46 – 2.40 (m, 2H), 2.36 (tdd, *J* = 7.0, 2.7, 0.9 Hz, 2H), 2.00 (t, *J* = 2.6 Hz, 1H). ¹³C-NMR (175 MHz, CDCl₃): δ [ppm] = 166.9, 146.8, 122.3, 82.8, 69.6, 51.7, 31.2, 17.6. MS (EI (+), 70.0 eV): [M]^{*+} calcd for $[C_8H_{10}O_2]^{*+}$ = 138.0675; Found 183.0660.

The experimental data are in agreement with those previously published.^[21]

4.10.3. (E)-Hept-2-en-6-yn-1-ol (50)

DIBALH (1.0M in CH_2CI_2 , 32.2 mL, 32.2 mmol, 2.50 equiv.) was added to a solution of ester **49** (1.78 g, 12.9 mmol, 1.00 equiv.) in dry CH_2CI_2 (6.3 mL) at -78 °C. The reaction was allowed to warm up to r.t. and stirred for 1 h. Et_2O (40 mL) was added, the solution was poured into sat. aq. Rochelle-salt solution (100 mL) and stirred vigorously until two phases were formed. The layers were separated and the aqueous phase was extracted with Et_2O (3x 100 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* yielded alcohol **50** as a colourless liquid, which was used in the next step without further purification (1.43 g, 12.9 mmol, quant.).

R_f = 0.12 (CH/EA 5:1).

¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = 5.80 − 5.66 (m, 2H), 4.12 (d, *J* = 4.3 Hz, 2H), 2.28 (t, *J* = 2.1 Hz, 4H), 1.97 (d, *J* = 2.5 Hz, 1H), 1.30 (s, 1H).

¹³C-NMR (125 MHz, CDCl₃): δ [ppm] = 130.8, 130.6, 83.9, 68.9, 63.7, 31.3, 18.6. HRMS (ESI (+), 6.0 eV): $[M+Na]^+$ calcd for $[C_7H_{10}O+Na]^+$ = 133.0624; Found 130.0620. The experimental data are in agreement with those previously published. ^[11]

4.10.4. (E)-7-Bromohept-5-en-1-yne (51)

PPh₃ (1.94 g, 7.41 mmol, 1.20 equiv.) was added in several portions to a solution of CBr₄ (2.46 g, 7.41 mmol, 1.20 equiv.) and alcohol **50** (680 mg, 6.18 mmol, 1.00 equiv.) in dry CH₂Cl₂ (45 mL) was added at 0 °C. The solution was allowed to warm up to r.t. and stirred for 1.5 h. Silica gel was added, the solvent was removed carefully *in vacuo* and the crude product was purified by flash chromatography over silica gel (^{*n*}Pentane/CH₂Cl₂ 90:1) to afford allyl bromide **51** as a colourless oil (759 mg, 4.39 mmol, 71%).

 $R_{f} = 0.21 (^{n} Pentane/CH_{2}CI_{2} 90:1).$

¹**H-NMR (400 MHz, CDCl**₃): δ [ppm] = 5.91 – 5.70 (m, 2H), 3.95 (d, *J* = 6.5 Hz, 2H), 2.36 – 2.23 (m, 4H), 2.00 – 1.94 (m, 1H).

¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 134.0, 127.9, 83.5, 69.1, 33.0, 31.1, 18.3.

HRMS (EI (+), 70.0 eV): [M]^{•+} calcd for [C₇H₉Br]^{•+} = 171.9888; Found 171.9833.

The experimental data are in agreement with those previously published.^[22]

4.10.5. Methyl (E)-3-methoxybut-2-enoate (52)

Conc. H_2SO_4 (9 drops) was added to a stirring solution of methyl acetoacetate (28 mL, 260 mmol, 1.00 equiv.) and trimethyl orthoformate (28.5 mL, 260 mmol, 1.00 equiv.) at r.t. and stirred for 24 h. Quinoline (18 drops) was added and the crude product was purified by vacuum destillation (110 °C, 47 mbar) to afford ester **52** as a colourless liquid (33.1 g, 254 mmol, 98%).

R_f = 0.26 (CH/EA, 15:1).

¹**H-NMR (500 MHz, d₆-acetone):** δ [ppm] = 5.05 (s, 1H), 3.66 (s, 3H), 3.60 (s, 3H), 2.23 (d, *J* = 0.5 Hz, 3H).

 ^[11] (a) Essig, S.; Bretzke, S.; Müller, R.; Menche, D. *J. Am. Chem. Soc.* **2012**, *134*, 19362–19365. (b) Essig, S.;
 Schmalzbauer, B.; Bretzke, S.; Scherer, O.; Koeberle, A.; Werz, O.; Müller, R.; Menche, D. *J. Org. Chem.* **2016**, *81*, 1333–1357. (c) Essig, S.; Menche, D. *J. Org. Chem.* **2016**, *81*, 1943–1966.

¹³C-NMR (125 MHz, d₆-acetone): δ [ppm] = 173.6, 168.4, 91.1, 56.0, 50.7, 18.8. MS (EI (+), 70.0 eV): [M]^{•+} calcd for $[C_6H_{10}O_3]^{\bullet+}$ = 130.0624; Found 130.0630.

The experimental data are in agreement with those previously published.^{[12}

4.10.6. (E)-3-Methoxybut-2-enoic acid (53)

LiOH·H₂O (19.1 g, 456 μ mol, 6.90 equiv.) was added to a stirring solution of ester **52** (8.60 g, 66.1 mmol, 1.00 equiv.) in THF/H₂O (3:1, 427 mL) and heated to reflux for 26 h. The solution was acidified with aq. conc. HCl (37 wt-%) to pH = 3. The layers were separated and the aqueous phase was extracted with Et₂O (3x 200 mL). All organic phases were combined and washed with brine (200 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and recrystallization of the residue in ^{*n*}hexane/Et₂O (1:1) gave carboxylic acid **53** as a white powder (4.13 g, 35.5 mmol, 54%).

R_f = 0.22 (CH/EA, 2:1).

Mp.: 128-130 °C.

¹**H-NMR (700 MHz, CDCl₃):** δ [ppm] = 11.42 (br. s, 1H), 5.04 (s, 1H), 3.66 (s, 3H), 2.30 (s, 3H).

¹³**C-NMR (175 MHz, CDCl₃):** δ [ppm] = 175.4, 173.1, 90.5, 55.8, 19.4.

HRMS (APCI (+), 5.0 eV): $[M+H]^+$ calcd for $[C_5H_8O_3+H]^+ = 117.0546$; Found 117.0550.

The experimental data are in agreement with those previously published.^{[13}

4.10.7. (E)-3-Methoxy-N-methylbut-2-enamide (54)

EDC·HCl (2.56 g, 13.4 mmol, 1.25 equiv.) was added in several portions to a solution of carboxylic acid **53** (1.24 g, 10.7 mmol, 1.00 equiv.) in dry THF (21 mL) at 0 °C. A solution of MeNH₂ (2.0M in THF, 8 mL, 16.0 mmol, 1.50 equiv.) was added and the suspension was allowed to warm to room temperature and stirred for 20 h.Water (10 mL) and EtOAc (15 mL) were added, the layers were separated and the aqueous phase was extracted with EtOAc (3x 20 mL). All organic phases were

^[12] (a) Smissman, E. E.; Voldeng, A. N. *J. Org. Chem.* **1964**, *29*, 3161-3165. (b) Krebs, O.; Taylor, R. J. K. *Org. Lett.* **2005**, *7*, 1063-1066.

^[13]. (b) Krebs, O.; Taylor, R. J. K. *Org. Lett.* **2005**, *7*, 1063-1066.

combined and washed with brine (10 mL). Drying over $MgSO_4$, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (EtOAc 100%) yielded amide **54** as a white solid (947 mg, 7.47 mmol, 70%).

R_f = 0.26 (EtOAc 100%).

Mp.: 40 °C.

¹**H-NMR (500 MHz, d₆-acetone):** δ [ppm] = 6.71 (br. s, 1H), 5.11 (s, 1H), 3.54 (s, 3H), 2.70 (d, J = 4.7 Hz, 3H), 2.24 (s, 3H).

¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 168.2, 167.9, 94.5, 55.1, 25.9, 18.1.

HRMS (ESI-(+), 5.0 eV): $[M+H]^+$ calcd for $[C_6H_{11}NO_2+H]^+ = 130.0784$; Found 130.0860.

4.10.8. (E)-N-((E)-Hept-2-en-6-yn-1-yl)-3-methoxy-N-methylbut-2-enamide (55)

A solution of Amide **54** (150 mg, 1.16 mmol, 1.20 equiv.) in dry DMF (800 μ L) was slowly added dropwise to a stirring suspension of NaH (60 wt-% in paraffin liquid, 162 mg, 4.06 mmol, 3.50 equiv) in dry DMF (3.4 mL) at 0 °C. The reaction was allowed to warm to r.t. and stirred for 1.5 h before the mixture was recooled to 0 °C. A solution of bromide **51** (168 mg, 968 μ mol, 1.00 equiv.) in dry DMF (800 μ L) was slowly added dropwise and stirred for 1.5 h. Water (4 mL) was carefully added, the layers were separated and the aqueous phase was extracted with EtOAc (3x 6 mL). All organic phases were combined and washed with brine (6 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography (CH/EA 1:1) yielded amide **55** as a yellow liquid (146 mg, 659 μ mol, 68%).

R_f = 0.21 (CH/EA 1:1).

¹**H-NMR (700 MHz, d₆-acetone):** δ [ppm] = 5.67 (dd, *J* = 15.4, 6.4 Hz, 1H), 5.60 – 5.43 (m, 1H), 5.36 (s, 1H)^{*}, 5.34 (s, 1H)[#], 3.97 – 3.93 (m, 2H), 3.66 – 3.57 (m, 3H), 2.97 (s, 1H)[#], 2.86 (s, 2H)^{*}, 2.36 – 2.32 (m, 1H), 2.29 – 2.21 (m, 4H), 2.14 (s, 3H).

¹³**C-NMR (175 MHz, d₆-acetone):** δ [ppm] = 168.2, 167.8, 132.2[#], 131.5^{*}, 128.2[#], 127.9^{*}, 92.3, 84.4, 70.4, 55.4, 52.5^{*}, 49.2[#], 33.4[#], 32.1^{*}, 30.4, 19.2, 18.8.

HRMS (APCI (+), 5.0 eV): $[M+H]^{+}$ calcd for $[C_{13}H_{19}NO_2+H]^{+} = 221.1416$; Found 221.1416.

The experimental data are in agreement with those previously published.^[14]

4.10.9. (*E*)-3-Methoxy-*N*-methyl-*N*-((2*E*,6Z)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-2,6-dien-1-yl)but-2-enamide (31)

P^{*i*}Pr₃ (16 μL, 82.6 μmol, 0.14 equiv.), NEt₃ (410 μL, 2.95 mmol, 5.00 equiv.) and pinacolborane (86 μL, 590 μmol, 1.00 equiv.) were added to a stirring solution of $[Rh(COD)Cl]_2$ (8.73 mg, 17.7 μmol, 0.03 equiv.) in dry cyclohexane (1.7 mL) at r.t. and stirred for 0.5 h. A solution of alkyne **55** (150 mg, 678 μmol, 1.15 equiv.) in dry cyclohexane (1.15 mL) was added and the reaction was allowed to stir for 3 h. MeOH (0.5 mL) was added and the solvent was removed *in vacuo*. Purification of the residue by flash chromatography over silica gel (CH/EA 1:1) yielded vinyl boronate **31** as a red oil (126 mg, 360 μmol, 61%, *Z*:*E* > 9:1).

R_f = 0.21 (CH/EA 1:1).

¹**H-NMR (500 MHz, d₆-acetone):** δ [ppm] = 6.40 (dt, *J* = 14.2, 7.5 Hz, 1H), 5.67 – 5.55 (m, 1H), 5.54 – 5.38 (m, 1H), 5.34 (s, 1H), 5.29 (dt, *J* = 13.5, 1.4 Hz, 1H), 3.92 (dd, *J* = 5.9, 1.4 Hz, 2H), 3.61 (s, 3H), 2.95 (s, 3H)[#], 2.85 (s, 3H)^{*}, 2.50 (qd, *J* = 7.4, 1.3 Hz, 2H), 2.14 (s, 5H), 1.24 (s, 12H).

¹³C-NMR (125 MHz, d₆-acetone): δ [ppm] = 168.8[#], 168.5^{*}, 168.0^{*}, 167.6[#], 154.5, 133.5[#], 132.8^{*}, 127.0[#], 126.7[#], 120.0–118.2 (m), 92.2, 83.5, 55.3, 52.5^{*}, 49.2[#], 35.0[#], 33.3^{*}, 32.9, 32.5, 25.2, 25, 18.7. HRMS (EI (+), 70.0 eV): [M]^{•+} calcd for [C₁₉H₃₂BNO₄]^{•+} = 221.1416; Found 221.1416.

The experimental data are in agreement with those previously published.^[24]

 ^[14] (a) Essig, S.; Bretzke, S.; Müller, R.; Menche, D. J. Am. Chem. Soc. 2012, 134, 19362–19365. (b) Essig, S.; Schmalzbauer, B.; Bretzke, S.; Scherer, O.; Koeberle, A.; Werz, O.; Müller, R.; Menche, D. J. Org. Chem. 2016, 81, 1333–1357. (c) Essig, S.; Menche, D. J. Org. Chem. 2016, 81, 1343–1357.

4.11. N-((2E,6Z,8Z)-11-(4-((S)-2-((1S,2R,4R)-2-((tert-butyldimethylsilyl)oxy)-4methylcyclohexyl)propyl)oxazol-2-yl)dodeca-2,6,8,11-tetraen-1-yl)-3-methoxy-Nmethylbutanamide (32)

To a solution of (*Z*)-Vinylboronate **31** (36.2 mg, 104 µmol, 1.50 equiv.) and Cs_2CO_3 (113 mg, 346 µmol, 5.00 equiv.) in H₂O (50 µL, 50.0 equiv.) was added a solution of Pd(dppf)Cl₂ (7.61 mg, 10.4 µmol, 0.15 equiv.) in dry DMF (170 µL) and a solution of (*Z*)-Vinyliodide **30** (36.6 mg, 69.0 µmol, 1.00 equiv.) in dry THF (520 µL) subsequently. The solution was degassed by freeze-pump-thaw-cycles (3x), the flask was covered in aluminium foil and the reaction stirred for 20 h. Et₂O (2 mL) and aq. sat. NaHCO₃ solution (2 mL) were added, the layers were separated and the aqueous phase was extracted with Et₂O (3x 4 mL). All organic extracts were combined and washed with aq. sat. NaHCO₃ solution (4 mL), water (2x 4 mL) and brine (4 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue yielded (*Z*,*Z*)-diene **32** as an orange oil (25.7 mg, 41.1 µmol, 60%).

R_f = 0.12 (CH/EA, 4:1).

 $[\alpha]_{D}^{20} = -14.0$ (MeOH, c = 0.5).

¹**H-NMR (700 MHz, d₆-acetone):** δ [ppm] = 7.58 (s, 1H), 6.45 – 6.36 (m, 1H), 5.91 (d, *J* = 1.1 Hz, 1H), 5.68 – 5.58 (m, 2H), 5.55 – 5.47 (m, 2H), 5.47 – 5.39 (m, 1H), 5.38 (q, *J* = 1.4 Hz, 1H), 5.33 (s, 1H), 3.92 (dq, *J* = 6.0, 1.3 Hz, 2H), 3.66 (td, *J* = 10.2, 4.4 Hz, 1H), 3.64 – 3.56 (m, 3H), 3.41 (dt, *J* = 7.5, 1.4 Hz, 2H), 2.95 (s, 1H), 2.85 (s, 2H), 2.59 (ddd, *J* = 14.1, 3.3, 1.3 Hz, 1H), 2.56 – 2.50 (m, 1H), 2.31 (q, *J* = 7.4 Hz, 2H), 2.18 – 2.15 (m, 2H), 2.15 – 2.12 (m, 5H), 1.99 (dddd, *J* = 12.2, 4.3, 3.3, 1.9 Hz, 1H), 1.74 – 1.64 (m, 1H), 1.47 (dddd, *J* = 15.3, 8.8, 6.7, 3.4 Hz, 1H), 1.29 – 1.23 (m, 1H), 1.11 (qd, *J* = 12.6, 12.2, 3.0 Hz, 1H), 1.00 (td, *J* = 12.2, 10.5 Hz, 1H), 0.93 (s, 9H), 0.91 (d, *J* = 6.6 Hz, 3H), 0.90 – 0.83 (m, 4H), 0.19 (s, 3H), 0.12 (s, 3H).

¹³C-NMR (125 MHz, d₆-acetone): δ [ppm] = 162.1, 142.5, 136.1, 135.9, 133.3, 132.7, 128.7, 126.9, 126.8, 126.1, 124.6, 116.9, 92.2, 72.5, 55.3, 52.5, 51.6, 49.2, 46.6, 35.5, 35.0, 33.3, 32.8, 32.3, 31.0, 30.7, 28.4, 27.5, 26.6, 24.8, 22.7, 18.7 (2x), 18.3, -3.3, -4.2.

HRMS (ESI-(+), 6.0 eV): $[M+H]^+$ calcd for $[C_{37}H_{62}N_2O_4Si+H]^+ = 625.4395$; Found 625.4399.

4.12. (*E*)-*N*-((2*E*,6*Z*,8*Z*)-11-(4-((*S*)-2-((1*S*,2*R*,4*R*)-2-Hydroxy-4-methylcyclohexyl)propyl)oxazol-2yl)dodeca-2,6,8,11-tetraen-1-yl)-3-methoxy-*N*-methylbut-2-enamide (33)

To an ice-cooled solution of silvl ether **32** (25.7 mg, 41.1 μ mol, 1.00 equiv.) in dry THF (1.7 mL) were added dry pyridine (760 μ L) and HF·pyridine (500 μ L). The solution was allowed to warm to r.t. and stirred for 3 h. Aq. pH 7 buffer solution (8 mL) and EtOAc (6 mL) were added at 0 °C, the layers were separated, the aqueous phase was extracted with EtOAc (3x 10 mL). All organic extracts were combined and washed with aq. pH 7 buffer solution(2x 8 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography (CH/EA 1:1) yielded alcohol **33** as a yellow oil (14.6 mg, 24.7 μ mol, 53%).

R_f = 0.12 (CH/EA 1:1).

 $[\alpha]_{D}^{20} = -33.3$ (MeOH, c = 0.6).

¹**H-NMR (700 MHz, d₆-acetone):** δ [ppm] = 7.60 (t, J = 1.0 Hz, 1H), 6.42 (ddt, J = 9.2, 3.4, 1.6 Hz, 2H), 5.91 (dd, J = 2.2, 1.2 Hz, 1H), 5.68 – 5.57 (m, 2H), 5.55 – 5.49 (m, 1H), 5.50 – 5.40 (m, 0H), 5.39 (q, J = 1.4 Hz, 1H), 5.33 (s, 1H), 3.95 – 3.91 (m, 2H), 3.62 (s, 1H), 3.60 (s, 2H), 3.55 (d, J = 20.6 Hz, 1H), 3.45 (td, J = 10.4, 4.2 Hz, 1H), 3.40 (d, J = 7.6 Hz, 2H), 2.95 (s, 1H), 2.87 – 2.77 (m, 5H), 2.71 (ddd, J = 14.0, 4.4, 1.4 Hz, 1H), 2.36 (dddd, J = 9.2, 6.7, 4.5, 2.3 Hz, 0H), 2.33 – 2.27 (m, 2H), 2.18 – 2.16 (m, 1H), 2.16 – 2.12 (m, 4H), 1.93 (dtd, J = 12.1, 3.9, 2.0 Hz, 1H), 1.69 – 1.60 (m, 2H), 1.43 (dddt, J = 15.4, 11.9, 6.7, 3.3 Hz, 1H), 1.25 (ddt, J = 12.6, 10.1, 2.4 Hz, 1H), 1.14 (qd, J = 12.6, 3.1 Hz, 1H), 1.04 – 0.94 (m, 1H), 0.93 (dd, J = 6.9, 1.8 Hz, 3H), 0.89 (dd, J = 6.6, 1.8 Hz, 3H), 0.88 – 0.81 (m, 1H).

¹³C-NMR (125 MHz, d₆-acetone): δ [ppm] = 167.5, 167.4, 162.1, 142.8, 136.0, 135.8, 133.3, 132.8, 132.6, 128.7, 128.5, 127.3, 126.9, 124.7, 117.2, 92.2, 71.0, 55.3, 55.0, 52.5, 50.4, 49.3, 46.4, 35.7, 35.1, 33.2, 33.0, 32.8, 31.0, 30.3, 28.0, 26.6, 22.6, 18.7, 17.7.

HRMS (ESI (+), 6.0 eV): $[M+H]^+$ calcd for $[C_{31}H_{46}N_2O_4+H]^+$ = 511.3530; Found 511.43531.

Fable 1. NMR-Data of compound 33	3 (d ₆ -acetone, 700/175 MHz, r.t.).
----------------------------------	--

H₃CҲ	$H H H H_{a}$ $2 10 7$ $4 H H_{a}$ $H H_{a}$		16 20 33	
Atom	δ _н [ppm]	m	<i>J</i> [Hz]	δ _c [ppm]
1	3.45	td	10.4, 4.2	71.04
2 _{ax}	0.96	m	_	46.40
2 _{eq}	1.93	dtd	12.1, 3.9, 2.0	
3	1.43	dddt	15.4, 11.9, 6.7, 3.3	32.40
3-CH₃	0.93	dd	6.9, 1.80	33.21
4 _{ax}	0.85	m	-	35.66
4_{eq}	1.65	m	-	
5 _{ax}	1.14	qd	12.6, 3.14	26.61
5_{eq}	1.65	m	_	
6	1.25	ddt	12.6, 10.1, 2.4	50.35
7	2.36	dddd	9.2, 6.7, 4.5, 2.3	31.02
7-CH₃	0.89	dd	6.6, 1.8	17.69
8 _a	2.14	m	_	30.31
8 _b	2.71	ddd	14.1, 4.4, 1.4	
9	_	_	_	142.81
10	7.60	S	_	135.79
11	_	_	_	162.09
12	-	_	_	135.98
12-CH _a	5.91	dd	2.2, 1.2	117.16 ^[a]
$12-CH_{b}$	5.39	q	1.4	
13	3.40	d	7.6	29.84
14	5.62	m	_	128.60 ^[a]
15	6.42	ddt	9.2, 3.4, 1.6	124.66 ^[a]
16	5.52	m	_	126.87 ^[a]
17	5.46	m	-	132.70 ^[a]
18	2.31	m	-	27.96
19	2.17	m	-	32.83
20	5.62	m	-	133.25 ^[a]
21	5.52	m	-	127.26 ^[a]
22	3.92	m	-	52.45/49.26
22-NCH ₃	2.95/2.83	S	br	35.07 ^[a] /33.02
23	_	_	_	168.80 ^[a,b] /168.55 ^[b]
24	5.34/5.33	S	br	92.20
25	_	_	_	167.49/167.39
25-0CH₃	3.62/3.60	S	br	55.28/54.97
26	2.14	m	br	18.72

^[a] broad signals. ^[b] Reconstruction by HMBC-Correlations.

5. Total synthesis of ajudazol A

5.1. Synthesis of Western Part 34

5.1.1. Allyl-2-(allyloxy)-3-methylbenzoate (56)

NaH (60% suspension in paraffin liquid, 11.4 g, 284 mmol, 2.40 equiv.) was added in six portions over 30 min to a stirring solution of 3-methylsalicylic acid (18.0 g, 118 mmol, 1.00 equiv.) in dry DMF (240 mL) at 0 °C and stirred for 1.5 h. Allyl bromide (30.7 mL, 355 mmol, 3.00 equiv.) was slowly added dropwise, the reaction was allowed to warm to r.t. and stirred for 1 h. Water (300 mL) and Et_2O (250 mL) were added, the layers were separated and the aqueous phase was extracted with Et_2O (3x 100 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* yielded allyl benzoate **56** as a yellow liquid, which was used in the next step without further purification (25.3 g, 109 mmol, 92%).

R_f = 0.33 (CH/EA 9:1).

¹**H NMR (700 MHz, CDCl₃)**: δ [ppm] = 7.66 (ddd, *J* = 7.8, 1.8, 0.7 Hz, 1H), 7.34 (ddq, *J* = 7.5, 1.5, 0.8 Hz, 1H), 7.06 (t, *J* = 7.6 Hz, 1H), 6.11 (ddt, *J* = 17.2, 10.4, 5.7 Hz, 1H), 6.04 (ddt, *J* = 17.2, 10.5, 5.8 Hz, 1H), 5.40 (ddq, *J* = 17.6, 16.1, 1.6 Hz, 2H), 5.26 (ddq, *J* = 26.5, 10.4, 1.3 Hz, 2H), 4.81 (dt, *J* = 5.8, 1.4 Hz, 2H), 4.44 (dt, *J* = 5.7, 1.4 Hz, 2H), 2.32 (d, *J* = 0.6 Hz, 3H).

¹³**C NMR (175 MHz, CDCl₃):** δ [ppm] = 166.3, 157.2, 135.3, 134.0, 133.1, 132.3, 129.3, 125.1, 123.7, 118.7, 117.7, 75.1, 65.9, 16.5.

HRMS (ESI (+), 6.0 eV): $[M+Na]^+$ calcd for $[C_{14}H_{16}O_3+Na]^+$ = 255.099; Found 255.099.

The experimental data are in agreement with those previously published.^[15]

 ^[15] (a) Essig, S.; Bretzke, S.; Müller, R.; Menche, D. J. Am. Chem. Soc. 2012, 134, 19362–19365. (b) Essig, S.;
 Schmalzbauer, B.; Bretzke, S.; Scherer, O.; Koeberle, A.; Werz, O.; Müller, R.; Menche, D. J. Org. Chem. 2016, 81, 1333–1357. (c) Essig, S.; Menche, D. J. Org. Chem. 2016, 81, 1943–1966.

5.1.2. 2-(Allyloxy)-3-methylbenzoic acid (57)

To a stirring solution of ester **56** (28.2 g, 121 mmol, 1.00 equiv.) in MeOH (400 mL) was added aq. NaOH (6.0m, 103 mL, 6.00 equiv.) and the reaction was heated to reflux for 4 h. The solvent was removed *in vacuo*, the residue was diluted with water (300 mL) and acidified with aq. H_2SO_4 (1.0M) to pH = 2–3. Et₂O (100 mL) was added, the layers were separated and the aqueous phase was extracted with Et₂O (3x 150 mL). All organic phases were combined and washed with water (150 mL). Drying over MgSO₄ and removal of the solvent *in vacuo* yielded carboxylic acid **57** as a white solid (23.3 g, 121 mmol, quant.), which was used in the next step without further purification.

R_f = 0.19 (CH/EA 5:1).

Mp.: 52-54 °C.

¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = 11.16 (br. s, 1H), 7.97 (dd, J = 7.8, 1.8 Hz, 1H), 7.48 – 7.41 (m, 1H), 7.19 (t, J = 7.7 Hz, 1H), 6.11 (ddt, J = 16.7, 10.3, 6.0 Hz, 1H), 5.48 (dq, J = 17.1, 1.4 Hz, 1H), 5.39 (dq, J = 10.4, 1.1 Hz, 1H), 4.51 (dt, J = 6.0, 1.2 Hz, 2H), 2.37 (s, 3H).

¹³C-NMR (125 MHz, CDCl₃): δ [ppm] = 166.0, 156.2, 137.1, 131.7, 131.6, 130.9, 125.3, 122.7, 120.7, 76.2, 16.3.

HRMS (ESI (+), 6.0 eV): calculated for $[M-H^+]^-$: 191.071; Found 191.08.

The experimental data are in agreement with those previously published. ^[16]

5.1.3. 2-(Allyloxy)-N,N-diisopropyl-3-methylbenzamide (58)

To a stirring solution of carboxylic acid **57** (4.83 g, 20.8 mmol, 1.00 equiv.) in dry CH_2Cl_2 (50 mL) was added $SOCl_2$ (4.52 mL, 62.4 mmol, 3.00 equiv.) and the reaction was heated to reflux for 5.5 h. Excess $SOCl_2$ was removed *in vacuo* (80 °C, 20 mbar) and the residue was dissolved in dry CH_2Cl_2 (50 mL). A

 ^[16] (a) Essig, S.; Bretzke, S.; Müller, R.; Menche, D. *J. Am. Chem. Soc.* **2012**, *134*, 19362–19365. (b) Essig, S.;
 Schmalzbauer, B.; Bretzke, S.; Scherer, O.; Koeberle, A.; Werz, O.; Müller, R.; Menche, D. *J. Org. Chem.* **2016**, *81*, 1333–1357. (c) Essig, S.; Menche, D. *J. Org. Chem.* **2016**, *81*, 1943–1966.

solution of ^{*i*}Pr₂NH (8.77 mL, 62.44 mmol, 3.00 equiv.) in dry CH_2Cl_2 (25 mL) was slowly added at 0 °C. The reaction was allowed to warm to r.t. and stirred overnight (12 h). Water (30 mL) was added, the phases were separated and aqueous phase was extracted with CH_2Cl_2 (3x 30 mL). All organic phases were combined and washed with H_2O (30 mL) and brine (30 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 5:1) yielded amide **58** as a white crystalline solid (5.27 g, 19.1 mmol, 92%).

R_f = 0.35 (CH/EA 5:1).

Mp.: 95-96 °C.

¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = 7.17 – 7.13 (m, 1H), 7.03 – 6.98 (m, 2H), 6.04 (ddt, J = 17.2, 10.8, 5.5 Hz, 1H), 5.37 (dq, J = 17.2, 1.7 Hz, 1H), 5.19 (dq, J = 10.4, 1.4 Hz, 1H), 4.55 (ddt, J = 12.3, 5.5, 1.4 Hz, 1H), 4.34 (ddt, J = 12.3, 5.6, 1.5 Hz, 1H), 3.67 (hept, J = 6.7 Hz, 1H), 3.49 (hept, J = 6.8 Hz, 1H), 2.29 (s, 3H), 1.55 (dd, J = 6.8, 3.7 Hz, 6H), 1.17 (d, J = 6.7 Hz, 3H), 1.02 (d, J = 6.7 Hz, 3H).

¹³**C-NMR (125 MHz, CDCl₃):** δ [ppm] = 169.0, 153.0, 134.2, 133.4, 131.8, 131.22, 124.3, 117.1, 74.75, 51.2, 45.8, 20.9, 20.8, 20.7, 20.4, 16.4 (2x).

HRMS (ESI (+), 6.0 eV): $[M+Na]^+$ calcd for $[C_{17}H_{25}NO_2+Na]^+$ = 298.1778; Found 298.1780.

The experimental data are in agreement with those previously published.^[17]

5.1.4. (S)-2-(Allyloxy)-N,N-diisopropyl-3-methyl-6-(p-tolylsulfinyl)benzamide (59)

^tBuLi (1.7M in pentane, 17.4 mL, 29.5 mmol, 1.10 equiv.) was added over a period of 15 min to a stirring solution of amide **58** (7.38 g, 26.8 mmol, 1.00 equiv.) in dry THF (130 mL) at -78 °C. After 0.5 h the solution was transferred *via* cannula to a stirring solution of (1*R*,2*S*,5*R*)-(–)-Menthyl (*S*)*p*-toluenesulfinate (Andersen reagent) in dry THF (130 mL) at r.t. and the reaction was allowed to stir for 90 min at ambient temperature. Aq. sat. NH₄Cl solution (100 mL) was added, the layers were separated and the aqueous layer was extracted with EtOAc (3x 100 mL). All organic phases were combined and washed with brine (150 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and

 ^[17] (a) Essig, S.; Bretzke, S.; Müller, R.; Menche, D. J. Am. Chem. Soc. 2012, 134, 19362–19365. (b) Essig, S.;
 Schmalzbauer, B.; Bretzke, S.; Scherer, O.; Koeberle, A.; Werz, O.; Müller, R.; Menche, D. J. Org. Chem. 2016, 81, 1333–1357. (c) Essig, S.; Menche, D. J. Org. Chem. 2016, 81, 1943–1966.

purification of the residue by flash column chromatography over silica gel (CH/EA 3:1) yielded enantiomeric pure sulfoxide **59** as a white solid (7.96 g, 19.3 mmol, 72%).

R_f = 0.31 (CH/EA 5:1).

Mp.: 99-102 °C.

 $[\alpha]_{D}^{20} = -107.9 \text{ (CHCl}_{3}, c = 1.0).$

¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = 7.72 (d, *J* = 8.2 Hz, 2H), 7.43 (d, *J* = 8.1 Hz, 1H), 7.27 - 7.24 (m, 3H), 6.08 - 5.97 (m, 1H), 5.37 (dq, *J* = 17.2, 1.6 Hz, 1H), 5.22 (dq, *J* = 10.4, 1.4 Hz, 1H), 4.57 (ddt, *J* = 12.1, 5.6, 1.4 Hz, 1H), 4.32 (ddt, *J* = 12.1, 5.6, 1.5 Hz, 1H), 3.76 (hept, *J* = 6.8 Hz, 1H), 3.60 (hept, *J* = 6.8 Hz, 1H), 2.35 (s, 3H), 2.29 (s, 3H), 1.63 (d, *J* = 6.8 Hz, 3H), 1.59 (d, *J* = 6.8 Hz, 3H), 1.25 (d, *J* = 6.7 Hz, 3H).

¹³**C-NMR (125 MHz, CDCl₃):** δ [ppm] = 165.5, 152.4, 142.3, 142.2, 140.8, 135.5, 133.6, 132.5, 129.9, 124.7, 120.9, 117.5, 75.1, 52.0, 46.4, 21.5, 21.1, 20.8, 20.5, 20.4, 16.5.

HRMS (ESI-(+), 5.0 eV): $[M+Na]^+$ calcd for $[C_{24}H_{31}NO_3S+Na]^+$ = 436.1917; Found 436.1920.

The experimental data are in agreement with those previously published. ^[18]

5.1.5. Ethyl (2R,3R)-2-hydroxy-3-methylpent-4-enoate (60)

trans-2-Butene (19 mL, 195 mmol, 2.80 equiv.) was added via transfer cannula to a stirring suspension of KO^tBu (8.03 g, 71.6 mmol, 1.03 equiv.) in dry THF (38 mL) at -78 °C. ^{*n*}BuLi (2.5M in hexane, 28.0 mL, 69.5 mmol, 1.00 equiv.) was added over a period of 30 min. After 30 min the solution was warmed up to -45 °C and stirred for 10 min. A solution of (+)-lpc₂BOMe (26.0 g, 82 mmol, 1.18 equiv.) in dry Et₂O (83 mL) was added over a period of 30 min at -78 °C, followed by addition of BF₃·OEt₂ (12.3 mL, 97.3 mmol, 1.40 equiv.) over a period of 20 min. Ethyl glyoxylate (4.9M in toluene, 35.5 mL, 174 mmol, 2.50 equiv.) was added over a period of 30 min and stirring was continued for 4 h at -78 °C. NaOH (1.0m in water, 157 mL, 2.25 equiv.) was added at r.t., followed by careful addition of aq. H₂O₂ solution (30 %*v*/*v*, 21.7 mL, 2.76 equiv.). The solution was allowed to warm to r.t. and stirred for 2 h. The layers were separated and the aqueous phase was extracted with Et₂O (3x 100 mL). All organic phases were combined and washed with water (30 mL) and brine

 ^[18] (a) Essig, S.; Bretzke, S.; Müller, R.; Menche, D. J. Am. Chem. Soc. 2012, 134, 19362–19365. (b) Essig, S.;
 Schmalzbauer, B.; Bretzke, S.; Scherer, O.; Koeberle, A.; Werz, O.; Müller, R.; Menche, D. J. Org. Chem. 2016, 81, 1333–1357. (c) Essig, S.; Menche, D. J. Org. Chem. 2016, 81, 1943–1966.

(30 mL). Drying over MgSO₄, careful removal of the solvent *in vacuo* (40 °C, 50 mbar) and vacuum destillation (64-65 °C, 5.4 mbar) yielded crotyl alcohol **60** as a colourless liquid (6.10 g, 38.6 mmol, 56%).

R_f = 0.14 (CH/EA 10:1).

 $[\alpha]_{D}^{20} = -2.3$ (CHCl₃, c = 1.0).

¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = 5.75 (ddd, *J* = 17.8, 9.8, 8.0 Hz, 1H), 5.08 (d, *J* = 1.5 Hz, 1H), 5.05 (dd, *J* = 4.2, 1.5 Hz, 1H), 4.32 – 4.16 (m, 2H), 4.10 (d, *J* = 3.4 Hz, 1H), 2.70 – 2.61 (m, 1H), 1.29 (t, *J* = 7.1 Hz, 3H), 1.16 (d, *J* = 7.0 Hz, 3H).

¹³C-NMR (125 MHz, CDCl₃): δ [ppm] = 174.3, 137.8, 116.6, 74.5, 61.8, 42.1, 16.5, 14.4. HRMS (ESI-(+), 6.0 eV: $[M+H]^+$ calcd for $[C_8H_{14}O_3+H]^+$ = 159.1016; Found 159.1018. The experimental data are in agreement with those previously published. ^[19]

5.1.6. Ethyl-(2R,3R)-3-methyl-2-((triethylsilyl)oxy)pent-4-enoate (61)

TESOTF (9.10 mL, 47.5 mL, 1.25 equiv.) was slowly added to a stirring solution of crotyl alcohol **60** (6.02 g, 38.0 mmol, 1.00 equiv.) and 2,6-lutidine (11.1 mL, 95.1 mmol, 2.50 equiv.) in dry CH_2CI_2 (130 mL) at 0 °C. The reaction was allowed to warm to r.t. and stirred for 1 h. Water (100 mL) was added, the phases were separated and the aqueous phase was extracted with CH_2CI_2 (3x 100 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 30:1) yielded TES ether **61** as a colourless liquid (9.43 g, 34.6 mmol, 91%).

R_f = 0.30 (CH/EA 30:1).

 $[\alpha]_{D}^{20} = +18.9 \text{ (CHCl}_{3}, c = 1.0).$

¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = 5.82 (ddd, *J* = 17.2, 10.3, 8.0 Hz, 1H), 5.05 – 4.98 (m, 2H), 4.22 – 4.11 (m, 2H), 4.07 (d, *J* = 4.7 Hz, 1H), 2.65 – 2.54 (m, 1H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.06 (d, *J* = 6.9 Hz, 3H), 0.95 (t, *J* = 7.9 Hz, 9H), 0.61 (qd, *J* = 7.9, 2.7 Hz, 6H).

¹³C-NMR (125 MHz, CDCl₃): δ [ppm] = 173.0, 139.2, 115.4, 76.3, 60.7, 42.9, 16.6, 14.4, 6.9, 4.8. HRMS (ESI (+), 6.0 eV): $[M+Na]^+$ calcd for $[C_{14}H_{28}O_3Si+H]^+$ = 295.1700; Found 295.1719.

 ^[19] (a) Essig, S.; Bretzke, S.; Müller, R.; Menche, D. J. Am. Chem. Soc. 2012, 134, 19362–19365. (b) Essig, S.;
 Schmalzbauer, B.; Bretzke, S.; Scherer, O.; Koeberle, A.; Werz, O.; Müller, R.; Menche, D. J. Org. Chem. 2016, 81, 1333–1357. (c) Essig, S.; Menche, D. J. Org. Chem. 2016, 81, 1943–1966.
The experimental data are in agreement with those previously published.^[13]

5.1.7. (2R,3R)-3-Methyl-2-((triethylsilyl)oxy)pent-4-en-1-ol (62)

DIBALH (1.0M in CH₂Cl₂, 41.0 mL, 2.10 equiv.) was slowly added to a stirring solution of Ester **61** (2.67 g, 9.80 mmol, 1.00 equiv.) in dry CH₂Cl₂ at -78 °C. The reaction was allowed to warm to r.t. and stirred for 1 h. Et₂O (100 mL) was added, the solution was poured into aq. sat. Rochelle-salt solution (100 mL) and stirred vigorously until two phases appeared. The layers were separated and the aqueous phase was extracted with Et₂O (3x 50 mL). Drying over MgSO₄ and removal of the solvent *in vacuo* yielded alcohol **62** as a colourless liquid, which was used in the next step without further purification (2.26 g, 9.81 mmol, quant.).

R_f = 0.29 (CH/EA 9:1).

 $[\alpha]_{D}^{20} = +2.6 \text{ (CHCl}_{3}, c = 1.0).$

¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = 5.81 (ddd, *J* = 17.5, 10.4, 7.5 Hz, 1H), 5.09 – 4.95 (m, 2H), 3.65 (q, *J* = 5.1 Hz, 1H), 3.53 (d, *J* = 5.0 Hz, 2H), 2.45 – 2.35 (m, 1H), 1.83 (d, *J* = 11.2 Hz, 1H), 1.02 (d, *J* = 7.0 Hz, 3H), 0.97 (t, *J* = 7.9 Hz, 9H), 0.63 (q, *J* = 7.9 Hz, 6H).

¹³C-NMR (125 MHz, CDCl₃): δ [ppm] = 140.6, 114.9, 64.4, 41.4, 15.3, 7.0, 5.24.

HRMS (ESI-(+), 6.0 eV): $[M+Na]^+$ calcd for $[C_{12}H_{26}O_2Si+Na]^+$ = 253.1594; Found 253.1591.

The experimental data are in agreement with those previously published. ^[20]

5.1.8. (2R,3R)-3-Methyl-2-((triethylsilyl)oxy)pent-4-enal (63)

 ^[20] (a) Essig, S.; Bretzke, S.; Müller, R.; Menche, D. *J. Am. Chem. Soc.* **2012**, *134*, 19362–19365. (b) Essig, S.;
 Schmalzbauer, B.; Bretzke, S.; Scherer, O.; Koeberle, A.; Werz, O.; Müller, R.; Menche, D. *J. Org. Chem.* **2016**, *81*, 1333–1357. (c) Essig, S.; Menche, D. *J. Org. Chem.* **2016**, *81*, 1943–1966.

DMSO (425 μ L, 5.93 mmol, 2.60 equiv.) in dry CH₂Cl₂ (3.50 mL) was slowly added over a period of 5 min to a stirring solution of (COCl)₂ (270 μ L, 3.08 mmol, 1.35 equiv.) in dry CH₂Cl₂ (10.5 mL) at -78 °C. After 25 min alcohol **62** (525 mg, 2.28 mmol, 1.00 equiv.) in dry CH₂Cl₂ (3.50 mL) was added and the solution stirred for 1 h. NEt₃ (1.25 mL, 9.12 mmol, 4.00 equiv.) was slowly added dropwise, stirring was continued for additional 30 min and the reaction was allowed to warm to r.t. over 1 h. Water (11 mL) was added, the layers were separated and the aqueous phase was extracted with CH₂Cl₂ (3x 15 mL). All organic phases were combined and washed with brine (15 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 50:1) yielded aldehyde **63** as a yellow liquid (432 mg, 1.89 mmol, 83%).

R_f = 0.30 (CH/EA 50:1).

 $[\alpha]_{D}^{20} = +16.6 \text{ (CHCl}_{3}, c = 1.0).$

¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = 9.55 (d, J = 2.2 Hz, 1H), 5.87 – 5.76 (m, 1H), 5.07 – 5.04 (m, 1H), 5.03 (d, J = 1.0 Hz, 1H), 3.85 (dd, J = 4.5, 2.2 Hz, 1H), 2.62 – 2.53 (m, 1H), 1.08 (d, J = 6.9 Hz, 3H), 0.96 (t, J = 7.9 Hz, 9H), 0.61 (q, J = 7.7 Hz, 6H).

¹³C-NMR (125 MHz, CDCl₃): δ [ppm] = 204.6, 138.4, 116.0, 81.0, 41.8, 16.2, 6.8, 4.9.

HRMS (ESI (+), 6.0 eV): $[M+H]^{+}$ calcd for $[C_{12}H_{24}O_2Si+H]^{+} = 251.1438$; Found 251.1445.

The experimental data are in agreement with those previously published.^[21]

5.1.9. 2-(Allyloxy)-6-((1*S*,2*R*,3*R*)-1-hydroxy-3-methyl-2-((triethylsilyl)oxy)pent-4-en-1-yl)-*N*,*N*diisopropyl-3-methylbenzamide (64)

^tBuLi (1.7M in pentane, 4.06 mL, 6.91 mmol, 1.20 equiv.) was slowly added to a solution of amide **59** (2.38 g, 5.76 mmol, 1.00 equiv.) in dry THF (50 mL) at -90 °C and stirred for 15 min. Aldehyde **63** (1.84 g, 8.06 mmol, 1.40 equiv.) in dry THF (6.70 mL) was slowly added and the solution was allowed to stir for 1 h, before it was allowed to warm to -78 °C and stirred for additional 30 min. Aq. sat. NH₄Cl solution (40 mL) was added, the layers were separated and the aqueous phase was

^[21] (a) Essig, S.; Schmalzbauer, B.; Bretzke, S.; Scherer, O.; Koeberle, A.; Werz, O.; Müller, R.; Menche, D. *J. Org. Chem.* **2016**, *81*, 1333–1357. (b) Essig, S.; Menche, D. *J. Org. Chem.* **2016**, *81*, 1943–1966.

extracted with EtOAc (3x 50 mL). All organic phases were combined and washed with brine (50 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 6:1) yielded benzylic alcohol **64** as a colourless, viscid oil (2.03 g, 4.03 mmol, 71%).

R_f = 0.28 (CH/EA 6:1).

 $[\alpha]_{D}^{20} = +39.5 (CHCl_{3}, c = 1.0).$

¹**H-NMR (500 MHz, CDCl₃):** δ [ppm] = 7.19 – 7.12 (m, 2H), 6.03 (ddt, *J* = 17.2, 10.5, 5.5 Hz, 1H), 5.92 (ddd, *J* = 17.4, 10.3, 8.5 Hz, 1H), 5.36 (dq, *J* = 17.2, 1.7 Hz, 1H), 5.20 (dq, *J* = 10.4, 1.4 Hz, 1H), 5.12 (ddd, *J* = 17.3, 2.3, 1.0 Hz, 1H), 5.02 (ddd, *J* = 10.3, 2.2, 0.7 Hz, 1H), 4.46 (ddt, *J* = 12.3, 5.7, 1.4 Hz, 1H), 4.40 (d, *J* = 9.2 Hz, 1H), 4.25 (ddt, *J* = 12.3, 5.4, 1.5 Hz, 1H), 4.18 (dd, *J* = 9.2, 2.0 Hz, 1H), 3.76 (hept, *J* = 6.6 Hz, 1H), 3.50 (hept, *J* = 6.8 Hz, 1H), 2.83 – 2.75 (m, 1H), 2.27 (d, *J* = 0.6 Hz, 3H), 1.64 – 1.58 (m, 1H), 1.55 (d, *J* = 6.8 Hz, 3H), 1.54 (d, *J* = 6.9 Hz, 3H), 1.21 (d, *J* = 6.6 Hz, 3H), 1.15 (d, *J* = 7.1 Hz, 3H), 1.04 (d, *J* = 6.7 Hz, 3H), 0.77 (t, *J* = 8.0 Hz, 9H), 0.43 (qd, *J* = 7.9, 1.8 Hz, 6H).

¹³**C-NMR (125 MHz, CDCl₃):** δ [ppm] = 168.9, 152.5, 140.5, 138.7, 134.2, 134.1, 131.1, 130.6, 123.0, 117.1, 115.3, 76.7, 72.1, 51.7, 46.0, 41.5, 32.5, 24.4, 20.9, 20.6, 20.5, 20.4, 17.3, 16.1, 7.0, 5.6.

HRMS (ESI (+), 6.0 eV): $[M+H]^+$ calcd for $[C_{29}H_{49}NO_4Si]^+$)= 504.3504; Found 504.3480.

The experimental data are in agreement with those previously published.^[22]

5.1.10. 2-(Allyloxy)-6-((55,6R)-6-((R)-but-3-en-2-yl)-8,8-diethyl-2,2,3,3-tetramethyl-4,7-dioxa-3,8disiladecan-5-yl)-N,N-diisopropyl-3-methylbenzamide (65)

TBSOTF (600 μ L, 2.61 mmol, 2.50 equiv.) was added to a stirring solution of benzylic alcohol **64** (526 mg, 1.04 mmol, 1.00 equiv.) and 2,6-lutidine (610 μ L, 5.22 mmol, 5.00 equiv.) in dry CH₂Cl₂ (18 mL) at 0 °C. The reaction was allowed to warm to r.t. and stirred overnight (21 h). Water (5 mL) was added, the layers were separated and the aqueous phase was extracted with CH₂Cl₂ (3x 10 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* and

^[22] (a) Essig, S.; Schmalzbauer, B.; Bretzke, S.; Scherer, O.; Koeberle, A.; Werz, O.; Müller, R.; Menche, D. *J. Org. Chem.* **2016**, *81*, 1333–1357. (b) Essig, S.; Menche, D. *J. Org. Chem.* **2016**, *81*, 1943–1966.

purification of the residue by flash chromatography over silica gel (CH/EA 50:1) yielded TBS ether **65** as a colourless oil (580 mg, 980 μ mol, 90%).

R_f = 0.36 (CH/EA 50:1).

 $[\alpha]_{D}^{20} = -14.8$ (CHCl₃, c = 0.8).

¹**H-NMR (700 MHz, CDCl₃):** δ [ppm] = 7.13 (d, J = 7.9 Hz, 1H), 7.09 (d, J = 8.0 Hz, 1H), 6.02 (ddt, J = 17.2, 10.7, 5.4 Hz, 1H), 5.86 (ddd, J = 17.3, 10.3, 9.0 Hz, 1H), 5.35 (dq, J = 17.2, 1.7 Hz, 1H), 5.16 (dq, J = 10.5, 1.4 Hz, 1H), 5.06 - 4.98 (m, 2H), 4.54 (ddt, J = 12.5, 5.5, 1.5 Hz, 1H), 4.39 (d, J = 8.8 Hz, 1H), 4.17 (ddt, J = 12.4, 5.5, 1.6 Hz, 1H), 3.83 - 3.74 (m, 2H), 3.48 (hept, J = 6.7 Hz, 1H), 2.79 (p, J = 7.5 Hz, 1H), 2.25 (s, 3H), 1.55 (t, J = 7.0 Hz, 6H), 1.15 - 1.10 (m, 9H), 0.82 (s, 9H), 0.74 (t, J = 8.0 Hz, 9H), 0.38 (dq, J = 15.0, 8.1 Hz, 3H), 0.28 (dq, J = 15.0, 8.1 Hz, 3H), 0.10 (s, 3H), -0.37 (s, 3H).

¹³**C-NMR (175 MHz, CDCl₃):** δ [ppm] = 167.5, 152.9, 140.5, 139.0, 134.4, 134.2, 130.8, 130.4, 123.7, 116.7, 115.5, 81.7, 74.7, 71.5, 50.8, 45.8, 41.2, 26.1, 21.5, 21.1, 20.7, 20.5, 19.2, 18.1, 16.1, 7.2, 5.5, --5.9, -5.2.

HRMS (ESI (+), 6.0 eV): $[M+Na]^+$ calcd for $[C_{35}H_{62}NO_4Si_2+Na]^+ = 640.4188$; Found 640.4189.

The experimental data are in agreement with those previously published.^[23]

5.1.11. (3*R*,4*S*)-3-((*R*)-But-3-en-2-yl)-4-((*tert*-butyldimethylsilyl)oxy)-8-hydroxy-7methylisochroman-1-one (34)

Pd(PPh₃)₄ (3.30 mg, 2.85 μ mol, 0.01 equiv.) was added to a stirring suspension of allyl ether **65** (176 mg, 285 μ mol, 1.00 equiv.) in dry MeOH (2.40 mL) at r.t. and stirred for 10 min. Dry K₂CO₃ (118 mg, 855 μ mol, 3.00 equiv.) was added and stirring was continued for 1 h. The mixture was concentrated *in vacuo*, diluted in CH₂Cl₂ (3 mL) and H₂O (5 mL) and was acidified with aq. HCl (1.0m) to pH = 6. The layers were separated and the aqueous phase was extracted with CH₂Cl₂ (3x 3 mL). All organic phases were combined and washed with brine (5 mL). Drying over MgSO₄ and removal of the solvent gave a red oil, which was transferred into a septum sealed microwave vessel. Dry toluene (2.30 mL) and AcOH (490 μ L, 8.55 mmol, 30.0 equiv.) were added and the solution was heated up to 220 °C in a microwave reactor for 3.5 h (Ramp Time: 30 min; Holding Time: 180 min; Power: 300 W;

^[23] (a) Essig, S.; Schmalzbauer, B.; Bretzke, S.; Scherer, O.; Koeberle, A.; Werz, O.; Müller, R.; Menche, D. *J. Org. Chem.* **2016**, *81*, 1333–1357. (b) Essig, S.; Menche, D. *J. Org. Chem.* **2016**, *81*, 1943–1966.

Max Power: Off). Water (2 mL) was added, the layers were separated and the aqueous phase was extracted with EtOAc (3x 10 mL). All organic phases were combined and washed with brine (10 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 30:1) gave isochromanone **34** as a white paste (88.4 mg, 244 μ mol, 86%).

R_f = 0.29 (CH/EA 30:1).

 $[\alpha]_{D}^{20} = +70.2 \text{ (CHCl}_{3}, c = 1.0).$

¹**H-NMR (700 MHz, CDCl₃):** δ [ppm] = 11.27 (d, J = 0.5 Hz, 1H), 7.34 (dt, J = 7.5, 0.8 Hz, 1H), 6.72 (d, J = 7.5 Hz, 1H), 5.82 (ddd, J = 17.2, 10.4, 7.5 Hz, 1H), 5.07 (dt, J = 10.4, 1.2 Hz, 1H), 5.02 (dt, J = 17.2, 1.3 Hz, 1H), 4.72 (d, J = 3.6 Hz, 1H), 4.39 (dd, J = 7.2, 3.6 Hz, 1H), 2.40 (p, J = 6.5 Hz, 1H), 2.27 (d, J = 1.0 Hz, 3H), 1.07 (d, J = 6.9 Hz, 3H), 0.87 (s, 9H), 0.13 (s, 3H), -0.01 (s, 3H).

¹³**C-NMR (175 MHz, CDCl₃):** δ [ppm] = 168.7, 160.2, 138.1, 137.6, 136.9, 127.2, 117.4, 116.7, 107.0, 88.2, 66.9, 39.3, 25.9, 18.2, 17.2, 15.8, -4.01, -4.10.

HRMS (ESI (+), 6.0 eV): [M+H]⁺ calcd for [C₂₀H₃₀O₄Si+H]⁺ = 363.1986; Found 363.1991.

The experimental data are in agreement with those previously published. ^[24]

5.1.12. (3*R*,4*S*)-3-((*R*)-But-3-en-2-yl)-4,8-bis((*tert*-butyldimethylsilyl)oxy)-7-methylisochroman-1one (66)

TBSOTF (950 μ L, 4.12 mmol, 2.00 equiv.) was added to a stirring solution of phenol **34** (746 mg, 2.06 mmol, 1.00 equiv.) and 2,6-lutidine (960 μ L, 8.24 mmol, 4.00 equiv.) in dry CH₂Cl₂ (8.0 mL) at 0 °C. The reaction was allowed to warm to r.t. and stirred for 2.5 h. Water (10 mL) was added, the layers were separated and the aqueous phase was extracted with CH₂Cl₂ (3x 15 mL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 30:1) yielded bis-silyl ether **66** as a colourless paste (982 mg, 2.06 mmol, quant.).

R_f = 0.36 (CH/EA 30:1). [**α**]_D²⁰ = +86.0 (MeOH, c = 0.5).

^[24] (a) Essig, S.; Schmalzbauer, B.; Bretzke, S.; Scherer, O.; Koeberle, A.; Werz, O.; Müller, R.; Menche, D. *J. Org. Chem.* **2016**, *81*, 1333–1357. (b) Essig, S.; Menche, D. *J. Org. Chem.* **2016**, *81*, 1943–1966.

¹**H-NMR (700 MHz, CDCl₃):** δ [ppm] = 7.33 (dd, *J* = 7.6, 0.8 Hz, 1H), 6.86 (d, *J* = 7.6 Hz, 1H), 5.96 (ddd, *J* = 17.4, 10.5, 7.0 Hz, 1H), 5.09 (dt, *J* = 10.5, 1.3 Hz, 1H), 5.05 (dt, *J* = 17.2, 1.4 Hz, 1H), 4.70 (d, *J* = 4.6 Hz, 1H), 4.19 (dd, *J* = 7.1, 4.6 Hz, 1H), 2.39 (ht, *J* = 6.9, 1.2 Hz, 1H), 2.26 (d, *J* = 0.7 Hz, 3H), 1.07 (d, *J* = 6.9 Hz, 3H), 1.04 (s, 9H), 0.88 (s, 9H), 0.17 (s, 3H), 0.15 (s, 3H), 0.14 (s, 3H), 0.02 (s, 3H). ¹³**C-NMR (175 MHz, CDCl₃):** δ [ppm] = 161.9, 154.9, 139.6, 138.7, 135.7, 131.8, 119.3, 116.3, 116.1, 86.4, 67.9, 38.4, 27.1, 26.2, 25.9, 18.8, 18.3, 17.7, 17.3, -3.21, -3.26, -3.91, -4.02. **HRMS (ESI (+), 6.0 eV):** [M+H]⁺ calcd for [C₂₆H₄₄O₄Si₂+H]⁺ = 477.2856; Found 477.2860.

The experimental data are in agreement with those previously published. ^[25]

5.1.13. (3*R*,4*S*)-4,8-bis((*tert*-Butyldimethylsilyl)oxy)-3-((*R*)-1-hydroxypropan-2-yl)-7methylisochroman-1-one (67)

2,6-Lutidine (100 μ L, 868 μ mol, 2.00 equiv.), NalO₄ (372 mg, 1.74 mmol, 4.00 equiv.) and OsO₄ (2.5 wt% in ^tBuOH, 110 μ L, 0.02 equiv.) were added to a stirring solution of alkene **66** (207 mg, 434 μ mol, 1.00 equiv.) in dioxane/H₂O (3:1, 4.3 mL) at r.t. and stirred for 3 h. Water (4 mL) and CH₂Cl₂ (4 mL) were added, the layers were separated and the aqueous phase was extracted with CH₂Cl₂ (3x 3 mL). All organic phases were combined and washed with brine (6 mL). Drying over MgSO₄ and removal of the solvent *in vacuo* gave a green-brownish oil, which was immediately dispensed in MeOH (8 mL) and cooled to 0 °C. NaBH₄ (82.1 mg, 2.17 mmol, 5.00 equiv.) was added to the stirring solution, the reaction was allowed to warm to r.t. and stirred for 20 min. CH₂Cl₂ (3 mL) and aq. sat. NaHCO₃ solution (3 mL) were added, the layers were separated and the aqueous phase was extracted with CH₂Cl₂ (3x 4 mL). All organic phases were combined and purification of the residue by flash chromatography yielded alcohol **67** as a colourless oil (199 mg, 414 μ mol, 95%).

R_f = 0.31 (CH/EA 4:1).

 $[\alpha]_{D}^{20} = +70.0$ (MeOH, c = 0.2).

¹**H-NMR (500 MHz, d₆-acetone):** δ [ppm] = 7.46 (dd, *J* = 7.5, 0.8 Hz, 1H), 7.07 (d, *J* = 7.5 Hz, 1H), 4.95 (d, *J* = 2.5 Hz, 1H), 4.41 (dd, *J* = 9.8, 2.5 Hz, 1H), 3.72 - 3.66 (m, 1H), 3.65 - 3.59 (m, 1H), 2.27 (s, 3H),

^[25] (a) Essig, S.; Schmalzbauer, B.; Bretzke, S.; Scherer, O.; Koeberle, A.; Werz, O.; Müller, R.; Menche, D. *J. Org. Chem.* **2016**, *81*, 1333–1357. (b) Essig, S.; Menche, D. *J. Org. Chem.* **2016**, *81*, 1943–1966.

1.60 – 1.49 (m, 1H), 1.04 (s, 9H), 0.97 (d, *J* = 6.8 Hz, 3H), 0.85 (s, 9H), 0.20 (s, 3H), 0.16 (s, 3H), 0.14 (s, 3H), 0.01 (s, 3H).

¹³**C-NMR (175 MHz, d₆-acetone):** δ [ppm] = 161.7, 155.2, 139.5, 136.4, 132.6, 121.3, 117.7, 84.8, 68.6, 63.4, 63.3, 38.43, 26.5, 26.1, 19.2, 18.6, 17.8, 13.9, -3.1, -3.2, -4.2, -4.4.

HRMS (ESI (+), 6.0 eV): $[M+H]^+$ calcd for $[C_{25}H_{44}O_5Si_2]^+$ = 481.2800; Found 481.2807.

5.1.14. (3*R*,4*S*)-4,8-bis((*tert*-Butyldimethylsilyl)oxy)-3-((*S*)-1-iodopropan-2-yl)-7-methylisochroman-1-one (35)

I₂ (118 mg, 465 μmol, 1.30 equiv.) was added to a solution of PPh₃ (122 mg, 465 μmol, 1.30 equiv.) and imidazole (66.0 mg, 966 μmol, 2.70 equiv.) in dry CH₂Cl₂ (2.3 mL) at 0 °C and stirred for 15 min. A solution of alcohol **67** (172 mg, 358 μmol, 1.00 equiv.) in dry CH₂Cl₂ (2.3 mL) was added slowly and the reaction was allowed to warm to r.t. After 1.5 h. the solution was filtered over a plug of silica gel and rinsed with CH/EA (4:1). Aq. pH 7-buffer solution (5 mL) and aq. sat. Na₂SO₃ solution (5 mL) were added to the filtrate, the layers were separated and the aqueous phase was extracted with EtOAc (3x 10 mL). All organic phases were combined and washed with brine (15 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 30:1) yielded alkyl iodide **35** as a colourless oil (206 mg, 348 μmol, 97%).

R_f = 0.29 (CH/EA 30:1).

 $[\alpha]_{D}^{20} = +72.5$ (MeOH, c = 0.4).

¹**H-NMR (500 MHz, d₆-acetone):** δ [ppm] = 7.48 (dd, J = 7.6, 0.9 Hz, 1H), 7.09 (d, J = 7.5 Hz, 1H), 5.01 (d, J = 2.7 Hz, 1H), 4.29 (dd, J = 9.5, 2.7 Hz, 1H), 3.52 (dd, J = 9.9, 2.8 Hz, 1H), 3.42 (dd, J = 9.9, 6.7 Hz, 1H), 2.27 (d, J = 0.7 Hz, 3H), 1.47 – 1.36 (m, 1H), 1.04 (d, J = 6.4 Hz, 12H), 0.86 (s, 9H), 0.22 (s, 3H), 0.18 (s, 3H), 0.15 (s, 3H), 0.03 (s, 3H).

¹³**C-NMR (125 MHz, d₆-acetone):** δ [ppm] = 161.2, 155.3, 139.3, 136.6, 132.8, 121.2, 117.4, 86.5, 68.2, 37.3, 26.4, 26.0, 19.2, 18.6, 17.7, 17.6, 13.9, -3.0, -3.2, -4.2, -4.4.

HRMS (ESI (+), 6.0 eV): $[M+H]^+$ calcd for $[C_{25}H_{43}IO_4Si_2]^+$ = 591.1817; Found 591.1831.

5.2. (3*R*,4*S*)-4,8-bis((*tert*-Butyldimethylsilyl)oxy)-7-methyl-3-((*R*)-1-(2-(4-((triethylsilyl)oxy)but-1en-2-yl)oxazol-4-yl)propan-2-yl)isochroman-1-one (36)

Anhydrous LiCl (68.7 mg, 1.62 mmol, 4.20 equiv.) was heated under vacuum at 170 °C for 5 min. Zinc powder (325 mesh, 49.3 mg, 755 μ mol, 1.96 equiv.) was added and dried again under vacuum at 150 – 170 °C for 5 min. The reaction flask was flushed with argon (3x) and dry THF (160 μ L) was added. C₂H₄Br₂ (0.2 g/mL in dry THF, 27 μ L, 26.9 μ mol, 0.07 equiv.) and TMSCI (0.07m in dry THF, 81 μ L, 5.39 μ mol, 1.40 mol-%) were added to the stirring suspension and the reaction was heated to 50 °C for 10 min. A solution of alkyl iodide **35** (318 mg, 539 μ mol, 1.40 equiv.) in dry THF (540 μ L) was added and stirred for 2 h at this temperature. The solution was allowed to cool down to r.t. and a solution of Pd(dtpbf)Cl₂ (12.6 mg, 19.3 μ mol, 0.05 equiv.) in dry NMP (690 μ L), followed by a solution of AsPh₃ (35.4 mg, 116 μ mol, 0.30 equiv.) and iodooxazole **27** (146 mg, 385 μ mol, 1.00 equiv.) in dry THF (690 μ L) were added. The reaction flask was covered in aluminium foil and the reaction was allowed to stir for 20 h. EtOAc (5 mL) and aq. sat. NH₄Cl solution (5 mL) were added, the layers were separated and the aqueous phase was extracted with EtOAc (3x 10 mL). All organic phases were combined, washed with water (2x 10 mL) and brine (10 mL) and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 19:1) yielded alkyl oxazole **36** as a yellow oil (181 mg, 253 μ mol, 66%).**R**_f = 0.29 (CH/EA 30:1).

 $[\alpha]_{D}^{20} = +70.0$ (MeOH, c = 0.2).

¹**H-NMR (700 MHz, d₆-acetone):** δ [ppm] = 7.63 (q, J = 0.6 Hz, 1H), 7.47 (dq, J = 7.5, 0.7 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 5.91 (d, J = 1.3 Hz, 1H), 5.41 (q, J = 1.2 Hz, 1H), 5.01 (d, J = 3.1 Hz, 1H), 4.32 (dd, J = 9.1, 3.1 Hz, 1H), 3.81 (tt, J = 7.0, 3.5 Hz, 2H), 2.96 (ddd, J = 14.5, 3.3, 1.2 Hz, 1H), 2.79 – 2.76 (m, 4H), 2.68 (td, J = 6.6, 1.1 Hz, 2H), 2.51 – 2.45 (m, 1H), 2.28 (d, J = 0.7 Hz, 3H), 1.99 – 1.93 (m, 1H), 1.06 (s, 9H), 0.94 – 0.93 (m, 1H), 0.90 (t, J = 8.0 Hz, 9H), 0.87 (s, 10H), 0.53 (q, J = 8.0 Hz, 6H), 0.23 (d, J = 5.7 Hz, 6H), 0.17 (d, J = 2.9 Hz, 4H), 0.04 (s, 3H).

¹³C-NMR (125 MHz, d₆-acetone): δ [ppm] = 162.3, 161.6, 155.2, 140.4, 139.8, 136.5, 134.2, 132.5, 121.0, 118.9, 117.7, 87.6, 68.5, 62.1, 37.2, 34.8, 29.2, 27.5, 26.5, 26.1, 19.2, 18.6, 17.7, 15.6, 7.06, 5.02, -2.98, -3.03, -4.01, -4.34.

HRMS (ESI (+), 6.0 eV): $[M+H]^+$ calcd for $[C_{38}H_{65}NO_6Si_3+H]^+ = 716.4192$; Found 716.4181.

5.3. (*3R,4S*)-4,8-bis((*tert*-Butyldimethylsilyl)oxy)-3-((*R*)-1-(2-(4-hydroxybut-1-en-2-yl)oxazol-4yl)propan-2-yl)-7-methylisochroman-1-one (68)

Formic acid (38 μ L, 1.01 mmol, 4.00 equiv.) was added to a solution of TES ether **36** (181 mg, 253 μ mol, 1.00 equiv.) in MeOH/CH₂Cl₂ (2:1, 3.9 mL) at 0 °C and stirred for 1.5 h. Aq. sat. NaHCO₃ solution (5 mL) and CH₂Cl₂ (5 mL) were added and the aqueous phase was extracted with CH₂Cl₂ (3x 4 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash chromatography over silica gel (CH/EA 4:1) yielded alcohol **68** as a colourless oil (93.1 mg, 155 μ mol, 61%).

R_f = 0.22 (CH/EA, 4:1).

 $[\alpha]_{D}^{20} = +66.7$ (MeOH, c = 0.3).

¹**H-NMR (700 MHz, d₆-acetone):** δ [ppm] = 7.63 (s, 1H), 7.46 (dq, *J* = 7.5, 0.7 Hz, 1H), 7.08 (d, *J* = 7.5 Hz, 1H), 5.91 (d, *J* = 1.3 Hz, 1H), 5.42 (q, *J* = 1.3 Hz, 1H), 5.01 (d, *J* = 3.1 Hz, 1H), 4.33 (dd, *J* = 9.1, 3.1 Hz, 1H), 3.73 - 3.69 (m, 1H), 3.63 (t, *J* = 5.6 Hz, 2H), 2.94 (ddd, *J* = 14.5, 3.4, 1.2 Hz, 1H), 2.72 - 2.63 (m, 2H), 2.49 (dd, *J* = 14.5, 9.9 Hz, 1H), 2.28 (d, *J* = 0.7 Hz, 3H), 1.98 - 1.91 (m, 1H), 1.06 (s, 9H), 0.89 (d, *J* = 6.5 Hz, 3H), 0.87 (s, 9H), 0.24 (s, 3H), 0.22 (s, 3H), 0.17 (s, 3H), 0.04 (s, 3H).

¹³**C-NMR (175 MHz, d₆-acetone):** δ [ppm] = 162.6, 161.6, 155.2, 140.3, 136.4, 121.0, 118.7, 117.7, 87.5, 68.4, 34.9, 29.2, 26.5, 26.1, 17.7, 15.7, -3.0, -3.1, -4.0, -4.3.

HRMS (ESI (+), 6.0 eV): $[M+H]^+$ calcd for $[C_{32}H_{51}NO_6Si_2+H]^+ = 602.3328$; Found 602.3328.

5.4. 3-(4-((R)-2-((3R,4S)-4,8-bis((*tert*-Butyldimethylsilyl)oxy)-7-methyl-1-oxoisochroman-3yl)propyl)oxazol-2-yl)but-3-enal (69)

IBX (64.1 mg, 229 μ mol, 3.00 equiv.) was added to a stirring solution of alcohol **68** (45.9 mg, 76.3 μ mol, 1.00 equiv.) in EtOAc (820 μ L) and heated to 85 °C under reflux for 3 h. The solution was allowed to cool down to r.t. and filtered through a plug of silica gel to yield aldehyde **69** as a yellow oil (38.9 mg, 64.8 μ mol, 85%).

R_f = 0.24 (CH/EA 9:1).

 $[\alpha]_{D}^{20} = +70.0$ (MeOH, c = 0.2).

¹**H-NMR (500 MHz, d₆-acetone):** δ [ppm] = 9.68 (dt, J = 6.9, 1.6 Hz, 1H), 7.68 (s, 1H), 7.46 (dd, J = 7.5, 0.9 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 6.09 (d, J = 0.8 Hz, 1H), 5.56 (t, J = 1.1 Hz, 1H), 5.00 (d, J = 3.2 Hz, 1H), 4.31 (dd, J = 9.0, 3.2 Hz, 1H), 3.57 (dt, J = 2.8, 1.3 Hz, 2H), 2.93 (ddd, J = 14.5, 3.4, 1.2 Hz, 1H), 2.56 – 2.43 (m, 1H), 2.28 (d, J = 0.7 Hz, 3H), 1.93 (dddd, J = 10.0, 9.1, 6.9, 3.5 Hz, 1H), 1.06 (s, 10H), 0.87 (s, 12H), 0.22 (s, 7H), 0.17 (s, 3H), 0.04 (s, 4H).

¹³C-NMR (125 MHz, d₆-acetone): δ [ppm] = 199.0, 161.9, 161.6, 155.2, 140.6, 139.8, 137.1, 136.4, 132.5, 129.7, 121.1, 121.0, 117.6, 87.5, 68.4, 47.6, 34.8, 29.1, 26.5, 26.1, 17.7, 15.7, -3.1, -3.1, -4.0, -4.34.

HRMS (ESI (+), 6.0 eV): $[M+H]^+$ calcd for $[C_{32}H_{49}NO_6Si_2+H]^+ = 600.3171$; Found 600.3175.

5.5. (3R,4S)-4,8-bis((*tert*-Butyldimethylsilyl)oxy)-3-((R)-1-(2-((Z)-5-iodopenta-1,4-dien-2-yl)oxazol-4-yl)propan-2-yl)-7-methylisochroman-1-one (37)

NaHMDS (1.0m in THF, 153 μ L, 1.25 equiv.) was added to a stirring solution of (iodomethyl)triphenylphosphonium iodide (84.3 mg, 159 μ mol, 1.30 equiv.) in dry THF (570 μ L) at r.t. and stirred for 5 min. DMI (260 μ L) was added and the solution was cooled down to -78 °C. A precooled solution of aldehyde **69** (73.4 mg, 122 μ mol, 1.00 equiv.) was added and the reaction stirred for 1 h. Aq. sat. NH₄Cl solution (6 mL) and EtOAc (6 mL) were added, the layers were separated and the aqueous phase was extracted with EtOAc (3x 6 mL). All organic extracts were washed with brine (10 mL) and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash chromatography (CH/EA 19:1) yielded (*Z*)-Vinyliodide **37** as a yellow oil (57.6 mg, 79.6 μ mol, 65%).

R_f = 0.26 (CH/EA 19:1).

 $[\alpha]_{D}^{20} = +70.0$ (MeOH, c = 0.2).

¹**H-NMR (700 MHz, d₆-acetone):** δ [ppm] = 7.67 (s, 1H), 7.46 (dd, *J* = 7.5, 0.8 Hz, 1H), 7.08 (d, *J* = 7.5 Hz, 1H), 6.51 (dt, *J* = 6.9, 1.3 Hz, 1H), 6.41 (q, *J* = 7.0 Hz, 1H), 5.92 (q, *J* = 0.9 Hz, 1H), 5.44 - 5.40 (m, 1H), 5.01 (d, *J* = 3.1 Hz, 1H), 4.34 (dd, *J* = 9.2, 3.1 Hz, 1H), 3.32 (ddq, *J* = 6.5, 5.0, 1.2 Hz, 2H), 2.97 (ddd, *J* = 14.6, 3.4, 1.3 Hz, 1H), 2.52 - 2.46 (m, 1H), 2.28 (s, 3H), 2.02 - 1.94 (m, 1H), 1.06 (s, 9H), 0.89 (d, *J* = 6.7 Hz, 3H), 0.87 (s, 9H), 0.25 (s, 3H), 0.23 (s, 3H), 0.18 (s, 3H), 0.04 (s, 3H).

¹³**C-NMR (175 MHz, d₆-acetone):** δ [ppm] = 162.0, 161.6, 155.2, 140.5, 139.7, 138.9, 136.9, 136.4, 133.9, 132.5, 121.1, 117.7, 87.5, 85.2, 68.5, 38.6, 34.8, 29.2, 26.5, 26.1, 17.7, 15.7, -2.9, -2.98, -4.01, -4.32.

HRMS (ESI (+), 6.0 eV): $[M+H]^+$ calcd for $[C_{33}H_{50}INO_5Si_2+H]^+ = 724.2345$; Found 724.2340.

5.6. 3,8-bis-tert-Butyldimethylsilyl-ajudazol A (70a)

To a solution of (*Z*)-vinylboronate **31** (41.7 mg, 119 µmol, 1.50 equiv.) and Cs_2CO_3 (130 mg, 398 µmol, 5.00 equiv.) in H₂O (57 µL, 50.0 equiv.) was added a solution of Pd(dppf)Cl₂ (8.70 mg, 11.9 µmol, 0.15 equiv.) in dry DMF (70 µL) and a solution of (*Z*)-vinyliodide **37** (20.3 mg, 28.0 µmol, 1.00 equiv.) in dry THF (210 µL) subsequently. The solution was degassed by freeze-pump-thaw-cycles (3x) and stirred in the dark for 19 h. Et₂O (3 mL) and aq. sat. NaHCO₃ solution (3 mL) were added, the layers were separated and the aqueous phase was extracted with Et₂O (3x 4 mL). All organic extracts were combined and washed with aq. sat. NaHCO₃ solution (4 mL), water (2x 4 mL) and brine (4 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography (CH:EA 3:1) yielded bis-silylated Ajudazol A (**70a**) and 8-*tert*-butyldimethylsilyl-Ajudazol A (**70b**) as an orange oil (39 mg, 50 µmol, 63%).

R_f = 0.21 (CH/EA 3:1).

 $[\alpha]_{D}^{20} = -20.0$ (MeOH, c = 0.1).

¹**H-NMR (500 MHz, d₆-acetone):** δ [ppm] = 7.65 (s, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.09 (d, J = 7.5 Hz, 1H), 6.48 – 6.30 (m, 2H), 5.88 (d, J = 1.1 Hz, 1H), 5.70 – 5.52 (m, 3H), 5.54 – 5.38 (m, 1H), 5.37 (s, 1H), 5.34 (s, 1H), 5.01 (d, J = 3.0 Hz, 1H), 4.34 (dd, J = 9.2, 3.0 Hz, 1H), 3.92 (dd, J = 5.8, 1.6 Hz, 2H), 3.61 (s, 5H), 3.34 (td, J = 16.4, 14.6, 7.7 Hz, 2H), 3.00 – 2.93 (m, 4H), 2.85 (s, 3H), 2.78 – 2.75 (m, 1H), 2.53 – 2.44 (m, 1H), 2.28 (s, 3H), 2.26 – 2.15 (m, 2H), 2.14 (s, 5H), 2.02 – 1.89 (m, 1H), 1.06 (s, 9H), 0.88 (d, J = 6.8 Hz, 3H), 0.87 (s, 9H), 0.25 (s, 3H), 0.23 (s, 3H), 0.17 (s, 3H), 0.04 (s, 3H).

¹³C-NMR (125 MHz, d₆-acetone): δ [ppm] = 162.3, 161.6, 155.2, 140.4, 139.7, 136.8, 136.4, 135.9, 132.7, 132.5, 128.5, 126.7, 126.2, 124.6, 121.1, 117.7, 117.3, 92.20, 87.6, 68.5, 55.3, 52.5, 49.2, 34.9, 34.3, 33.3, 32.8, 30.9, 29.3, 28.0, 26.5, 26.1, 17.7, 15.7, -3.00, -3.02, -4.02, -4.33.

HRMS-ESI-(+): $[M+H]^+$ calcd for $[C_{46}H_{70}N_2O_7Si_2+H]^+ = 819.4794$ and $[C_{40}H_{56}N_2O_7Si+H]^+ = 705.3930$; Found 819.4786 and 705.3930.

5.7. Ajudazol A (1)

To an ice-cooled solution of compound **70a** and **70b** (37.9 mg, 46.3 µmol, 1.00 equiv.) in dry THF (1.9 mL) were added dry pyridine (860 µL) and HF·Pyridine (570 µL). The solution was allowed to warm to r.t. and stirred for 3 h. pH 7 buffer solution (4 mL) and EtOAc (4 mL) were added at 0 °C and the layers were separated and the aqueous phase was extracted with EtOAc (3x 5 mL), All organic extracts were combined washed with pH 7 buffer solution (3x 4 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by preparative HPLC (MeOH/H₂O 80:20 \rightarrow 100:0 \rightarrow 80:20, RP C-18, flow: 14 mL/min, pressure 173 – 89 mbar, retention time 9.30 min) yielded Ajudazol A (1) as a white solid (14.6 mg, 24.7 µmol, 53%).

R_f = 0.31 (CH/EA 1:1).

 $[\alpha]_{D}^{20} = +3.3$ (MeOH, c = 0.8).

¹**H-NMR (700 MHz, d₆-acetone):** δ [ppm] = 11.29 (s, 1H), 7.71 (t, *J* = 1.1 Hz, 1H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.05 (d, *J* = 7.6 Hz, 1H), 6.43 – 6.36 (m, 1H), 5.92 (d, *J* = 1.3 Hz, 1H), 5.66 – 5.56 (m, 2H), 5.51 (q, *J* = 11.4, 8.4, 7.1 Hz, 1H), 5.45 (dt, *J* = 11.0, 8.0 Hz, 1H), 5.41 (p, *J* = 1.4 Hz, 1H), 5.33 (s, 2H), 5.00 (t, *J* = 6.7 Hz, 1H), 4.47 (dd, *J* = 8.2, 4.6 Hz, 1H), 3.92 (dt, *J* = 6.1, 1.3, 1.3 Hz, 2H), 3.62 (s, 1H), 3.61 – 3.58 (m, 2H), 3.43 – 3.34 (m, 2H), 3.00 – 2.90 (m, 1H), 2.84 (s, 1H), 2.82 (d, *J* = 8.7 Hz, 8H), 2.57 (dd, *J* = 14.7, 8.6 Hz, 1H), 2.48 (dqt, *J* = 8.9, 6.8, 4.5 Hz, 1H), 2.30 (q, *J* = 7.4 Hz, 2H), 2.22 (s, 3H), 2.19 – 2.15 (m, 1H), 2.13 (s, 3H), 1.09 (d, *J* = 6.6 Hz, 3H).

¹³C-NMR (175 MHz, d₆-acetone): δ [ppm] = 170.2, 168.1, 162.4, 160.6, 140.9, 138.9, 136.5, 135.8, 132.8, 132.7, 128.5, 126.9, 126.3, 125.8, 124.7, 117.60, 116.7, 107.3, 92.2, 88.1, 65.4, 55.3, 52.5, 49.3, 35.1, 34.0, 33.3, 32.8, 31.0, 28.0, 27.9, 18.7, 16.7, 15.4.

HRMS-ESI-(+): $[M+H]^{+}$ calcd for $[C_{34}H_{42}N_2O_7+H]^{+} = 591.3065$; Found 591.3067.

The experimental data are in agreement with those previously published.^[26]

^[26] Jansen, R.; Kunze, B.; Reichenbach, H.; Höfle, G. *Eur. J. Org. Chem.* **2002**, 917-921.

Figure 1. Analytical UV/VIS-HPLC trace of synthetic ajudazol A (1)

Table 2. NMR-Data of synthetic ajudazol A (1) (d_6 -acetone, 700/175 MHz, r.t.) in comparison with natural ajudazol A (d_6 -DMSO/D₂O, 600/150 MHz, 80 °C) Chemical shifts δ are given in [ppm].

Synthetic (700/175 MHz, d ₆ -acetone, r.t.)				Natural (600/150 MHz, d₅-DMSO, 80 °C)				
Atom	δ _H	m	<i>J</i> [Hz]	δ _c	δ _H	m	<i>J</i> [Hz]	δ _c [ppm]
1	-	_	_	170.19	_	-	_	168.62
2	_	_	_	107.25	-	_	-	106.26
3	_	_	_	160.64	-	_	-	158.63
3-0H	11.29	S	_	_	11.10	S	br	-
4	-	_	-	125.79	-	-	-	125.11
4-CH ₃	2.22	S	_	15.45	2.17	S	br	14.82
5	7.47	d	7.6	137.99	7.44	dd	7.6, 0.8	137.24
6	7.05	d	7.6	116.71	6.95	d	7.6	116.63
7	_	_	_	140.91	-	_	-	140.21
8	5.00	t	6.71	65.37	4.79	d	6.7	63.87
9	4.47	dd	8.2, 4.6	88.09	4.39	dd	6.7, 5.6	87.26
10	2.48	dqt	8.9, 6.4, 4.5	34.04	2.20	m	_	33.29
10-CH₃	1.09	d	6.6	16.72	0.94	d	6.9	15.78
11 _a	2.95	m	_	28.04	2.78	ddd	14.8, 4.7, 1.1	27.63
11_{b}	2.57	dd	14.7, 8.6		2.45	dd	14.9, 8.7	
12	_	_	_		-	_	-	139.39
13	7.71	S	_	136.51	7.68	S	_	135.75
14	_	_	_	162.43	-	_	-	161.02
15	_	_	_	135.83	-	_	_	134.36
15-CH _a	5.92	S	_	117.60	5.85	S	br	117.42
$15-CH_{b}$	5.41	s	_		5.35	S	br	
16	3.38	m	_	31.02	3.27	d	7.8 br	30.03
17	5.60	m	_	128.45	5.52	m	-	127.64
18	6.40	m	-	126.25	6.29	m	-	125.20
19	6.40	m	-	124.67	6.28	m	-	123.64
20	5.45	m	_	132.68	5.45	m	-	131.97
21	2.30	q	7.4	27.94	2.19	m	-	26.75
22	2.17	m	-	33.25	2.08	m	-	31.36
23	5.60	m	-	132.78	5.54	ddt	15.4, 6.7, 1.4	131.97
24	5.51	m	126.86	126.86	5.39	dt	15.3, 5.7, br	125.70
25	3.92	dt	6.1, 1.3	52.46/49.28	3.84	d	5.7 br	50.05/49.21
25-NCH ₃	2.84/2.82	S	br	35.06/32.81	2.82	S	-	35.01/35.00
26	-	_	_	168.07	-	_	-	167.96
27	5.33	S	br	92.20	5.24	S	br	91.84
28	-	_	-	n.s.	-	-	-	166.96
28-0CH₃	3.62/3.60	S	br	55.29	3.53	S	-	54.76
29	2.13	S	br	18.73	2.04	S	br	18.10

Legend: br = broad signal, n.s. = not visible due to distinctive amide resonance.

Table 3. ¹H- and ¹³C-NMR spectroscopic data of synthetic ajudazol A (1) at -40 °C (500/125 MHz)

Atom	Measurement in d ⁶ −acetone (500/125 MHz)						
	δ _н [ppm] (<i>E</i>)	δ _н [ppm] (<i>Z</i>)	m	δ _c [ppm] (<i>E</i>)	δ _c [ppm] (<i>Z</i>)	m	
1	-	-	-	170	0.10	S	
2	-	-	-	106	5.77	S	
3	-	-	-	160	0.18	s	
3-OH	11	.30	S	-	-	-	
4	-	-	-	125	.71	d	
4-CH ₃	2.	19	S	15.	.54	S	
5	7.	49	d	137	.82	S	
6	7.	08	d	116	5.20	d	
7	-	-	-	140	.37	S	
8	5.	06	dd	64.	.39	d	
9	4.	45	dt	87.	.60	d	
10	2.4	·9 ^[a]	m	34.	.73	m	
10-CH ₃	1.	01	d	16.	.36	S	
11 _a	2.9	3 ^[b]	m	26.	.97	d	
11_{b}	2.5	2 ^[a]	m				
12		-	-	140	.37	s	
13	7.	85	S	136	6.63	s	
14		-	-	162	.06	s	
15	-	-	-	135	.14	s	
15-CH _a	5.	93	S	117	.66	s	
$15-CH_{b}$	5.	43	S				
16	3.	37	t	30.	.52	s	
17	5.5	8 ^[c]	dq	127	.89	d	
18	6.4	2 ^[d]	m	126	.21	d	
19	6.4	2 ^[d]	m	124	.31	d	
20	5.4	8 ^[e]	dq	132	.95	d	
21	2.	27	р	27.	.58	s	
22	2.1	.7 ^[f]	m	33.	.11	s	
23	5.5	8 ^[c]	dq	132	.42	d	
24	5.4	.8 ^[e]	dq	126	.53	d	
25	3.91	3.88	d	52.07	48.90	s	
25-NCH ₃	2.81 ^[g]	2.93 ^[b]	S	32.63	32.91	d	
26	-	-	-	168	.69	d	
27	5.31	5.36	S	91.	.72	S	
28	-	-	-	167	.50	d	
28-OCH₃	3.57	3.61	d	55.	.19	d	
29	2.1	.2 ^[f]	m	16.	.36	S	

^[a] overlapping Signals: H-10/H-11_b, ^[b] overlapping signals: H-11_a/(*Z*)-NCH₃, ^[c] overlapping signals: H-17/H-23, ^[d] overlapping signals: H-18/H-19, ^[e] overlapping signals: H-20/H-24, ^[f] overlapping signals: H-22/H-29, ^[g] overlap with solvent residual signal (d₆-acetone)

6. Additional studies

6.1. Sulfone displacement

6.1.1. 3-(*tert*-Butoxy)-2-iodoprop-1-ene (71)

A stirring solution of 2-iodoprop-2-en-1-ol (**39**) (10.4 g, 56.5 mmol, 1.00 equiv.) in heptane (28 mL) containing amberlyst-15 (2.83 g, 50 mg/mmol) was infused with an excess of isobutylene gas for 3 h. The mixture was filtrated and the solvent was removed *in vacuo* (100 mbar, 40 °C). Distillation of the residue (48 °C, 6 mbar) gave **70** as a colourless liquid (11.2 g, 46.5 mmol, 82%).

R_f = 0.49 (CH/EA 29:1).

¹**H-NMR (300 MHz, CDCl₃):** δ [ppm] = 6.42 (q, *J* = 1.7 Hz, 1H), 5.83 (q, *J* = 1.4 Hz, 1H), 3.97 (t, *J* = 1.6 Hz, 2H), 1.23 (s, 9H).

¹³**C-NMR (125 MHz, CDCl₃):** δ [ppm] = 124.6, 108.8, 74.4, 27.8.

MS (EI (+), 70.0 eV): [M]^{•+} calcd for [C₇H₁₃IO]^{•+} = 240.0006; Found 240.0008.

6.1.2. 2-Phenylsulfonyloxazole (72)

Ammonium molybdate tetrahydrate (2.50 g, 2.02 mmol, 2.20 equiv.) was dissolved in aq. hydrogen peroxide solution (35% v/v, 485 mL, 2.20 equiv.) at 0 °C and stirred for 15 min. The resulting yellow solution was added dropwise to a solution of thiooxazole **8** (7.66 g, 43.2 mmol, 1.00 equiv.) in EtOH (700 mL) and the reaction was allowed to warm to r.t. and stirred overnight (18 h). Et₂O (500 mL) was added, the layers were separated and the aqueous phase was extracted with Et₂O (3x 500 mL). All organic extracts were combined and washed with brine (250 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography (CH/EA 3:2) gave sulfonyloxazole **72** as white solid (8.67 g, 41.4 mmol, 96%).

 $\mathbf{R}_{f} = 0.28$ (CH:EA 3:2).

Mp.: 82-83 °C.

¹**H-NMR (400 MHz, CDCl₃)**: δ [ppm] = 8.08 – 8.16 (m, 2H), 7.78 (s, 1H), 7.66 – 7.75 (m, 1H), 7.60 (dd, *J* = 8.5, 7.1 Hz, 2H), 7.30 (s, 1H).

¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 158.9, 142.3, 138.0, 135.1, 129.7, 129.4, 129.0. HRMS (EI (+), 70.0 eV): $[M^{+*}]$ calcd for $[C_9H_7NO_3S]^{+*}$ = 334.9113, Found 334.9105.

6.1.3. 2-(3-tert-Butoxy)prop-1-en-2-yl)oxazole (73)

To a stirring solution of 3-(*tert*-butoxy)-2-iodoprop-1-ene (**71**) (1.09 g,4.53 mmol, 1.50 equiv.) in Et₂O (53 mL) was added dropwise *tert*-Butyllithium (1.7M in pentane, 5.30 mL, 9.01 mmol, 3.00 equiv.) at -78 °C and stirred for 2 h. The mixture was added to a stirring solution of 2-(Phenylsulfonyl)oxazole (**72**) (632 mg, 3.02 mmol, 1.00 equiv.) in THF (23 mL) at room temperature via cannula and stirred for 10 min. The reaction was quenched with water (100 mL) and the phases were separated. The aqueous layer was extracted with DCM (3x 100 mL), dried over MgSO₄ and concentrated *in vacuo*. Purification via flash column chromatography (CH/EA 4:1) gave **73** as a colourless liquid.

¹**H-NMR (400 MHz, CDCl₃)**: δ [ppm] = 7.60 (d, *J* = 0.8 Hz, 1H), 7.13 (d, *J* = 0.9 Hz, 1H), 6.11 (q, *J* = 1.6 Hz, 1H), 5.78 (q, *J* = 1.9 Hz, 1H), 4.37 (t, *J* = 1.8 Hz, 2H), 1.27 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ [ppm] = 158.9, 142.3, 138.0, 135.1, 129.7, 129.4, 129.0.

HRMS (EI (+), 70.0 eV): $[M]^+$ calcd for $[C_{10}H_{15}NO_2^{+\bullet}-CH_3^{\bullet}]^+$: 166.0863; Found 166.0871.

6.2. Lithiation studies of Western subunit 35

Suzuki coupling of Western subunit **35** with 4-iodoxazoles were not feasible. In consequence the polarity inversion of alkyl iodide **35** was investigated. Unsuccessful results followed from decomposition and an unexpected side product formed by a *5-exo-trig*-cyclization:

6.2.1. (7*R*,8*R*,9*S*)-4,9-*bis*((*tert*-butyldimethylsilyl)oxy)-8-hydroxy-3,7-dimethyl-6,7,8,9-tetrahydro-5*H*-benzo[7]annulen-5-one (78)

^tBuLi (1.7M in ^{*n*}pentane, 40 µL, 67 µmol, 2.00 equiv.) was added to a stirring solution of alkyl iodide **35** at –96 °C and stirred for 1 h. D_2O (91 µL, 5.03 mmol, 150 equiv.) was added and the solution was allowed to warm to r.t. Water (600 µL) and CH_2Cl_2 (600 µL) were added, the layers were separated and the aqueous phase was extracted with CH_2Cl_2 (3x 800 µL). All organic phases were combined and dried over MgSO₄. Removal of the solvent *in vacuo* and purification of the residue by flash column chromatography ocer silica gel (CH/EA 30:1) yielded ketone **78** as a colourless oil (0.6 mg, 1.29 µmol, 4%).

R_f = 0.13 (CH/EA 30:1).

¹**H-NMR (500 MHz, CD_2Cl_2):** δ [ppm] = 7.15 (dq, *J* = 7.6, 0.8 Hz, 1H), 6.76 (d, *J* = 7.5 Hz, 1H), 4.81 (d, *J* = 5.1 Hz, 1H), 3.84 - 3.73 (m, 1H), 2.79 (dd, *J* = 19.0, 13.2 Hz, 1H), 2.54 (d, *J* = 10.1 Hz, 1H), 2.22 (d, *J* = 0.7 Hz, 3H), 2.17 (dd, *J* = 18.1, 2.2 Hz, 2H), 1.26 (d, *J* = 6.9 Hz, 3H), 0.99 (s, 9H), 0.84 (s, 9H), 0.12 (s, 3H), 0.06 (s, 3H), 0.02 (s, 3H), -0.32 (s, 3H).

¹³C-NMR (125 MHz, CD₂Cl₂): δ [ppm] = 204.0, 151.9, 138.3, 132.9, 131.9, 121.3, 77.4, 72.9, 45.0, 32.7, 26.3, 26.1, 18.5.

HRMS (ESI (+), 6.0 eV): $[M+Na]^+$ calcd for $[C_{25}H_{44}O_4Si_2+Na]^+$ = 487.2670; Found 487.2670.

Table 4. NMR-Data of compound 78 (CD₂Cl₂, 500/125 MHz, r.t.).

Atom	δ _н [ppm]	m	<i>J</i> [Hz]	δ _c [ppm]
1	-	-	-	203.97
2	-	-	-	130.50
3	-	-	-	151.86
4	-	-	-	131.89
4-Me	2.22	S	-	18.53
5	7.15	d	7.6	121.26
6	6.76	d	7.5	132.88
7	-	-	-	138.27
8	4.81	d	5.1	77.36
9	3.77	m	-	72.90
10	2.15	m ^[a]	-	32.74
10-Me	1.00	d	6.9	17.65
11	2.17	m ^[a]	-	44.96
	2.79	dd	19.0, 13.2	

^[a] Overlapping signals $H^{10} \leftrightarrow H^{11}$.

6.3. C⁵-alkylation of oxazoles by cross coupling

6.3.1. 5-((*S*)-2-((1*S*,2*R*,4*R*)-2-((*tert*-Butyldimethylsilyl)oxy)-4-methylcyclohexyl)propyl)-2-(4-((triethylsilyl)oxy)but-1-en-2-yl)oxazole (79)

Anhydrous LiCl (155 mg, 3.66 mmol, 4.20 equiv.) was heated under vacuum at 150-170 °C for 5 min. Zinc powder (325 mesh, 112 mg, 1.71 mmol, 1.96 equiv.) was added and dried also under vacuum at 150-170 °C for 5 min. The reaction flask was flushed with argon (3x) and dry THF (360 µL) was added. C₂H₄Br₂ (5.5 µL, 61.0 µmol, 0.07 equiv.) and TMSCl (90 µL, 15 mg/mL in dry THF, 90 µL, 13.8 µmol, 1.40 mol%) were added to the stirring suspension and the reaction was heated to 50 °C for 10 min. A solution of alkyl iodide **21** (483 mg, 1.22 mmol, 1.40 equiv.) in dry THF (530 µL) was added and stirred for 2 h. The solution was allowed to cool down to r.t. and a solution of Pd(dtpbf)Cl₂ (28.4 mg, 43.6 µmol, 0.05 equiv.) in dry NMP (1.0 mL), followed by a solution of AsPh₃ (80.0 mg, 261 µmol, 0.30 equiv) and iodooxazole **27** (330 mg, 871 μ mol, 1.00 equiv.) in dry THF (1.0 mL) were added. The flask was covered in aluminium foil and was allowed to stir for 2 h. EtOAc (4 mL) and aq. sat. NH₄Cl solution (4 mL) were added, the layers were separated and the aqueous phase was extracted with EtOAc (3x 9 mL). All organic phases were combined and washed with brine (10 mL). Drying over MgSO₄, removal of the solvent *in vacuo* and purification of the residue by flash column chromatography over silica gel (CH/EA 50:1) yielded alkyl oxazole **79** as a yellow oil (321 mg, 88.1 μ mol, 10%).**R**_f = 0.11 (CH/EA 50:1).

 $[\alpha]_{D}^{20} = -27.0$ (MeOH, c = 1.0).

¹H-NMR (700 MHz, d₆-acetone): δ [ppm] = 6.81 (dd, J = 1.3, 0.6 Hz, 1H), 5.90 (d, J = 1.4 Hz, 1H), 5.40 (q, J = 1.3 Hz, 1H), 3.86 (td, J = 6.7, 2.1 Hz, 2H), 3.66 (td, J = 10.2, 4.3 Hz, 1H), 2.74 – 2.78 (m, 1H), 2.72 (tt, J = 6.7, 1.2 Hz, 2H), 2.49 (ddtd, J = 14.0, 6.9, 3.6, 2.3 Hz, 1H), 2.37 (dd, J = 14.8, 11.7 Hz, 1H), 2.00 (dddd, J = 12.3, 4.2, 3.4, 1.9 Hz, 1H), 1.66 – 1.74 (m, 2H), 1.43 – 1.52 (m, 1H), 1.26 – 1.33 (m, 1H), 1.07 – 1.15 (m, 1H), 0.99 – 1.04 (m, 2H), 0.96 – 0.98 (m, 1H), 0.93 (d, J = 2.2 Hz, 12H), 0.87 – 0.95 (m, 12H), 0.85 – 0.88 (m, 1H), 0.57 (q, J = 8.0 Hz, 6H), 0.16 (s, 3H), 0.13 (s, 3H).

¹³**C-NMR (175 MHz, d₆-acetone):** δ [ppm] = 161.7, 153.3, 134.3, 125.3, 118.0, 72.6, 62.2, 51.3, 46.5, 37.2, 35.4, 32.2, 31.0, 27.8, 26.4, 24.7, 22.6, 18.6, 18.2, 7.1, 5.1, -3.29, -4.28.

HRMS (ESI (+), 5.0 eV $[M+H]^+$ calcd for $[C_{29}H_{55}NO_3Si_2+H]^+$ = 522.3793; Found 522.3791.

Table 5. NMR-Data of compound **79** (d_6 -acetone, 700/175 MHz, r.t.).

Atom	δ_{H} [ppm]	m	<i>J</i> [Hz]	$\delta_{\text{C}} \left[\text{ppm} ight]$
-Si-(CH₃) ₂ C(CH ₃) ₃	0.13/0.16	td	4.3, 10.2	-4.28/-3.29
-Si-(CH ₃) ₂ C(CH ₃) ₃	_	-	-	18.63
-Si-(CH ₃) ₂ C(CH ₃) ₃	0.91	-	-	26.43
1	3.66	td	4.3, 10.2	72.56
2 _{ax}	1.01	m	_	46.49
2 _{eq}	2.00	dddd	12.3, 4.2, 3.4, 1.9	
3	1.47	m	-	32.34
3-CH₃	0.93	m	_	30.97
4 _{ax}	0.87	m	-	35.38
4 _{eq}	1.69	m	-	
5 _{ax}	1.12	m	_	24.74
5 _{eq}	1.69	m	_	
6	1.29	m	_	51.30
7	0.91	m	_	22.59
7-CH ₃	0.91	m	-	18.23
8 _a	2.37	dd	14.8, 11.4	27.83
8 _b	2.77	m	-	
9	6.81	S	-	153.53
10	_	_	-	125.33
11	_	-	-	161.68
12	_	-	-	134.27
12-CH _a	5.90	d	1.4	117.99
$12-CH_{b}$	5.40	q	1.2	
13	2.72	tt	1.2, 6.7	37.22
14	3.86	td	2.1, 6.7	62.24
–Si- CH₂CH₃	0.57	q	8.0	5.05
–Si-CH ₂ CH ₃	0.91	m	-	7.07

7. Biological Studies

Figure 1. Half maximal inhibitory concentration of a judazol A (1) measured by construction of a dose-response curve (Jurkat cell line). IC_{50} = 11.21 μ M.

Figure 2. Half maximal inhibitory concentration of compound 33 measured by construction of a dose-response curve (Jurkat cell line). $IC_{50} = 2.83 \ \mu M$.

8. NMR-spectra

- Illustrations of the NMR spectra start on the next page -

1H-NMR, 300.13 MHz, CDCl3 13C-NMR, 75.48 MHz, CDCl3

-0 SPh 8

77.16 CDCl3 — 140.99 133.33 129.61 129.28 128.96 SY -220 210 200 190 180 170 160 140 130 120 110 100 chemical shift [ppm] 150 90 80 70 60 50 40 30 20 10 0 -10

13C-NMR, 75.48 MHz, CDCl3

13C-NMR, 100.63 MHz, CDCl3	— 123.11	— 109.87	— 77.16 CDCl3 — 71.23		5.18
OTBS 15					
				·	

	'	- I I	- I '	- I '	'		- I I	'	'	- I I	'		- I - I	- I I	- I I	- I I	1 1	- I I	'	- I - I	- I - I		
220	210	200	190	180	170	160	150	140	130	120 che	110 emical sl	100 hift [ppm	90 [ו	80	70	60	50	40	30	20	10	0	-10

13C-NMR, 100.63 MHz, CDCl3	— 123.11	— 109.87	— 77.16 CDCI3 — 71.23	 5.18
O N 16				
				ł
				 nantaathan argonona.

	- I I	- I '	'	'	'		- I I	'	- I I	- I I		· · · ·	- I I	- I I	- I I	- I I	'	- I '	- I I		· · ·	1	·
220	210	200	190	180	170	160	150	140	130	120 che	110 emical s	100 hift [ppn	90 [ר	80	70	60	50	40	30	20	10	0	-10

13C-NMR, 125.76 MHz, CDCl3	— 161.91	— 142.19 — 134.75	 — 82.72 — <i>7</i> 7.16 CDCl3		26.03 18.50	
				ł		

					'		1			'			1			· ·	1 '			1 1	- I		1	1			
260	250	240	230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												che	mical :	shift [p	pm]												

13C-r CDCI:	TBSO	25.78 Mł	Ηz,				— 148.09				21.111 —			— 77.16 CDCl3	73.47		53.66	45.32		/	— 18.25		
220	210	200	190	180	170	160	150	140	130	120 che	110 emical sl	100 hift [ppn	90 n]	80	70	60	50) 4	10 3	0 2	20	10	0 -10

13C-NMR, 176.14 MHz, CDCI3 TBSO	72.26		 > 36.04 > 34.55 > 31.67 > 34.55 > 26.16 > 26.16 > 24.71 18.81 > 18.81 > 18.81 > 13.11 	~-3.43 ~-4.37
21				
220 210 200 190 180 170 160 150 140 130 120 110 100 90 80	70 60	50 4	40 30 20 10	0 -10

120 110 100 90 chemical shift [ppm]

1H-NMR, 500.13 MHz,

13C-NMR, 125.76 MHz, CDCI3	— 162.22	— 142.47 — 134.47	— 119.12	 - 63.24
	1			

260	250	240	230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												che	emical s	shift [p	pm]												

				 ·		1					1		1 1		1 1		1 1		1 1	1 1				1 1
220 210 200 190 160 170 160 150 140 150 120 110 100 90 60 70 60 50 40 50 20 10 chemical shift [nnm]	0	10	20	30	40	50)	60	70	80	90 1	100 hift [ppn	110 mical sl	120 che	130	140	150	160	170	180	190	200	210	220

	- I I	- I '	'	- I '	'	- I I	'		- I I		- I - I		· ·	- I - I	- I I	- I I	- I I	- I - I	- I '	- I I	- I I	- I - I	
220	210	200	190	180	170	160	150	140	130	120 che	110 mical sl	100 hift [ppm	90 1]	80	70	60	50	40	30	20	10	0	-1

							'	·		·				- I - I								·		'			
260	250	240	230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												chei	mical s	hift [pp	om]												

		- I - I	'		·	- I - '	· · ·	'	·	'			- I - '		- I - I		· ·				· ·	- I - I	$-\tau$
220	210	200	190	180	170	160	150	140	130	120 che	110 emical s	100 hift [ppm	90 [ר	80	70	60	50	40	30	20	10	0	-10

13C-NMR, 176.12 MHz, CDCl3	 — 146.77	— 122.29	— 82.78 — 77.16 CDCl3 — 69.59	51.67	31.16	— 17.56
49						
			l			

																										1	
260	250	240	230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
200	250	210	250	220	210	200	150	100	170	100	150	110	100	120	110	100	50	00	70	00	50	10	50	20	10	0	10
												che	mical s	shift p	pm												

13C-NMR, 125.52 MHz, CDCI3 OH 50	130.76 130.62	

		1 1	- I '	1 1	'	1 1		· · ·				' ' '	1 1		· · · ·				· · · ·				·
220	210	200	190	180	170	160	150	140	130	120 ch	110 emical s	100 hift [ppr	90 n]	80	70	60	50	40	30	20	10	0	-10

	'				·	- I - '	'	- I - I		'	- I - I	· · ·			· · ·		'		· · ·	· · ·	· ·		· · · ·
220	210	200	190	180	170	160	150	140	130	120 che	110 emical s	100 hift [ppn	90 [ר	80	70	60	50	40	30	20	10	0	-10

	- I - I	- I - I			'	- I - I	· · ·	'		'		· · ·	- I - I			· · ·	· · ·						
220	210	200	190	180	170	160	150	140	130	120 che	110 emical s	100 hift [ppm	90 1]	80	70	60	50	40	30	20	10	0	-10

	'	- I '		- I I	'	· · ·		'		'			· ·	· · ·	- I - I	'	'		·	· · ·			- T
220	210	200	190	180	170	160	150	140	130	120 che	110 emical s	100 hift [ppm	90 [ו	80	70	60	50	40	30	20	10	0	-10

260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 chemical shift [ppm]

1H-NMR, 700.41 MHz, Acetone		(CD3)2CO	
7.60 7.60	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.2.33 2.2.33 2.2.33 2.2.33 2.2.33 2.2.33 2.2.17 2.2.16 2.2.15 2.2.17 2.2.16 2.2.17 2.2.16 2.2.16 2.2.16 2.2.17 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.176 2.2.16 2.2.176 2.2.16 2.2.16 2.2.16 2.2.176 2.2.176 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.176 2.2.16 2.2.176 2.2.16 2.2.16 2.2.176 2.2.176 2.2.176 2.2.16 2.2.16 2.2.16 2.2.16 2.2.176 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.176 2.2.176 2.2.16 2.2.16 2.2.176 2.2.16 2.2.176 2.2.16 2.2.16 2.2.16 2.2.16 2.2.176 2.2.16 2.2.16 2.2.16 2.2.176 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 2.2.176 2.2.).97 95 95 95 95 95 95 95 95 95 95 95 95 95

260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 chemical shift [ppm]

13C-NMR, 125.77 MHz, CDCl3	— 140.62	- 114.88	~ 77.16 CDCl3 ~ 76.29	 	
HO OTES 62					
		1		1	
				 an an a	

	· · ·	- I - I	·	- I - I		'	'	'		'		· · ·		- I	· ·	- I - I	· · ·		· ·		- I I		$-\tau$
220	210	200	190	180	170	160	150	140	130	120 che	110 emical sl	100 nift [ppm	90 [ו	80	70	60	50	40	30	20	10	0	-10

		- I - I		- I I	'	'	'				- I - I	· · ·	· · ·	· · ·	· · ·		- I I		· · ·				
220	210	200	190	180	170	160	150	140	130	120	110 amical s	100 hift [nnn	90	80	70	60	50	40	30	20	10	0	-10
										CIR	sincar 5	me (ppn	· J										

260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 chemical shift [ppm]

1		1 1		1 1			1 1		' '			' '		' '				1				1	· ·
220	210	200	190	180	170	160	150	140	130	120 ch	110 emical s	100 hift [ppr	90 n]	80	70	60	50	40	30	20	10	0	-10