Supporting Information

Synthesis of Aza-eight-membered Ring-fused Indolines Initiated by Zn-catalyzed C2 Alkylation of Indoles and Subsequent Base-promoted Ring-expansion

Yang Yuan, Ye Wang, Yuanyang Mu, Murong Xu, Siyi Fu, Lingkai Kong,* Yanzhong Li*

School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road

E-mail: yzli@chem.ecnu.edu.cn

Table of Contents

1. General Details.	S2
2. Synthesis of 1.	S2
3. Synthesis of 3	S6
4. 1.0 mmol scale reaction	S19
5. Synthesis of 4a	S19
6. Mechanistic Studies	S21
7. References	S24
8. Copies of Spectra of New Products	S25
9. X-ray Crystallography of Compounds 3a	S66
10. X-ray Crystallography of Compounds 3k	S69
11. X-ray Crystallography of Compounds 4a	S71

1. General Methods

All reactions were carried out under air. Toluene was prepared by distillation from sodium using benzophenone as indicator. Unless noted, all commercial reagents were used without further purification. Reactions were monitored by thin layer chromatography. Preparation of ynones were using reported method. Purification of reaction products was carried out by flash chromatography on silica gel (200~300 mesh). 1 H NMR spectra were recorded at 400 MHz or 500 MHz, 13 C NMR spectra were recorded at 100 MHz or 125 MHz, and in CDCl₃ (containing 0.03% TMS) solutions. 1 H NMR spectra were recorded with tetramethylsilane (δ = 0.00 ppm) as internal reference; 13 C NMR spectra were recorded with CDCl₃ (δ = 77.00 ppm) as internal reference. High-resolution mass spectra were performed on a mass spectrometer with a TOF (for EI or ESI) or FT-ICR (for MALDI) analyzer.

The crystal preparation and measurement methods of **3a**, **3k** and **4a** as follows: Place 50 mg of **3a** (**3k** or **4a**) in a 50 ml round bottom flask, dissolve **3a** (**3k** or **4a**) with 2 ml of dichloromethane, then add 6 ml of petroleum ether and shake well, and let it stand still at room temperature until crystals precipitate out. The crystals were carefully picked out for single crystal X-ray diffraction. Single crystal X-ray diffraction data was collected in Bruker SMARTAPEX diffractiometers with molybdenum cathodes.

2. Synthesis of 1.

$$R^{1} \stackrel{\text{ii}}{=} A$$

$$R^{1} \stackrel{\text{ii}}{=} A$$

$$R^{2} \stackrel{\text{ii}}{=} A$$

The intermediates **B** and **C** were prepared according to reference 1.

The ortho indole substituted benzoylacetonitrile 1 were synthesized according to reference 2.

To a solution of ⁿBuLi (1.3 equiv, 0.677 mmol, 270 μ L, 2.5 M solution in hexane) in THF (1.5 M, 0.3 mL) in a two-neck round bottom flask was added dropwise a solution of acetonitrile (2.0 equiv, 1.04 mmol, 60 μ L) in THF (0.8 M, 0.7 mL) at -78 °C. After being stirred for 1 h, a solution of methyl 2-(1H-indol-1-yl)benzoate **C1** (130.9 mg, 0.521 mmol) in THF (3.6 M, 0.2 ml) was added slowly. After 0.5 h, the

resulting mixture was warmed to -45 °C. After 30 min, cold 2 N HCl was added to the reaction mixture to neutralize it. The resulting mixture was diluted with EtOAc and the organic layer was separated. The water layer was extracted with CH₂Cl₂, washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the **1a** (115.3 mg, 85 %) as a yellow oil.

3-(2-(1H-indol-1-yl)phenyl)-3-oxopropanenitrile (**1a**). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 85%, 115.3 mg. 1 H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.0 Hz, 1H), 7.79-7.69 (m, 2H), 7.62-7.56 (m, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.27-7.15 (m, 4H), 6.82 (d, J = 7.6 Hz, 1H), 2.80 (s, 2H). 13 C NMR (100 MHz, CDCl₃) δ 190.8, 137.9, 137.1, 134.6, 134.4, 130.8, 128.9, 128.7, 128.5, 128.3, 123.9, 121.8, 121.7, 113.6, 109.9, 105.8, 30.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₃N₂O 261.1022; found 261.1024.

3-(2-(1H-indol-1-yl)-5-methylphenyl)-3-oxopropanenitrile (1b). White solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 61%, 87.3 mg, m.p. 144-146 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.2 Hz, 1H), 7.64 (s, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.29-7.11 (m, 4H), 6.79 (d, J = 4.0 Hz, 1H), 2.78 (s, 2H), 2.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.9, 139.2, 137.2, 135.4, 135.1, 134.4, 131.1, 128.8, 128.6, 128.3, 123.8, 121.8, 121.6, 113.7, 110.0, 105.5, 30.2, 20.7. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₁₅N₂O 275.1179; found 275.1178.

3-(5-bromo-2-(1H-indol-1-yl)phenyl)-3-oxopropanenitrile (1c). Yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 83%, 146.9 mg, m.p. 101-103 °C. 1 H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 1.2 Hz,

1H), 7.90-7.82 (m, 1H), 7.76-7.67 (m, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.29-7.22 (m, 2H), 7.19-7.10 (m, 2H), 6.83 (d, J = 2.8 Hz, 1H), 2.79 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 189.5, 137.3, 136.9, 136.8, 135.7, 133.5, 129.9, 128.9, 128.3, 124.2, 122.4, 121.9, 121.9, 113.2, 109.7, 106.3, 30.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₂BrN₂O 339.0128; found 339.0133.

3-(5-chloro-2-(1H-indol-1-yl)phenyl)-3-oxopropanenitrile (**1d**). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 78%, 119.6 mg. 1 H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.76-7.67 (m, 2H), 7.48 (d, J = 8.8 Hz, 1H), 7.29-7.22 (m, 2H), 7.18-7.09 (m, 2H), 6.83 (s, 1H), 2.79 (s, 2H). 13 C NMR (100 MHz, CDCl₃) δ 189.6, 137.0, 136.4, 135.6, 134.9, 134.3, 130.7, 129.8, 128.9, 128.4, 124.2, 122.0, 122.0, 113.2, 109.7, 106.3, 30.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₂ClN₂O 295.0633; found 295.0632.

3-(2-(4-methoxy-1H-indol-1-yl)phenyl)-3-oxopropanenitrile (1e). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5:1); yield: 84%, 127.2 mg. 1 H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 7.6 Hz, 1H), 7.78-7.69 (m, 1H), 7.63-7.54 (m, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.21-7.13 (m, 1H), 7.09 (s, 1H), 6.91 (s, 1H), 6.75 (d, J = 1.0 Hz, 1H), 6.63 (d, J = 1.0 Hz, 1H), 4.00 (s, 3H), 2.81 (s, 2H). 13 C NMR (100 MHz, CDCl₃) δ 190.7, 153.9, 138.5, 138.1, 134.6, 134.4, 130.9, 128.8, 128.4, 126.9, 125.0, 119.5, 113.6, 103.1, 102.9, 101.2, 55.3, 30.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₁₅N₂O₂ 291.1128; found 291.1128.

3-(2-(5-(benzyloxy)-1H-indol-1-yl)phenyl)-3-oxopropanenitrile (1f). Yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5:1); yield: 88%, 168.2 mg, m.p. 124-126 °C. 1 H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.0 Hz, 1H), 7.78-7.70 (m, 1H), 7.60-7.32 (m, 7H), 7.23 (d, J = 1.2 Hz, 1H), 7.17-7.06 (m,

2H), 7.03-6.93 (m, 1H), 6.72 (d, J = 3.2 Hz, 1H), 6.13 (s, 2H), 2.82 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 190.9, 154.8, 138.1, 137.5, 134.6, 134.4, 132.4, 130.9, 129.6, 129.1, 128.8, 128.7, 128.2, 128.2, 127.8, 114.8, 113.7, 110.9, 105.6, 104.6, 70.7, 30.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₁₉N₂O₂ 367.1441; found 367.1441.

3-(2-(5-methoxy-1H-indol-1-yl)phenyl)-3-oxopropanenitrile (1g). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5:1); yield: 75%, 113.6 mg. 1 H NMR (400 MHz, CDCl₃) δ 7.85-7.78 (m, 1H), 7.77-7.69 (m, 1H), 7.61-7.47 (m, 2H), 7.18-7.10 (m, 2H), 7.07 (d, J = 8.8 Hz, 1H), 6.93-6.85 (m, 1H), 6.73 (d, J = 3.2 Hz, 1H), 3.87 (s, 3H), 2.82 (s, 2H). 13 C NMR (100 MHz, CDCl₃) δ 190.9, 155.6, 138.1, 134.6, 134.4, 132.2, 130.8, 129.6, 129.1, 128.6, 128.1, 114.1, 113.7, 110.8, 105.5, 103.1, 55.6, 30.2. HRMS (ESI) m/z: [M+H]⁺ calcd for $C_{18}H_{15}N_2O_2$ 291.1128; found 291.1131.

3-(2-(4-chloro-1H-indol-1-yl)phenyl)-3-oxopropanenitrile (**1h**). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 82%, 125.8 mg. 1 H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 7.6 Hz, 1H), 7.80-7.72 (m, 1H), 7.66-7.57 (m, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.28-7.20 (m, 2H), 7.20-7.13 (m, 1H), 7.06 (d, J = 8.0 Hz, 1H), 7.06 (d, J = 3.2 Hz, 1H), 2.86 (s, 2H). 13 C NMR (100 MHz, CDCl₃) δ 190.4, 137.7, 137.4, 134.5, 130.9, 129.2, 129.2, 128.4, 127.7, 127.0, 124.5, 121.4, 113.4, 108.7, 104.2, 30.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₂ClN₂O 295.0633; found 295.0633.

3-(2-(5-chloro-1H-indol-1-yl)phenyl)-3-oxopropanenitrile (**1i**). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 80%, 123.9 mg. 1 H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 7.6 Hz, 1H), 7.80-7.74 (m, 1H), 7.70 (s, 1H), 7.66-7.58 (m, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.27-7.16 (m, 2H), 7.10 (d, J = 8.8 Hz, 1H), 6.76 (d, J = 3.2 Hz, 1H), 2.84 (s, 2H). 13 C NMR (100 MHz, CDCl₃) δ

190.6, 137.4, 135.5, 134.6, 134.5, 130.9, 130.0, 129.9, 129.1, 128.3, 127.5, 124.3, 121.3, 113.4, 111.1, 105.3, 30.4. HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{17}H_{12}ClN_2O$ 295.0633; found 295.0635.

3-(2-(6-chloro-1H-indol-1-yl)phenyl)-3-oxopropanenitrile (**1j**). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 85%, 130.8 mg. 1 H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.0 Hz, 1H), 7.80-7.73 (m, 1H), 7.66-7.58 (m, 2H), 7.51 (d, J = 8.0 Hz, 1H), 7.22-7.11 (m, 3H), 6.78 (d, J = 3.2 Hz, 1H), 2.88 (d, J = 14.4 Hz, 2H). 13 C NMR (100 MHz, CDCl₃) δ 190.3, 137.4, 137.2, 134.6, 134.5, 130.9, 129.9, 129.4, 129.2, 128.4, 127.3, 122.8, 122.5, 113.4, 110.0, 105.7, 30.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₂ClN₂O 295.0633; found 295.0636.

3-(2-(3-methyl-1H-indol-1-yl)phenyl)-3-oxopropanenitrile (1k). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 65%, 93.0 mg. 1 H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.0 Hz, 1H), 7.76-7.63 (m, 2H), 7.59-7.44 (m, 2H), 7.29-7.19 (m, 2H), 7.19-7.10 (m, 1H), 6.97 (s, 1H), 2.85 (s, 2H), 2.41 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 191.0, 138.3, 137.3, 134.5, 134.3, 130.8, 129.6, 128.3, 128.1, 126.0, 123.9, 121.1, 120.0, 115.5, 113.7, 109.8, 30.3, 9.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₁₅N₂O 275.1179; found 275.1179.

2. Synthesis of 3.

In a schlenk tube, 3-(2-(1H-indol-1-yl)phenyl)-3-oxopropanenitrile **1a** (0.2 mmol, 52.1 mg), ZnI_2 (0.01 mmol, 3.2 mg) and toluene (0.2 mL) were stirred at 80 °C (oil bath) under air . After 2 h, then 1,3-diphenylprop-2-yn-1-one **2a** (0.2 mmol, 41.2 mg),

 Cs_2CO_3 (0.4 mmol, 130.3 mg) and DMSO (2.0 mL) were added. After the completion of the addition, the reaction mixture was allowed to react at 80 °C for 6 h. Then, the reaction mixture was cooled to room temperature and was treated with H_2O , then extracted with EA and dried over anhydrous Na_2SO_4 . After removal of the EA, the residue was purified by chromatography on basic silica gel (PE: EA = 10: 1) to afford 3a (yellow solid, 72.2 mg, 77%).

(*5Z*,*7E*)-*6-benzoyl-5-hydroxy-7-phenyl-8a*,*9-dihydrobenzo*[*7*,*8*]*azocino*[*1*,*2-a*]*indole -8-carbonitrile* (*3a*). Yellow solid, obtained in 8 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 77%, 72.2 mg, m.p. 246-248 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.67 (s, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.37-7.19 (m, 7H), 7.16-7.03 (m, 7H), 6.98 (d, J = 7.6 Hz, 1H), 6.87-6.79 (m, 1H), 5.84 (dd, J = 11.2, 9.2 Hz, 1H), 3.82 (dd, J = 15.2, 11.2 Hz, 1H), 3.46 (dd, J = 15.2, 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 185.4, 181.7, 153.4, 139.4, 132.0, 130.2, 129.2, 124.9, 124.8, 124.3, 123.6, 123.2, 122.2, 122.0, 121.3, 121.2, 120.9, 120.8, 118.2, 116.0, 115.5, 113.3, 110.3, 106.3, 104.8, 102.3, 57.5, 28.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₂H₂₃N₂O₂ 467.1754; found 467.1755.

(5Z,7E)-6-benzoyl-5-hydroxy-3-methyl-7-phenyl-8a,9-dihydrobenzo[7,8]azocino[1,2 -a]indole-8-carbonitrile (3b). Brown solid, obtained in 10 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 83%, 79.5 mg, m.p. 234-236 °C. 1 H NMR (400 MHz, CDCl₃) δ 17.70 (s, 1H), 7.38 (d, J = 8.4 Hz, 1H), 7.30-7.02 (m, 14H), 6.92 (d, J = 8.0 Hz, 1H), 6.84-6.76 (m, 1H), 5.79 (dd, J = J = 10.0 Hz, 1H), 3.79 (dd, J = J = 13.2 Hz, 1H), 3.43 (dd, J = 15.6, 8.8 Hz, 1H), 2.32 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 192.5, 188.8, 160.3, 146.6, 137.3, 136.4, 136.3, 132.7, 132.7, 131.8, 131.1, 130.6, 130.1, 129.1, 128.3, 128.2, 127.9, 127.8, 125.2, 122.5, 120.0, 117.4, 113.3, 111.9, 109.0, 64.5, 35.2, 20.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₃H₂₅N₂O₂ 481.1911; found 481.1915.

(5Z,7E)-6-benzoyl-3-bromo-5-hydroxy-7-phenyl-8a,9-dihydrobenzo[7,8]azocino[1,2 -a]indole-8-carbonitrile (3c). Yellow solid, obtained in 10 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 66%, 71.8 mg, m.p. 236-238 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.70 (s, 1H), 7.54 (s, 1H), 7.46-7.34 (m, 2H), 7.32-7.04 (m, 12H), 6.94 (d, J = 8.0 Hz, 1H), 6.88-6.80 (m, 1H), 5.79 (dd, $J_1 = J_2 = 9.6$ Hz, 1H), 3.82 (dd, J = 15.6, 10.8 Hz, 1H), 3.46 (dd, $J_1 = 15.2$, 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 190.9, 188.6, 160.3, 145.8, 138.2, 136.9, 135.8, 134.7, 133.0, 132.9, 132.1, 130.4, 129.2, 129.1, 128.4, 128.3, 128.0, 127.9, 125.4, 123.9, 120.8, 117.2, 115.1, 113.1, 111.5, 109.3, 64.5, 35.2. HRMS (ESI) m/z: [M+H]+ calcd for C₃₂H₂₂BrN₂O₂ 545.0859; found 545.0857.

(*5Z*,*7E*)-*6-benzoyl-3-chloro-5-hydroxy-7-phenyl-8a*,*9-dihydrobenzo*[*7*,*8*]*azocino*[*1*,*2 -a*]*indole-8-carbonitrile* (*3d*). Yellow solid, obtained in 10 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 54%, 54.4 mg, m.p. 238-240 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.57 (s, 1H), 7.45 (d, J = 8.8 Hz, 1H), 7.40 (d, J = 1.2 Hz, 1H), 7.33-7.18 (m, 7H), 7.18-7.03 (m, 6H), 6.94 (d, J = 8.4 Hz, 1H), 6.88-6.81 (m, 1H), 5.81 (dd, J1 = J2 = 10.0 Hz, 1H), 3.82 (dd, J1 = 15.2, 10.8 Hz, 1H), 3.47 (dd, J1 = 15.2, 8.8 Hz, 1H). I3C NMR (100 MHz, CDCl₃) δ 191.0, 188.6, 160.3, 146.0, 137.8, 136.9, 135.8, 132.5, 132.1, 131.8, 130.4, 130.2, 129.2, 129.1, 128.4, 128.4, 128.0, 127.9, 127.9, 125.4, 123.7, 120.8, 117.2, 113.1, 111.5, 109.3, 64.6, 35.2. HRMS (ESI) m/z: [M+H]⁺ calcd for $C_{32}H_{22}CIN_2O_2$ 501.1364; found 501.1365.

(*5Z*,*7E*)-*6-benzoyl-5-hydroxy-10-methoxy-7-phenyl-8a*,*9-dihydrobenzo*[*7*,*8*]*azocino*[*1*,*2-a*]*indole-8-carbonitrile* (**3e**). Yellow solid, obtained in 10 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5:1); yield: 61%, 60.1 mg, m.p. 250-252 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.63 (s, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.40 (d, J = 7.6 Hz, 1H), 7.36-7.24 (m, 4H), 7.24-7.17 (m, 2H), 7.16-7.97 (m, 7H), 6.63 (d, J = 8.4 Hz, 1H), 6.42 (d, J = 8.4 Hz, 1H), 5.85 (dd, J₁ = J₂ = 10.0 Hz, 1H), 3.87 (s, 1H), 3.67 (dd, J = 15.2, 10.4 Hz, 1H), 3.51 (dd, J = 15.6, 9.6 Hz, 1H). I₃C NMR (100 MHz, CDCl₃) δ 192.4, 188.7, 160.2, 156.8, 147.7, 139.2, 137.2, 136.2, 131.9, 131.7, 131.2, 130.5, 130.1, 129.1, 129.0, 128.3, 128.2, 127.9, 122.9, 122.5, 117.3, 115.8, 113.3, 111.9, 103.2, 103.1, 64.9, 55.3, 32.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₃H₂₅N₂O₃ 497.1860; found 497.1870.

(5Z,7E)-6-benzoyl-11-(benzyloxy)-5-hydroxy-7-phenyl-8a,9-dihydrobenzo[7,8]azoci no[1,2-a]indole-8-carbonitrile (3f). Brown solid, obtained in 10 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5:1); yield: 76%, 87.0 mg, m.p. 208-210 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.68 (s, 1H), 7.48-7.35 (m, 6H), 7.34-7.24 (m, 5H), 7.22-7.16 (m, 2H), 7.14-7.00 (m, 6H), 6.95-6.82 (m, 2H), 6.70 (d, J = 7.6 Hz, 1H), 5.79 (dd, $J_1 = J_2 = 10.0$ Hz, 1H), 5.03 (s, 1H), 3.80 (dd, J = 15.6, 10.8 Hz, 1H), 3.41 (dd, J = 16.0, 9.2 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ 192.5, 188.6, 160.4, 153.5, 140.4, 139.7, 137.5, 137.2, 136.2, 131.9, 131.7, 131.1, 130.6, 130.5, 130.1, 129.0, 128.8, 128.3, 128.2, 128.1, 127.9, 127.6, 122.5, 122.0, 117.4,

113.6, 113.3, 113.2, 111.8, 109.6, 70.8, 64.5, 35.4. HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{39}H_{29}N_2O_3$ 573.2173; found 573.2173.

(5Z,7E)-6-benzoyl-5-hydroxy-11-methoxy-7-phenyl-8a,9-dihydrobenzo[7,8]azocino[1,2-a]indole-8-carbonitrile (3g). Brown solid, obtained in 10 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5:1); yield: 60%, 59.7 mg, m.p. 218-220 °C. 1 H NMR (400 MHz, CDCl₃) δ 17.67 (s, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.35-7.18 (m, 6H), 7.17-6.98 (m, 6H), 6.90 (d, J = 8.8 Hz, 1H), 6.86 (s, 1H), 6.72-6.55 (m, 1H), 5.82 (dd, J = 10.8, 9.2 Hz, 1H), 3.85-3.75 (m, 1H), 3.79 (s, 3H), 3.44 (dd, J = 15.6, 8.8 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ 192.6, 188.6, 160.4, 154.4, 140.1, 139.8, 137.2, 136.2, 131.9, 131.8, 131.1, 130.7, 130.1, 129.1, 128.3, 128.2, 128.0, 122.5, 122.0, 117.4, 113.3, 112.2, 112.1, 111.9, 109.7, 64.5, 55.9, 35.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₃H₂₅N₂O₃ 497.1860; found 497.1858.

(5Z,7E)-6-benzoyl-10-chloro-5-hydroxy-7-phenyl-8a,9-dihydrobenzo[7,8]azocino[1,

2-a]indole-8-carbonitrile (**3h**). Yellow solid, obtained in 10 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 64%, 63.6 mg, m.p. 258-260 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.67 (s, 1H), 7.48-7.40 (m, 2H), 7.37-7.19 (m, 6H), 7.16-6.98 (m, 7H), 6.90-6.73 (m, 2H), 5.86 (dd, $J_1 = J_2 = 10.4$ Hz, 1H), 3.78 (dd, J = 16.0, 10.8 Hz, 1H), 3.58 (dd, J = 16.0, 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 192.1, 189.0, 160.8, 147.6, 138.6, 137.0, 136.1, 132.0, 131.8, 131.4, 131.2, 130.6, 130.3, 129.3, 129.0, 128.4, 128.3, 127.9, 127.6, 123.6, 122.3, 120.3, 117.2, 113.2, 111.2, 107.5, 64.3, 34.4. HRMS (ESI) m/z: [M+H]⁺ calcd for $C_{32}H_{22}ClN_2O_2$ 501.1364; found 501.1365.

(5Z,7E)-6-benzoyl-11-chloro-5-hydroxy-7-phenyl-8a,9-dihydrobenzo[7,8]azocino[1, 2-a]indole-8-carbonitrile (3i). Yellow solid, obtained in 10 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 71%, 70.9 mg, m.p. 235-237 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.68 (s, 1H), 7.48-7.38 (m, 2H), 7.37-7.24 (m, 4H), 7.23-7.16 (m, 3H), 7.14-6.98 (m, 7H), 6.86 (d, J = 8.0 Hz, 1H), 5.82 (dd, $J_1 = J_2 = 10.0$ Hz, 1H), 3.79 (dd, J = 14.8, 11.6 Hz, 1H), 3.43 (dd, J = 16.0, 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 188.9, 160.7, 145.0, 138.7, 137.1, 136.1, 132.0, 131.9, 131.4, 131.1, 130.6, 130.3, 129.0, 128.3, 128.2, 127.9, 127.6, 125.4, 124.7, 123.4, 122.1, 117.2, 113.2, 111.3, 110.0, 64.6, 34.9. HRMS (ESI) m/z: [M+H]+ calcd for C₃₂H₂₂ClN₂O₂ 501.1364; found 501.1365.

(5Z,7E)-6-benzoyl-12-chloro-5-hydroxy-7-phenyl-8a,9-dihydrobenzo[7,8]azocino[1, 2-a]indole-8-carbonitrile (3j). Yellow solid, obtained in 10 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 53%, 53.4 mg, m.p. 242-244 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.67 (s, 1H), 7.48-7.36 (m, 3H), 7.33-7.24 (m, 3H), 7.23-7.17 (m, 2H), 7.16-7.03 (m, 7H), 6.93 (s, 1H), 6.78 (d, J = 8.0 Hz, 1H), 5.86 (dd, J = 11.2, 9.6 Hz, 1H), 3.75 (dd, J = 15.2, 10.8 Hz, 1H), 3.42 (dd, J = 15.2, 8.8 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ 192.0, 189.0, 160.7, 147.6, 138.2, 137.1, 136.1, 133.6, 132.0, 132.0, 131.4, 130.7, 130.3, 129.0, 128.4, 128.3, 127.9, 127.7, 125.8, 123.7, 122.4, 120.0, 117.2, 113.1, 111.2, 109.5, 65.1, 34.6. HRMS (ESI) m/z: [M+H] $^+$ calcd for C₃₂H₂₂ClN₂O₂ 501.1364; found 501.1364.

(5Z,7E,8aR,9R)-6-benzoyl-5-hydroxy-9-methyl-7-phenyl-8a,9-dihydrobenzo[7,8]azo cino[1,2-a]indole-8-carbonitrile (3k). Yellow solid, obtained in 10 h and purified by

chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 70%, 67.0 mg, m.p. 244-246 °C. 1 H NMR (400 MHz, CDCl₃) δ 17.61 (s, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.43 (d, J = 7.6 Hz, 1H), 7.38-7.17 (m, 8H), 7.15-7.02 (m, 7H), 6.97 (d, J = 7.6 Hz, 1H), 6.92-6.82 (m, 1H), 5.38 (d, J = 11.2 Hz, 1H), 4.20-4.00 (m, 1H), 1.64 (d, J = 6.8 Hz, 3H). 13 C NMR (100 MHz, CDCl₃) δ 191.5, 189.3, 161.8, 146.2, 138.9, 137.4, 136.6, 133.8, 131.8, 131.1, 130.8, 130.2, 129.0, 128.3, 128.2, 128.0, 127.7, 123.6, 123.2, 122.9, 120.4, 117.3, 113.5, 111.1, 108.8, 73.0, 41.9, 16.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₃H₂₅N₂O₂ 481.1911; found 481.1910.

(*5Z*,*7E*)-*5-hydroxy-7-phenyl-6-*(*3*,*4*,*5-trimethoxybenzoyl*)-*8a*,*9-dihydrobenzo*[*7*,*8*]*az ocino*[*1*,*2-a*]*indole-8-carbonitrile* (**3n**). Brown solid, obtained in 12 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 3:1); yield: 66%, 72.9 mg, m.p. 184-186 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.55 (s, 1H), 7.50 (d, J = 8.4 Hz, 1H), 7.42 (d, J = 7.6 Hz, 1H), 7.39-7.32 (m, 1H), 7.23-7.06 (m, 8H), 6.97 (d, J = 8.4 Hz, 1H), 6.86-6.78 (m, 1H), 6.54 (s, 1H), 5.90 (dd, J = 11.2, 8.8 Hz, 1H), 3.90 -3.80 (m, 1H), 3.80 (s, 3H), 3.78 (s, 6H), 3.36 (dd, J = 15.2, 8.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 190.7, 189.1, 161.1, 153.0, 146.3, 141.4, 139.2, 137.2, 131.9, 131.6, 131.0, 130.8, 130.3, 128.9, 128.4, 127.9, 125.2, 123.1, 122.5, 120.4, 117.2, 113.1, 111.1, 109.4, 105.6, 64.8, 60.8, 56.0, 35.2. HRMS (ESI) m/z: [M+H]⁺ calcd for $C_{35}H_{29}N_2O_5$ 557.2071; found 557.2070.

(5Z,7E)-5-hydroxy-6-(4-methoxybenzoyl)-7-phenyl-8a,9-dihydrobenzo[7,8]azocino[1,2-a]indole-8-carbonitrile (3o). Yellow solid, obtained in 12 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5:1); yield: 62%, 61.6 mg, m.p. 216-218 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.94 (s, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.45-7.38 (m, 3H), 7.38-7.29 (m, 1H), 7.28-7.19 (m, 3H), 7.18-7.03 (m, 5H), 6.97 (d, J = 7.6 Hz, 1H), 6.86-6.78 (m, 1H), 6.72 (d, J = 8.4 Hz, 1H), 5.82 (dd, $J_1 = J_2 = 10.0$ Hz, 1H), 3.85-3.77 (m, 1H), 3.75 (s, 3H), 3.43 (dd, J = 15.6, 9.2 Hz, 1H). ¹³C

NMR (100 MHz, CDCl₃) δ 192.1, 187.3, 163.0, 160.9, 146.3, 139.0, 137.1, 131.6, 130.7, 130.6, 130.3, 129.2, 129.0, 128.3, 128.3, 127.8, 125.2, 123.0, 122.2, 120.2, 117.5, 113.7, 112.4, 111.5, 109.4, 64.6, 55.3, 35.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₃H₂₅N₂O₃ 497.1860; found 497.1859.

(*5Z*,*7E*)-*5-hydroxy-6-*(*4-methylbenzoyl*)-*7-phenyl-8a*,*9-dihydrobenzo*[*7*,*8*]*azocino*[*1*, *2-a*]*indole-8-carbonitrile* (**3p**). Yellow solid, obtained in 10 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 79%, 75.6 mg, m.p. 228-230 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.78 (s, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.37-7.29 (m, 1H), 7.28-7.13 (m, 5H), 7.13-7.03 (m, 5H), 7.03-6.93 (m, 3H), 6.86-6.76 (m, 1H), 5.76 (dd, $J_1 = J_2 = 10.0$ Hz, 1H), 3.81 (dd, J = 15.2, 10.8 Hz, 1H), 3.43 (dd, J = 15.6, 9.2 Hz, 1H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 188.4, 160.7, 146.3, 142.9, 139.0, 137.2, 133.3, 131.6, 131.5, 130.6, 130.2, 129.2, 129.0, 129.0, 128.2, 128.1, 127.7, 125.2, 123.0, 122.3, 120.3, 117.4, 112.9, 111.6, 109.3, 64.5, 35.2, 21.2. HRMS (ESI) m/z: [M+H]⁺ calcd for $C_{33}H_{25}N_2O_2$ 481.1911; found 481.1910.

(5Z,7E)-6-(4-chlorobenzoyl)-5-hydroxy-7-phenyl-8a,9-dihydrobenzo[7,8]azocino[1, 2-a]indole-8-carbonitrile (3q). Yellow solid, obtained in 10 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 75%, 74.4 mg, m.p. 202-204 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.64 (s, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.43-7.33 (m, 2H), 7.28-7.07 (m, 12H), 6.97 (d, J = 8.0 Hz, 1H), 6.89-6.79 (m, 1H), 5.81 (dd, J₁ = J₂ = 10.0 Hz, 1H), 3.82 (dd, J = 14.4, 12.0 Hz, 1H), 3.36 (dd, J = 15.2, 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 192.7, 187.2, 159.9, 146.3, 139.0, 138.3, 137.0, 134.5, 131.9, 131.2, 130.6, 130.5, 129.4, 129.1, 129.0, 128.7, 128.4, 127.8, 125.2, 123.1, 122.5, 120.4, 117.2, 113.2, 112.1, 109.3, 64.5, 35.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₂H₂₂ClN₂O₂ 501.1364; found 501.1364.

(*5Z*,*7E*)-6-(*4*-fluorobenzoyl)-5-hydroxy-7-phenyl-8a,9-dihydrobenzo[7,8]azocino[1, 2-a]indole-8-carbonitrile (3r). Yellow solid, obtained in 10 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 51%, 49.6 mg, m.p. 238-240 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.70 (s, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.44-7.30 (m, 4H), 7.28-7.22 (m, 1H), 7.21-7.03 (m, 7H), 7.01-6.80 (m, 4H), 5.82 (dd, J = J = 10.0 Hz, 1H), 3.82 (dd, J = 15.6, 11.2 Hz, 1H), 3.45 (dd, J = 15.6, 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 192.5, 187.3, 164.9 (J = 127.2 Hz), 160.2, 146.3, 139.1, 137.1, 132.4 (J = 3.3 Hz), 131.8, 130.9 (J = 57.8 Hz), 130.6, 130.6, 130.4, 129.1, 129.0, 128.4, 127.8, 125.2, 123.1, 122.5, 120.4, 117.3, 115.7, 115.5, 112.5 (J = 51.7 Hz), 109.3, 64.5, 35.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₂H₂₂FN₂O₂ 485.1660; found 485.1657.

(*5Z*,*7E*)-*6*-(*1*-*naphthoyl*)-*5*-*hydroxy*-*7*-*phenyl*-*8a*,*9*-*dihydrobenzo*[*7*,*8*]*azocino*[*1*,*2*-*a*]*i ndole*-*8*-*carbonitrile* (**3s**). Brown solid, obtained in 12 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 58%, 59.4 mg, m.p. 184-186 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.54 (s, 1H), 7.78-7.66 (m, 2H), 7.61-7.34 (m, 6H), 7.25 (d, J = 7.6 Hz, 1H), 7.19-7.05 (m, 3H), 7.01-6.74 (m, 6H), 6.58 (d, J = 7.6 Hz, 1H), 5.84 (dd, $J_1 = J_2 = 10.0$ Hz, 1H), 3.73 (dd, J = 15.2, 10.8 Hz, 1H), 3.45 (dd, J = 15.6, 9.2 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ 192.2, 190.6, 159.7, 146.5, 138.6, 137.4, 134.0, 133.1, 131.7, 131.2, 131.0, 130.7, 129.4, 129.3, 129.0, 128.5, 128.0, 127.9, 126.9, 126.6, 126.0, 125.2, 124.6, 124.5, 123.0, 122.8, 120.3, 117.0, 115.6, 111.6, 108.8, 64.0, 35.3. HRMS (ESI) m/z: [M+H]⁺ calcd for $C_{36}H_{25}N_2O_2$ 517.1911; found 517.1910.

(5Z,7E)-6-(2-naphthoyl)-5-hydroxy-7-phenyl-8a,9-dihydrobenzo[7,8]azocino[1,2-a]i ndole-8-carbonitrile (3t). Brown solid, obtained in 12 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 59%, 60.7

mg, m.p. 232-234 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.82 (s, 1H), 7.83 (s, 1H), 7.79-7.70 (m, 2H), 7.65 (d, J = 8.8 Hz, 1H), 7.58-7.47 (m, 3H), 7.46-7.30 (m, 3H), 7.25 (d, J = 6.8 Hz, 1H), 7.19-7.04 (m, 4H), 7.03-6.89 (m, 4H), 6.87-6.78 (m, 1H), 5.90 (dd, J₁ = J₂ = 10.0 Hz, 1H), 3.87 (dd, J = 15.2, 10.8 Hz, 1H), 3.50 (dd, J = 15.2, 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 188.2, 160.6, 146.3, 139.0, 137.2, 134.6, 133.3, 132.0, 131.7, 131.4, 130.6, 130.2, 129.7, 129.2, 129.1, 128.9, 128.5, 128.3, 128.1, 127.9, 127.8, 127.1, 125.2, 123.9, 123.0, 122.4, 120.3, 117.4, 113.4, 111.8, 109.3, 64.6, 35.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₆H₂₅N₂O₂ 517.1911; found 517.1914.

(5Z,7E)-6-benzoyl-7-butyl-5-hydroxy-8a,9-dihydrobenzo[7,8]azocino[1,2-a]indole-8 -carbonitrile (3u). Yellow solid, obtained in 8 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 53%, 47.6 mg, m.p. 250-252 °C. 1 H NMR (400 MHz, CDCl₃) δ 18.16 (s, 1H), 7.59-7.52 (m, 2H), 7.48-7.37 (m, 4H), 7.33 (d, J = 7.6 Hz, 1H), 7.28-7.23 (m, 1H), 7.20 (d, J = 7.2 Hz, 1H), 7.12-6.99 (m, 2H), 6.94 (d, J = 8.0 Hz, 1H), 6.84-6.77 (m, 1H), 5.63 (dd, J = 11.6, 8.8 Hz, 1H), 3.74 (dd, J = 15.2, 11.2 Hz, 1H), 3.29 (dd, J = 15.2, 8.8 Hz, 1H), 0,92 (s, 9H). 13 C NMR (100 MHz, CDCl₃) δ 204.2, 189.2, 160.1, 146.2, 139.5, 138.0, 131.4, 131.1, 131.0, 130.0, 129.5, 129.4, 129.0, 127.8, 125.2, 123.1, 121.9, 120.4, 117.4, 112.2, 111.7, 110.2, 65.2, 42.8, 34.9, 27.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₀H₂₇N₂O₂ 447.2067; found 447.2068.

(5Z,7E)-6-benzoyl-5-hydroxy-7-(3,4,5-trimethoxyphenyl)-8a,9-dihydrobenzo[7,8]az ocino[1,2-a]indole-8-carbonitrile (3v). Yellow solid, obtained in 10 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 3:1); yield: 71%, 79.1 mg, m.p. 212-214 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.60 (s, 1H), 7.52 (d, J = 8.8 Hz, 1H), 7.38-7.22 (m, 8H), 7.14-7.03 (m, 2H), 6.97 (d, J = 8.0 Hz, 1H), 6.88-6.78 (m, 1H), 6.32 (s, 1H), 5.83 (dd, J = 11.6, 8.8 Hz, 1H), 3.81 (dd, J = 15.2, 11.2 Hz, 1H), 3.71 (s, 3H), 3.70 (s, 6H), 3.46 (dd, J = 15.2, 8.8 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ 191.7, 189.2, 160.2, 152.8, 146.3, 139.8, 139.2, 136.4, 132.5, 131.9, 131.8, 131.2, 130.2, 129.1, 128.3, 127.9, 127.8, 125.2, 123.0, 122.7, 120.4, 117.5, 113.2,

111.3, 109.3, 106.7, 64.5, 60.7, 56.0, 35.2. HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{35}H_{29}N_2O_5$ 557.2071; found 557.2071.

(*5Z*,*7E*)-*6-benzoyl-5-hydroxy-7-*(*4-methoxyphenyl*)-*8a*,*9-dihydrobenzo*[*7*,*8*]*azocino*[*1*,*2-a*]*indole-8-carbonitrile* (**3w**). Brown solid, obtained in 12 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5:1); yield: 63%, 62.6 mg, m.p. 234-236 °C. 1 H NMR (400 MHz, CDCl₃) δ 17.70 (s, 1H), 7.50 (d, J = 8.4 Hz, 1H), 7.41-7.28 (m, 5H), 7.27-7.18 (m, 3H), 7.17-7.03 (m, 4H), 6.97 (d, J = 8.0 Hz, 1H), 6.86-6.78 (m, 1H), 6.59 (d, J = 8.4 Hz, 1H), 5.82 (dd, J₁ = J₂ = 10.0 Hz, 1H), 3.81 (dd, J = 15.2, 10.8 Hz, 1H), 3.66 (s, 3H), 3.44 (dd, J = 15.2, 9.2 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ 192.2, 188.7, 161,2, 160.0, 146.4, 139.2, 136.2, 132.0, 131.7, 131.4, 130.7, 130.4, 129.6, 129.3, 128.3, 128.0, 127.8, 125.2, 123.0, 122.4, 120.3, 117.9, 113.6, 113.1, 109.8, 109.3, 64.6, 55.1, 35.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₃H₂₅N₂O₃ 497.1860; found 497.1859.

(5Z,7E)-6-benzoyl-5-hydroxy-7-(p-tolyl)-8a,9-dihydrobenzo[7,8]azocino[1,2-a]indol e-8-carbonitrile (3x). Yellow solid, obtained in 12 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 75%, 71.8 mg, m.p. 250-252 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.69 (s, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.37-7.27 (m, 4H), 7.26-7.18 (m, 3H), 7.14-7.01 (m, 4H), 6.97 (d, J = 8.0 Hz, 1H), 6.91-6.77 (m, 3H), 5.82 (dd, J = 11.6, 9.2 Hz, 1H), 3.81 (dd, J = 15.6, 11.2 Hz, 1H), 3.44 (dd, J = 15.6, 9.2 Hz, 1H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.3, 188.6, 160.4, 146.4, 140.7, 139.1, 136.2, 134.3, 132.0, 131.7, 131.4, 130.5, 129.2, 129.0, 128.3, 128.0, 127.8, 125.2, 123.0, 122.4, 120.3, 117.6, 113.1, 111.0, 109.3, 64.5, 35.2, 20.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₃H₂₅N₂O₂ 481.1911; found 481.1913.

(5Z,7E)-6-benzoyl-7-(3-chlorophenyl)-5-hydroxy-8a,9-dihydrobenzo[7,8]azocino[1, 2-a]indole-8-carbonitrile (3y). Brown solid, obtained in 8 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 80%, 80.1 mg, m.p. 230-232 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.61 (s, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.45-7.30 (m, 3H), 7.27-7.20 (m, 5H), 7.15-6.93 (m, 7H), 6.88-6.78 (m, 1H), 5.81 (dd, J = 10.8, 9.2 Hz, 1H), 3.80 (dd, J = 15.2, 11.2 Hz, 1H), 3.46 (dd, J = 15.2, 9.2 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ 192.6, 188.6, 158.8, 146.3, 139.1, 138.9, 136.1, 134.2, 132.0, 131.9, 131.2, 130.6, 130.0, 129.5, 129.0, 128.9, 128.5, 127.9, 127.2, 125.3, 123.2, 122.6, 120.5, 116.8, 113.1, 113.0, 109.3, 64.3, 35.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₂H₂₂ClN₂O₂ 501.1364; found 501.1366.

(5Z,7E)-6-benzoyl-7-(4-chlorophenyl)-5-hydroxy-8a,9-dihydrobenzo[7,8]azocino[1, 2-a]indole-8-carbonitrile (3z). Yellow solid, obtained in 10 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 53%, 53.1 mg, m.p. 215-217 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.66 (s, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.40-7.22 (m, 8H), 7.13-7.01 (m, 6H), 6.97 (d, J = 7.6 Hz, 1H), 6.88-6.77 (m, 1H), 5.81 (dd, J = 10.8, 9.2 Hz, 1H), 3.80 (dd, J = 15.2, 10.8 Hz, 1H), 3.46 (dd, J = 15.6, 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 192.7, 188.4, 159.1, 146.3, 139.0, 136.3, 136.0, 135.7, 132.2, 131.9, 131.2, 130.5, 130.2, 129.1, 128.5, 128.5, 127.9, 127.9, 125.2, 123.1, 122.5, 120.4, 117.1, 112.9, 112.4, 109.3, 64.4, 35.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₂H₂₂ClN₂O₂ 501.1364; found 501.1354.

(*5Z*,*7E*)-6-benzoyl-7-(*4*-cyanophenyl)-5-hydroxy-8a,9-dihydrobenzo[7,8]azocino[1,2 -a]indole-8-carbonitrile (3za). Brown solid, obtained in 10 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 4:1); yield: 53%, 52.4 mg, m.p. 186-188 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.60 (s, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.44-7.30 (m, 5H), 7.28-7.17 (m, 7H), 7.14-7.07 (m, 2H), 6.98 (d, J = 8.0 Hz, 1H), 6.89-6.80 (m, 1H), 5.83 (dd, J1 = J2 = 10.0 Hz, 1H), 3.80 (dd, J1 = 15.2, 11.2 Hz, 1H), 3.49 (dd, J1 = 15.2, 8.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 193.3, 188.1, 158.3, 146.1, 141.7, 138.8, 135.9, 132.3, 132.1, 131.9, 131.1, 130.5, 129.5, 128.9, 128.6, 127.9, 125.3, 123.2, 122.6, 120.6, 118.1, 116.5, 114.5, 113.3, 112.7, 109.3, 64.2, 35.2. HRMS (ESI) m/z: [M+H]+ calcd for C₃₃H₂₂N₃O₂ 492.1707; found 492.1707.

(5Z,7Z)-6-benzoyl-5-hydroxy-7-(thiophen-2-yl)-8a,9-dihydrobenzo[7,8]azocino[1,2-a]indole-8-carbonitrile (3zb). Yellow solid, obtained in 10 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 76%, 71.6 mg, m.p. 248-250 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.77 (s, 1H), 7.53-7.38 (m, 4H), 7.36-7.17 (m, H), 7.12-7.00 (m, 2H), 6.96 (d, J = 8.0 Hz, 1H), 6.86-6.72 (m, 1H), 5.80 (dd, J = 10.4, 9.6 Hz, 1H), 3.82 (dd, J = 15.6, 11.2 Hz, 1H), 3.43 (dd, J = 15.6, 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 192.7, 187.9, 151.5, 146.3, 141.0, 139.1, 136.0, 132.2, 131.7, 131.3, 130.7, 130.4, 130.3, 129.2, 128.4, 128.2, 128.1, 127.8, 125.2, 123.1, 122.4, 120.3, 117.8, 113.1, 109.5, 107.7, 64.6, 35.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₀H₂₁N₂O₂S 473.1318; found 473.1319.

(5Z,7E)-6-benzoyl-7-butyl-5-hydroxy-8a,9-dihydrobenzo[7,8]azocino[1,2-a]indole-8 -carbonitrile (3zc). Yellow solid, obtained in 10 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 56%, 50.4 mg, m.p. 75-77 °C. 1 H NMR (400 MHz, CDCl₃) δ 17.75 (s, 1H), 7.61-7.53 (m, 3H), 7.50-7.44 (m, 3H), 7.41-7.35 (m, 1H), 7.26-7.17 (m, 2H), 7.12-7.01 (m, 2H), 6.94 (d, J = 8.0 Hz, 1H), 6.86-6.77 (m, 1H), 5.60 (dd, J = 10.8, 9.2 Hz, 1H), 3.70 (dd, J = 15.2, 11.2 Hz, 1H), 3.34 (dd, J = 15.6, 8.8 Hz, 1H), 2.60-2.45 (m, 2H), 1.75-1.65 (m, 1H), 1.28-1.21 (m, 1H), 1.13-1.03 (m, 1H), 0.94-0.84 (m, 1H), 0.78-0.68 (m, 1H), 0.60 (t, J = 6.4 Hz, 3H). 13 C NMR (100 MHz, CDCl₃) δ 193.6, 184.4, 163.9, 146.4, 138.4, 135.9, 132.6, 131.9, 131.5, 130.9, 129.1, 129.0, 128.3, 127.7, 125.2, 122.7, 122.6, 120.2, 116.2, 113.6, 111.0, 109.0, 62.6, 37.0, 34.3, 30.5, 21.8, 13.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₀H₂₇N₂O₂ 447.2067; found 447.2067.

4. 1.0 mmol scale reaction.

In a schlenk tube, 3-(2-(5-chloro-1H-indol-1-yl)phenyl)-3-oxopropanenitrile **1i** (1.0 mmol, 294.7 mg), ZnI₂ (0.05 mmol, 16.0 mg) and toluene (1.0 mL) were stirred at 80 °C (oil bath) under air. After 2 h, then 1,3-diphenylprop-2-yn-1-one **2a** (1.0 mmol, 206.2 mg), Cs₂CO₃ (2.0 mmol, 651.6mg) and DMSO (10.0 mL) were added. After the completion of the addition, the reaction mixture was allowed to react at 80 °C for 8 h. Then, the reaction mixture was cooled to room temperature and was treated with H₂O, then extracted with EA and dried over anhydrous Na₂SO₄. After removal of the EA, the residue was purified by chromatography on basic silica gel (PE: EA = 10: 1) to afford **3i** (yellow solid, 335.7 mg, 67%).

5. Synthesis of 4.

In a schlenk tube, 3-(2-(1H-indol-1-yl)phenyl)-3-oxopropanenitrile **1a** (0.2 mmol, 52.1 mg), ZnI₂ (0.01 mmol, 3.2 mg) and toluene (0.2 mL) were stirred at 80 °C (oil bath) under air. After the reaction was completed as monitored by thin-layer chromatography, the reaction mixture was then quenched by water, and the water layers were extracted with ethyl acetate (10 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate = 10/1) afforded desired compound **4a** (yellow solid, 51.6 mg, 99%).

(6S,6aR)-5-oxo-5,6,6a,7-tetrahydroindolo[1,2-a]quinoline-6-carbonitrile (4a).

Yellow solid, obtained in 2 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 99%, 51.6 mg, m.p. 141-143 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.4 Hz, 1H), 7.67-7.49 (m, 2H), 7.33-7.15 (m, 3H), 7.13-7.03 (m, 1H), 6.99-6.87 (m, 1H), 4.86-4.70 (m, 1H), 3.98 (d, J = 12.8 Hz, 1H), 3.65 (dd, J = 16.8, 9.6 Hz, 1H), 3.21 (dd, J = 16.8, 4.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 184.1, 145.4, 143.9, 136.5, 129.5, 128.4, 128.3, 126.2, 122.2, 121.7, 121.0,

119.0, 114.7, 108.7, 62.0, 45.5, 33.1. HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{17}H_{12}N_2NaO$ 283.0842; found 283.0842.

(6S,6aR)-6-benzoyl-6a,7-dihydroindolo[1,2-a]quinolin-5(6H)-one (4b). Yellow solid, obtained in 2 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 93%, 63.2 mg, m.p. 184-186 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.05-7.91 (m, 3H), 7.68-7.55 (m, 3H), 7.53-7.45 (m, 2H), 7.36 (d, J = 8.0 Hz, 1H), 7.23-7.12 (m, 2H), 7.02-6.95 (m, 1H), 6.91-6.84 (m, 1H), 5.24-5.10 (m, 1H), 4.86 (d, J = 13.5 Hz, 1H), 3.58 (dd, J = 16.5, 9.5 Hz, 1H), 2.75 (dd, J = 17.0, 6.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 197.0, 190.6, 145.5, 144.3, 137.9, 135.5, 133.7, 129.8, 129.0, 128.9, 128.7, 127.7, 125.7, 122.2, 120.7, 120.5, 117.1, 108.9, 61.7, 59.4, 33.8. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₃H₁₇NNaO₂ 362.1151; found 362.1151.

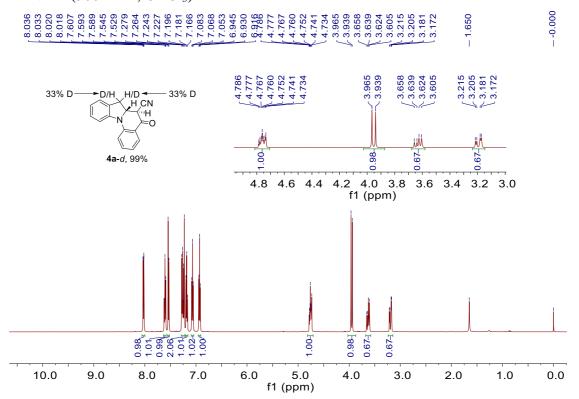
methyl (*6R*,*6aR*)-*5-oxo-5*,*6*,*6a*,*7-tetrahydroindolo*[*1*,*2-a*]*quinoline-6-carboxylate* (**4c**). Yellow solid, obtained in 2 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 97%, 56.9 mg, m.p. 146-148 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 7.6 Hz, 1H), 7.60-7.53 (m, 2H), 7.31 (d, J = 8.4 Hz, 1H), 7.23-7.16 (m, 2H), 7.04-6.96 (m, 1H), 6.92-6.85 (m, 1H), 4.93-4.82 (m, 1H), 3.87 (s, 3H), 3.85-3.80 (m, 1H), 3.52 (dd, J = 16.0, 9.2 Hz, 1H), 2.89 (dd, J = 16.0, 6.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 189.0, 169.1, 145.7, 144.4, 135.8, 129.5, 129.2, 128.0, 125.9, 121.6, 121.0, 120.9, 117.6, 109.0, 61.4, 59.0, 52.4, 33.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₁₆NO₃ 294.1125, found 294.1127.

6. Mechanistic Studies

In a schlenk tube, 3-(2-(1H-indol-1-yl)phenyl)-3-oxopropanenitrile **1a** (0.2 mmol, 52.1 mg), ZnI₂ (0.01 mmol, 3.2 mg) and anhydrous toluene (0.2 mL) were stirred at 80 °C (oil bath) under N₂. After the reaction was completed as monitored by thin-layer chromatography, the reaction mixture was then quenched by water, and the water layers were extracted with ethyl acetate (10 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate = 10/1) afforded desired compound **4a** (yellow solid, 51.8 mg, 99%).

33% D D/H H/D 33% D

CN


$$\begin{array}{c}
\text{ZnI}_2 \text{ (5 mol \%), D}_2\text{O (4.0 equiv)} \\
\text{Tol (anhydrous), 80 °C, N}_2, 2 \text{ h}
\end{array}$$

4a-d, 99%

In a schlenk tube, 3-(2-(1H-indol-1-yl)phenyl)-3-oxopropanenitrile **1a** (0.2 mmol, 52.1 mg), ZnI₂ (0.01 mmol, 3.2 mg), D₂O (0.8 mmol, 16 mg) and anhydrous toluene (0.2 mL) were stirred at 80 °C (oil bath) under N₂. After the reaction was completed as monitored by thin-layer chromatography, the reaction mixture was then quenched by water, and the water layers were extracted with ethyl acetate (10 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate = 10/1) afforded compound **4a**-*d* (yellow solid, 51.4 mg, 99%).

4a-d: ¹H NMR (500 MHz, CDCl₃) δ 8.06-8.00 (m, 1H), 7.64-7.58 (m, 1H), 7.55-7.52 (m, 1H), 7.28-7.25 (m, 2H), 7.20-7.16 (m, 1H), 7.09-7.05 (m, 1H), 6.96-6.92 (m, 1H), 4.82-4.71 (m, 1H), 3.95 (d, J = 13.0 Hz, 1H), 3.63 (dd, J = 17.0, 9.5 Hz, 0.67H), 3.19 (dd, J = 17.0, 5.0 Hz, 0.67H).

¹H NMR (500 MHz, CDCl₃)

CN
$$D_2O$$
 (4.0 equiv) D_2O (4

In a schlenk tube, 3-(2-(1H-indol-1-yl)phenyl)-3-oxopropanenitrile $\bf 1a$ (0.2 mmol, 52.1 mg), D_2O (0.8 mmol, 16 mg) and anhydrous toluene (0.2 mL) were stirred at 80 °C (oil bath) under N_2 . After 2 h, the reaction mixture was quenched by water, and the water layers were extracted with ethyl acetate (10 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate = 10/1) afforded undeuterated $\bf 1a$ (yellow oil, 52.0 mg, 100%).

H CN

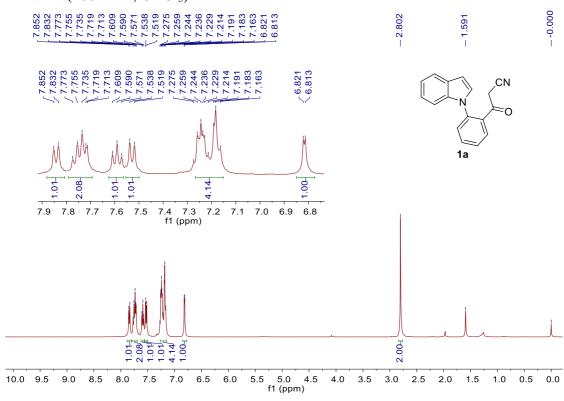
$$D_2O$$
 (4.0 equiv)
Tol (anhydrous), 80 °C, N_2 , 2 h 4a (undeuterated), 100% recovery

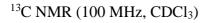
In a schlenk tube, (6S,6aR)-5-oxo-5,6,6a,7-tetrahydroindolo[1,2-a]quinoline-6-carbonitrile **4a** (0.2 mmol, 52.1 mg), D₂O (0.8 mmol, 16 mg) and anhydrous toluene (0.2 mL) were stirred at 80 °C (oil bath) under N₂. After 2 h, the reaction mixture was quenched by water, and the water layers were extracted with ethyl acetate (10 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate = 10/1) afforded undeuterated **4a** (yellow solid, 52.1 mg,100%).

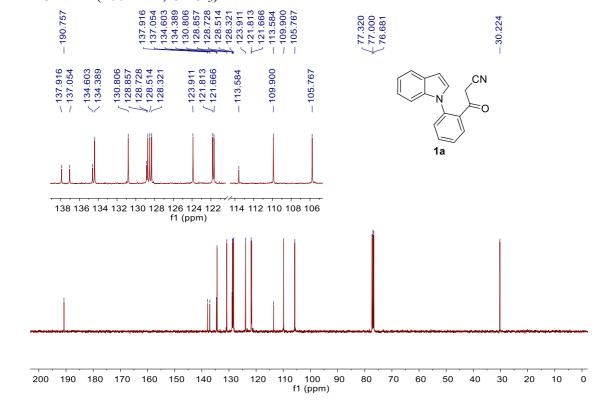
In a schlenk tube, 3-(2-(1H-indol-1-yl)phenyl)-3-oxopropanenitrile $\bf 1a$ (0.2 mmol, 52.1 mg), HI (0.01 mmol) and toluene (0.2 mL) were stirred at 80 °C (oil bath) under air. After 2 h, the reaction mixture was quenched by water, and the water layers were extracted with ethyl acetate (10 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate = 10/1) afforded $\bf 4a$ (yellow solid, 2.7 mg, 5%) and $\bf 1a$ (yellow oil, 48.8 mg, 94%).

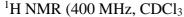
In a schlenk tube, 3-(2-(1H-indol-1-yl)phenyl)-3-oxopropanenitrile**1a**(0.2 mmol, 52.1 mg), HI (0.2 mmol) and anhydrous toluene (0.2 mL) were stirred at 80 °C (oil

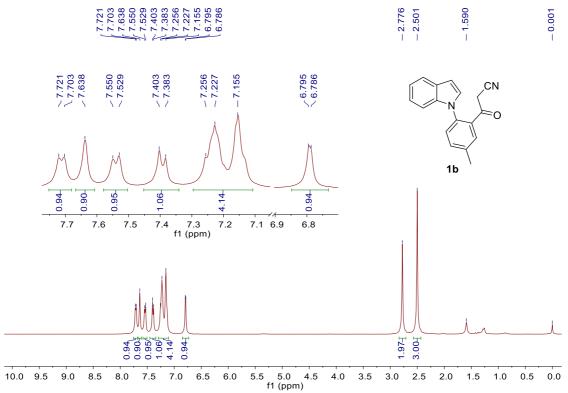
bath) under air. After 2 h, the reaction mixture was quenched by water, and the water layers were extracted with ethyl acetate ($10 \text{ mL} \times 3$). The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate = 10/1) afforded compound **4a** (yellow solid, 50.4 mg, 97%).

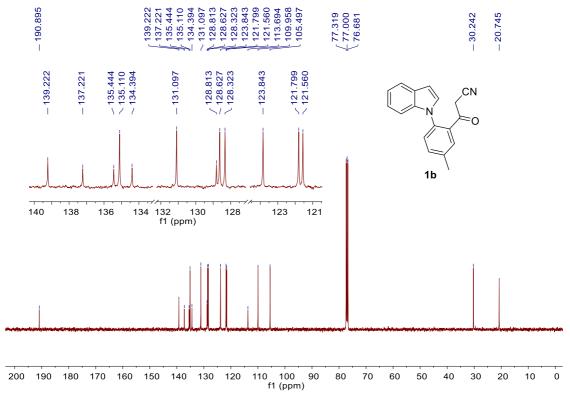

In a schlenk tube, (6S,6aR)-5-oxo-5,6,6a,7-tetrahydroindolo[1,2-a]quinoline-6-carbonitrile **4a** (0.2 mmol, 52.1 mg), 1,3-diphenylprop-2-yn-1-one **2a** (0.2 mmol, 41.2 mg), Cs_2CO_3 (0.4 mmol, 130.3 mg), DMSO (2.0 mL) and toluene (0.2 mL) were stirred at 80 °C (oil bath) under air. After the reaction was completed as monitored by thin-layer chromatography, the reaction mixture was then quenched by water, and the water layers were extracted with ethyl acetate (10 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate = 10/1) afforded **3a** (yellow solid, 70.2 mg, 75%).

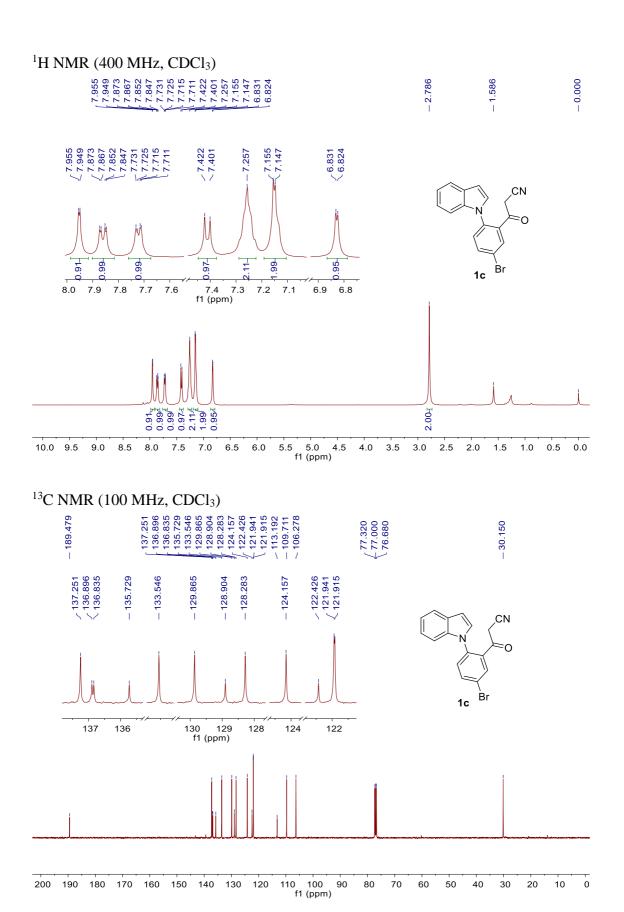

7. References

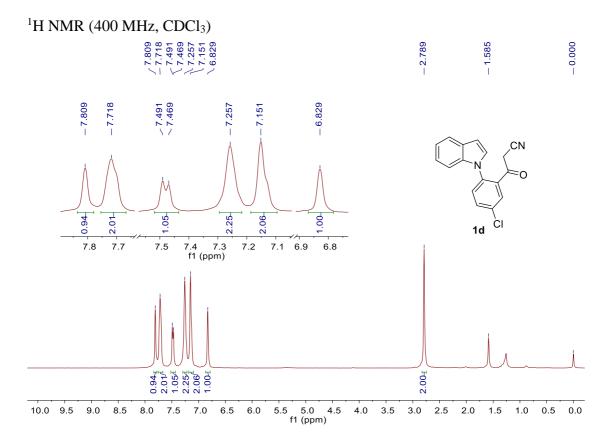

- (1) Kiruthika, S. E.; Nandakumar, A.; Perumal, P. T. Org. Lett. 2014, 16, 4424.
- (2) Ko, T. Y.; Youn, S. W. Adv. Synth. Catal. 2016, 358, 1934.

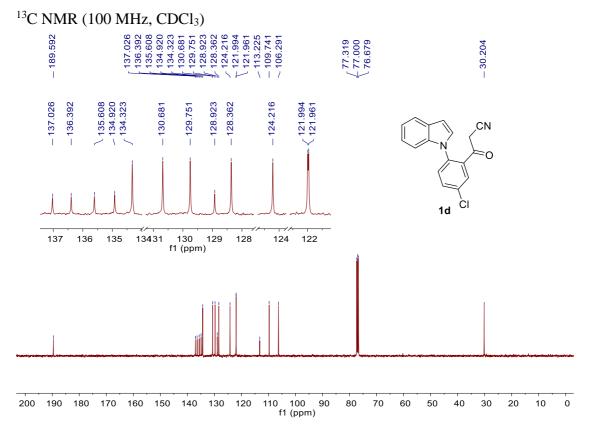

8. Copies of Spectra of New Products

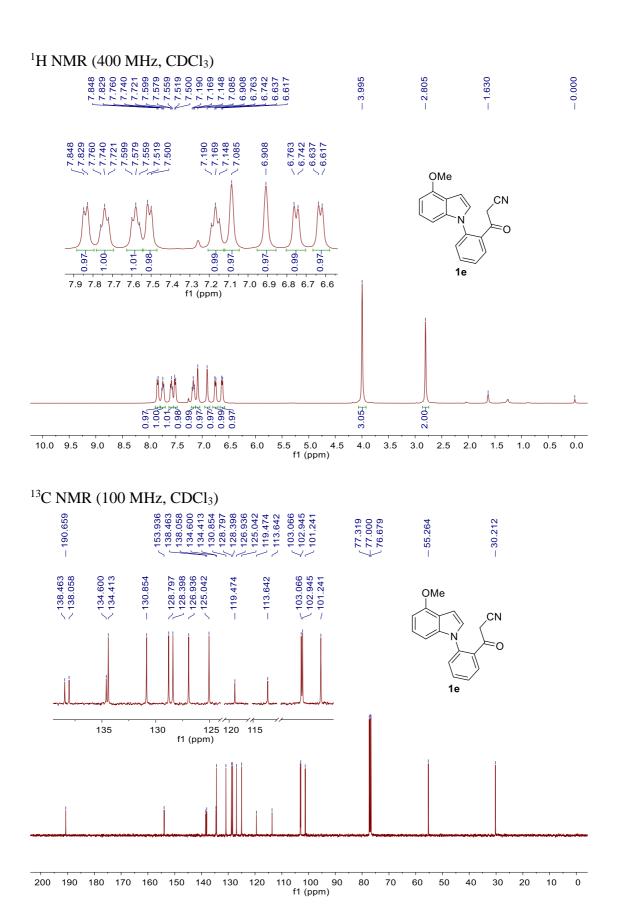

¹H NMR (400 MHz, CDCl₃)

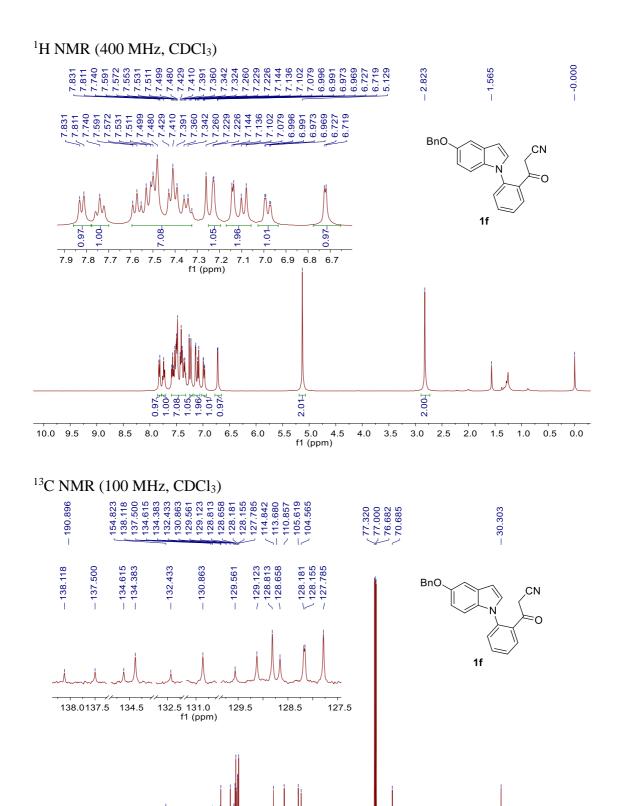


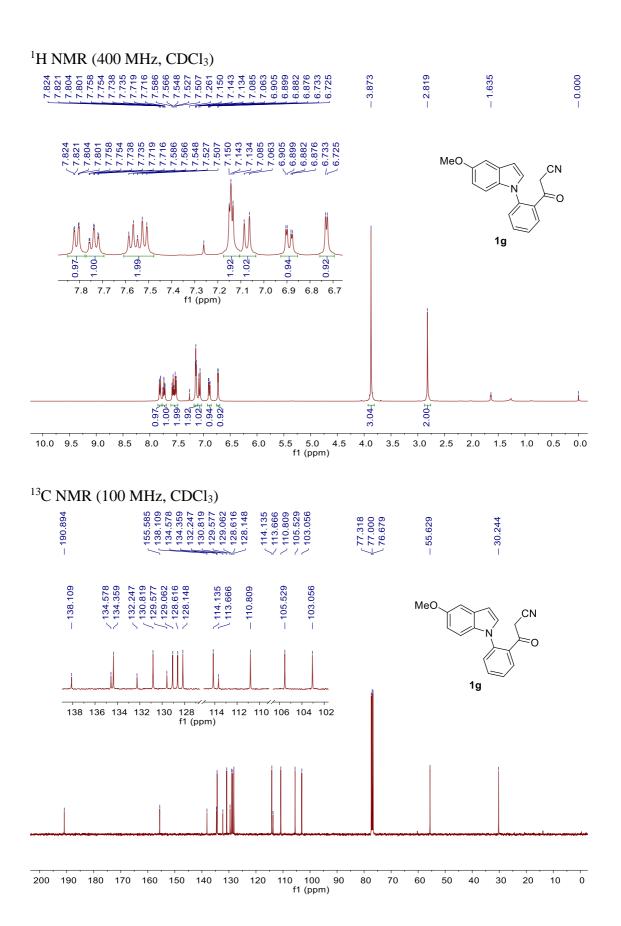


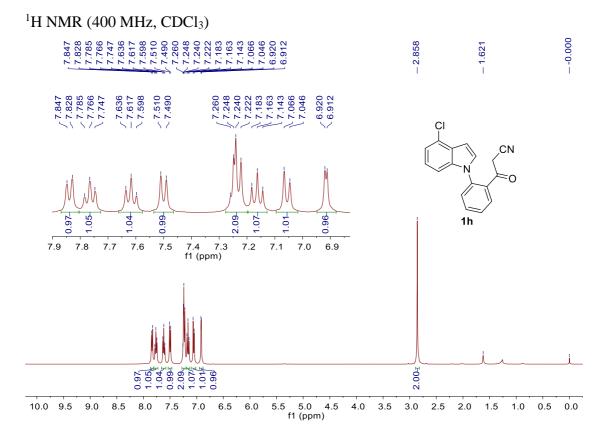


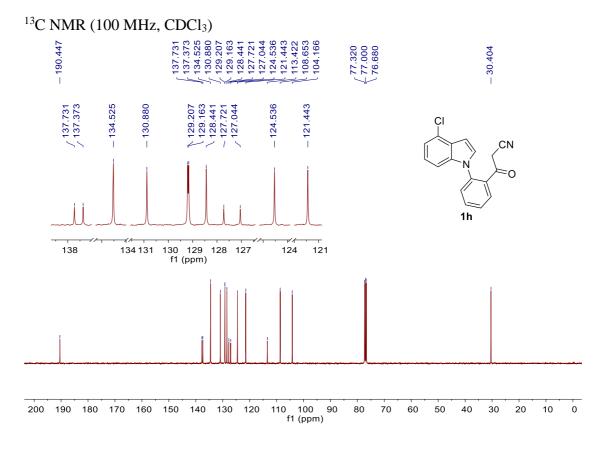


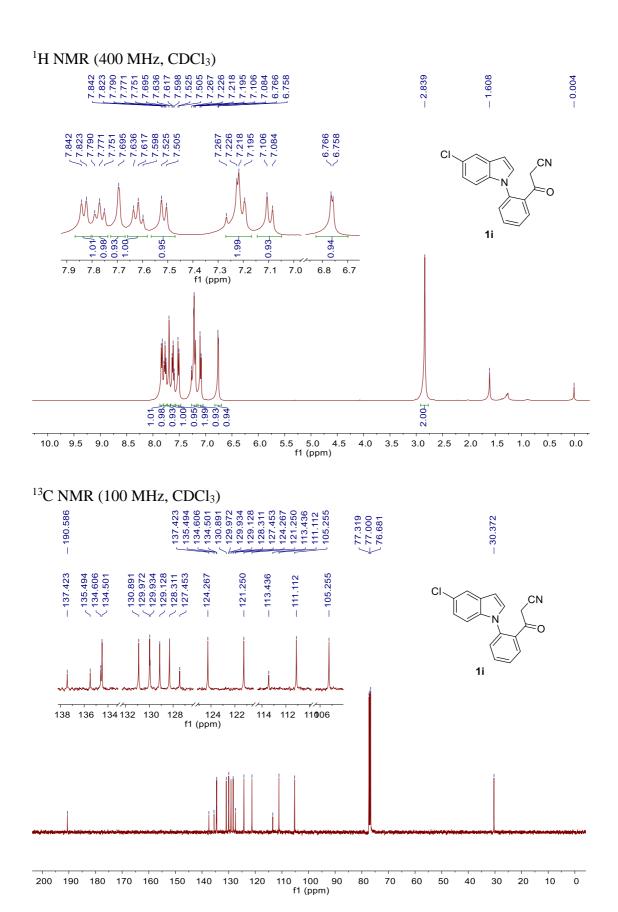

¹³C NMR (100 MHz, CDCl₃)

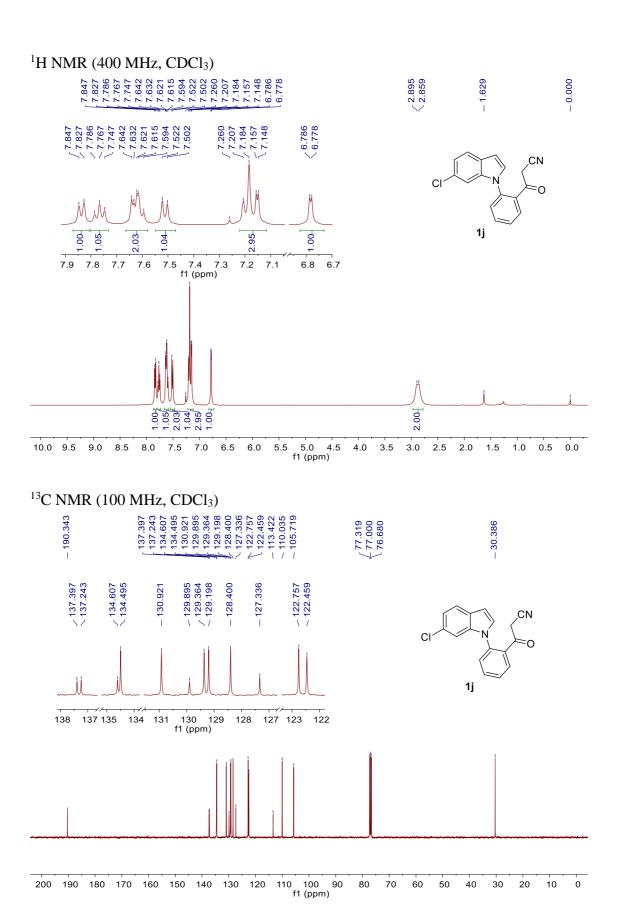


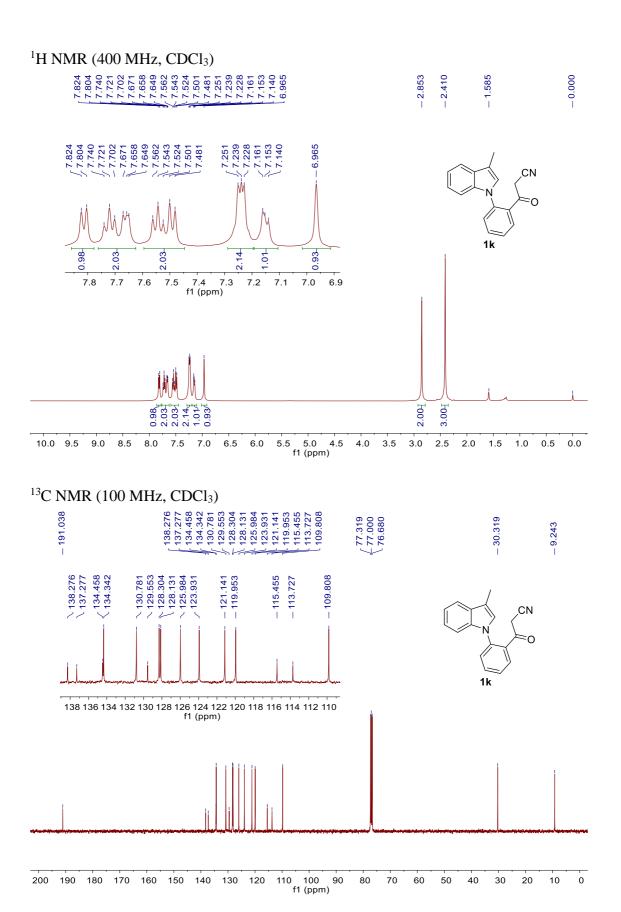



70

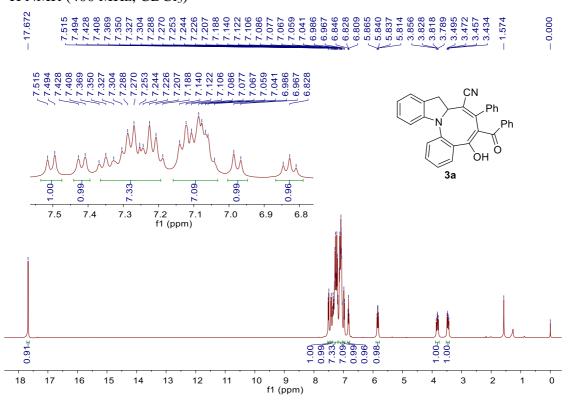

30

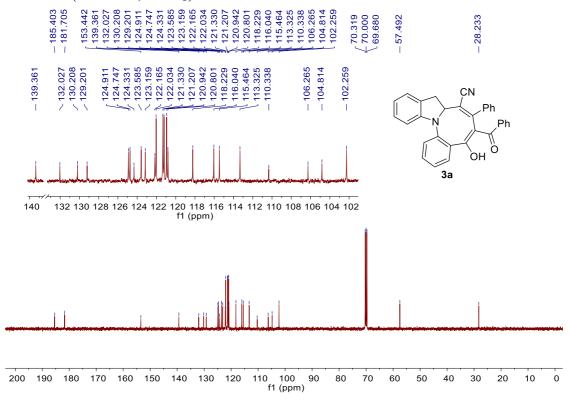

20 10 0

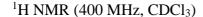

200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

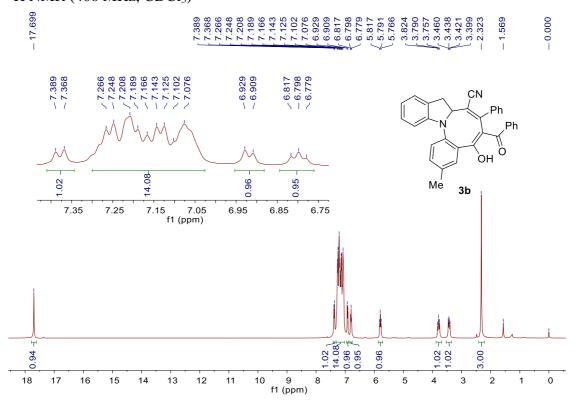


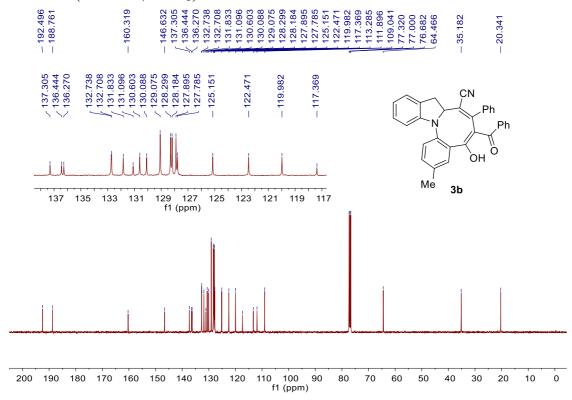




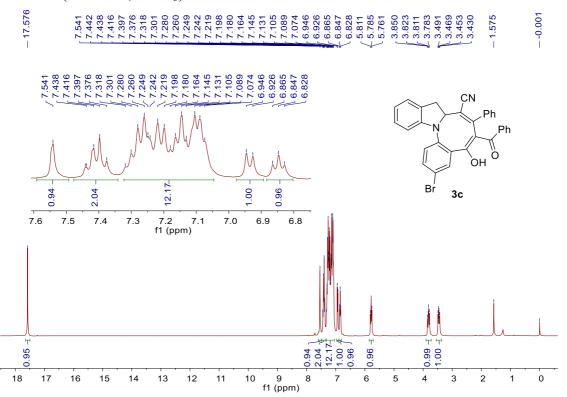


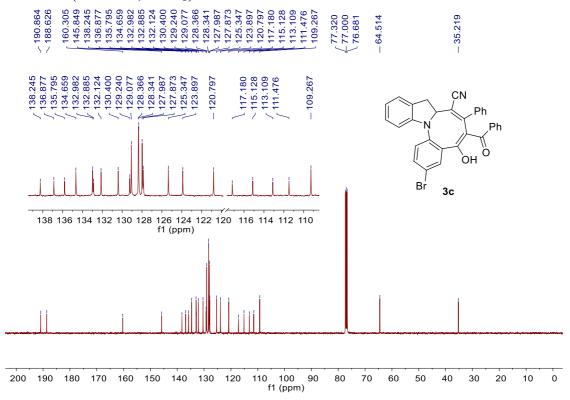




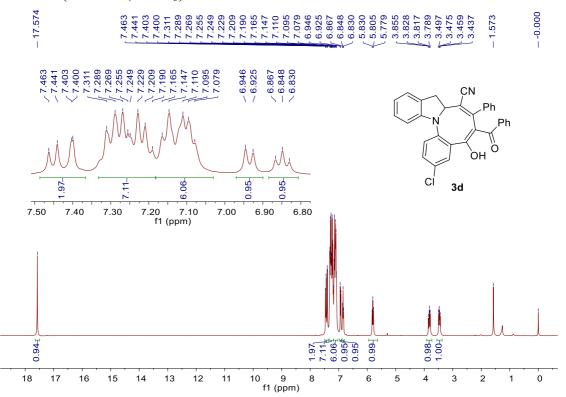


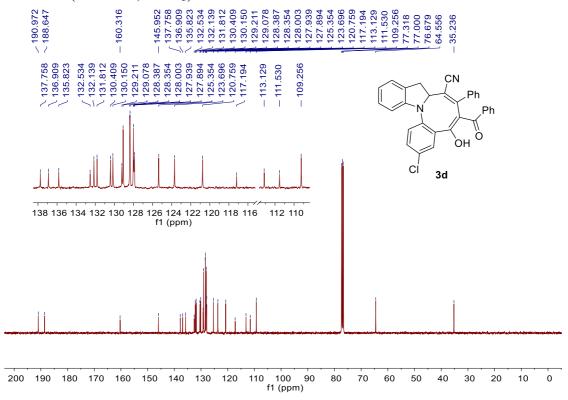

¹³C NMR (100 MHz, CDCl₃)

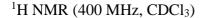


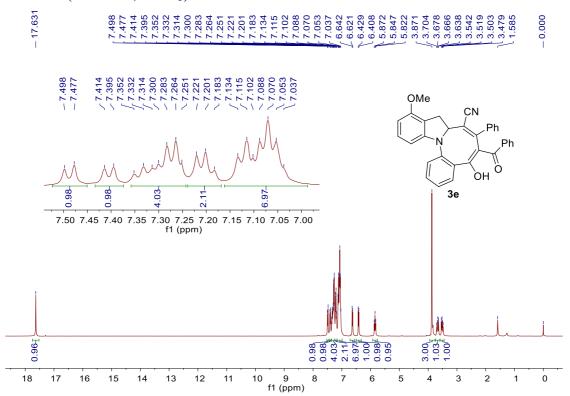


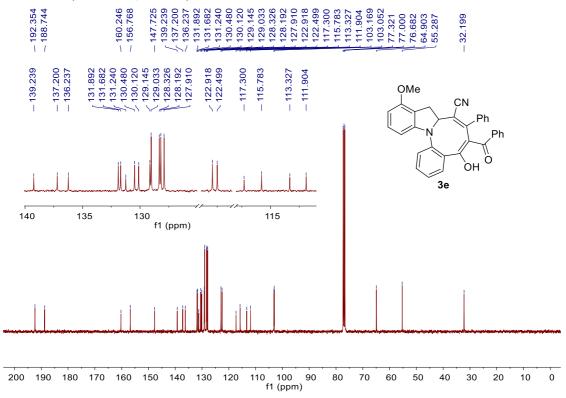


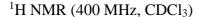


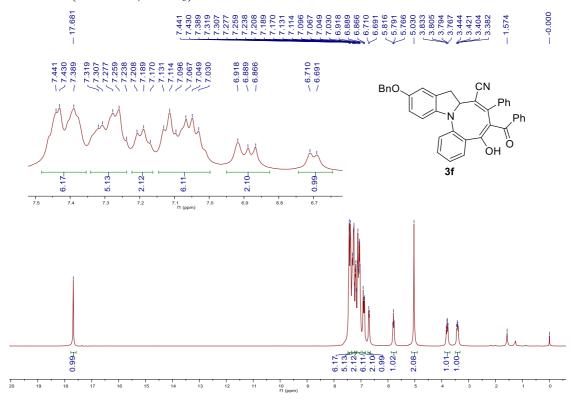


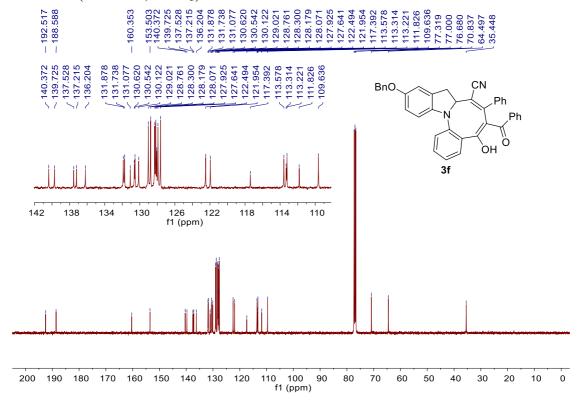


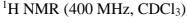


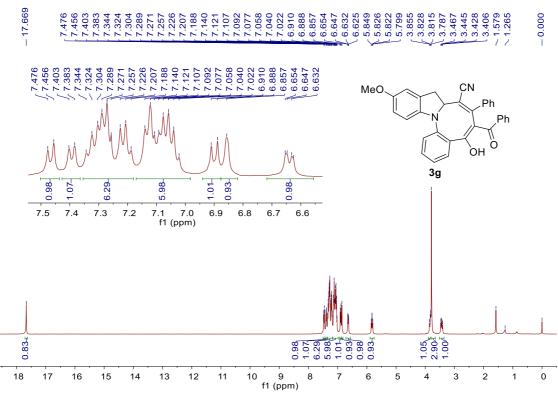


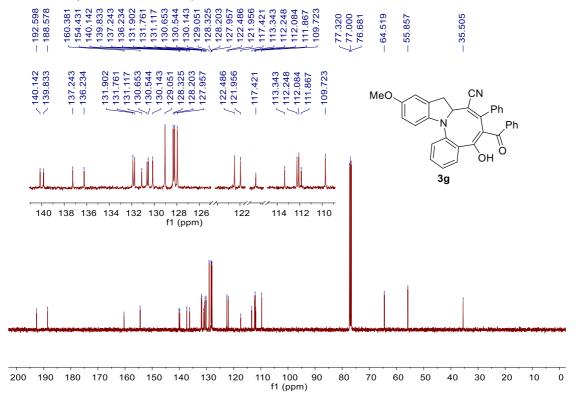


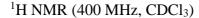


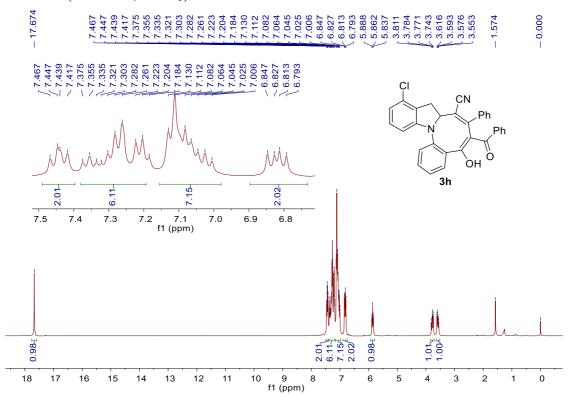


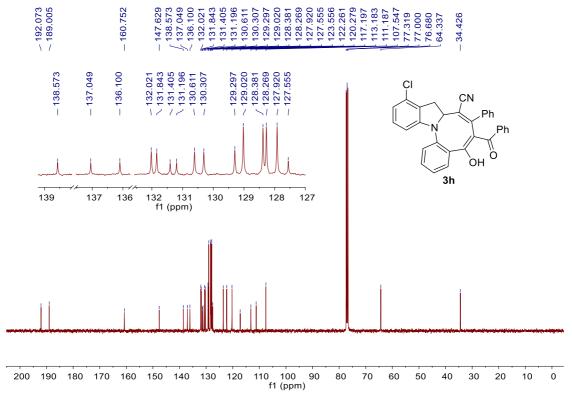


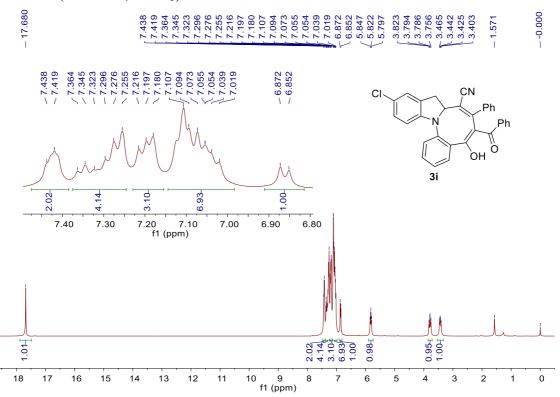


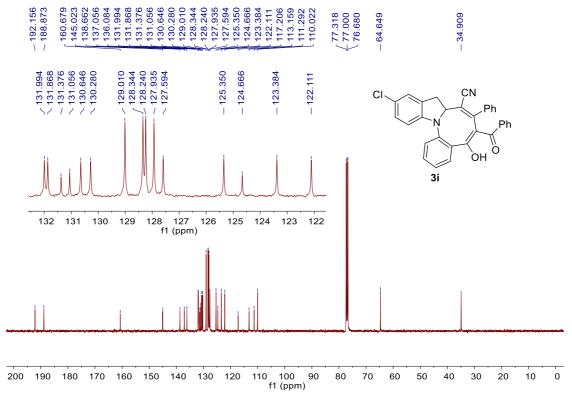


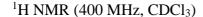


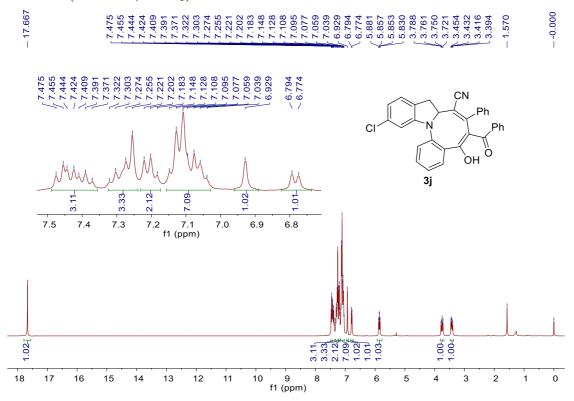


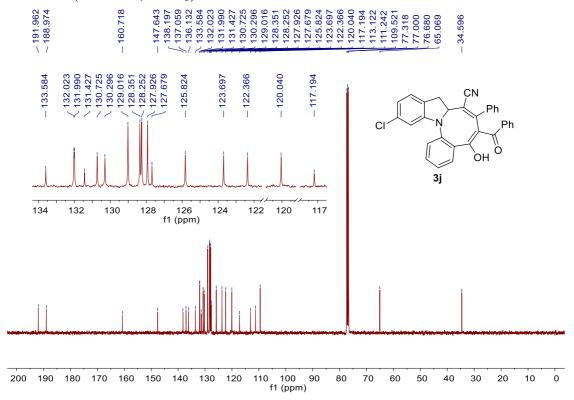


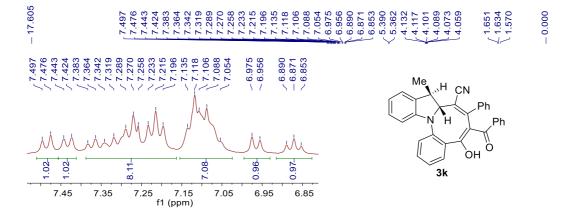


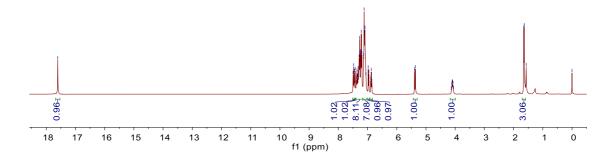


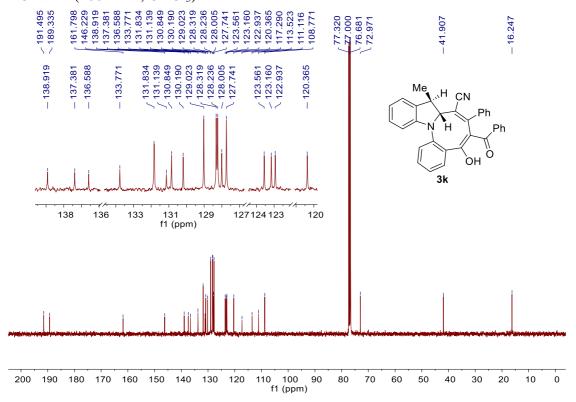


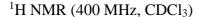


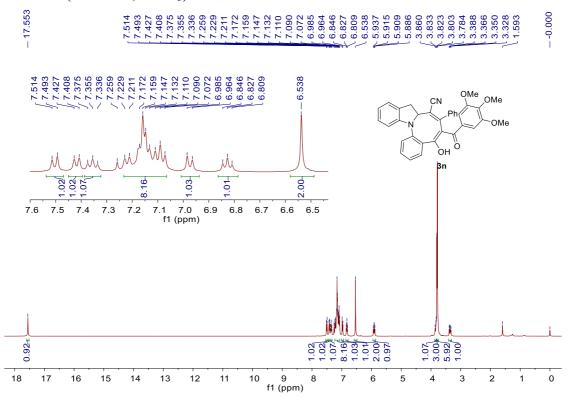


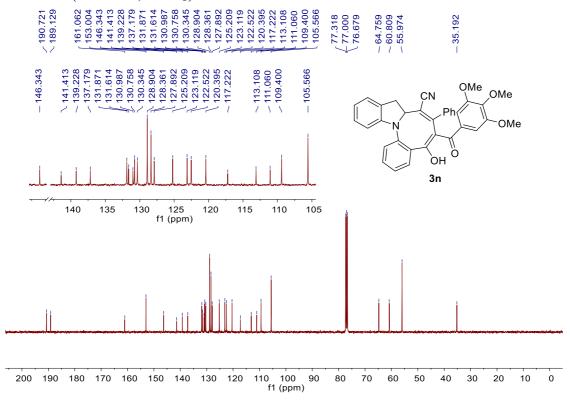


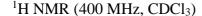


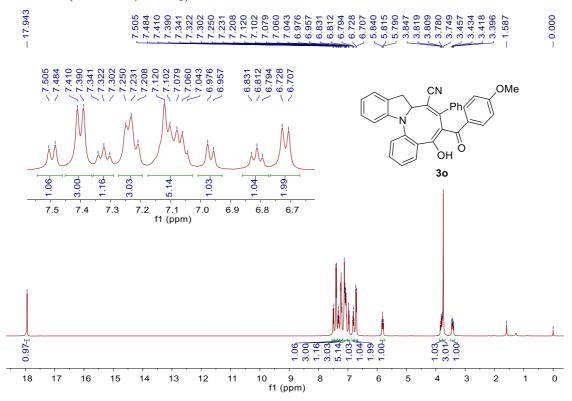


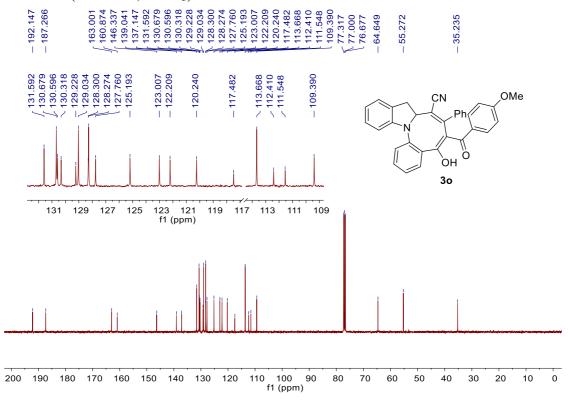


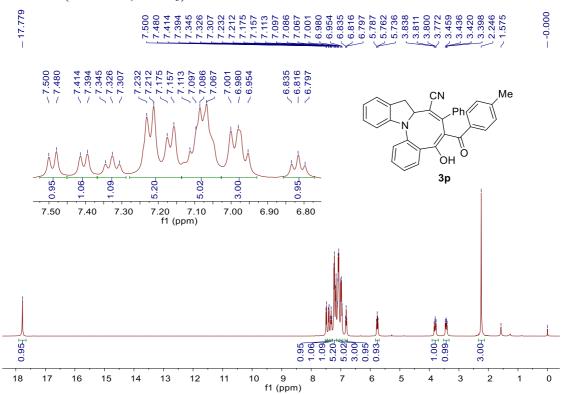


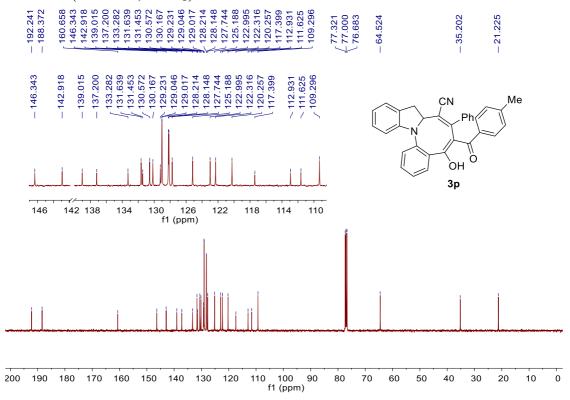


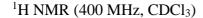




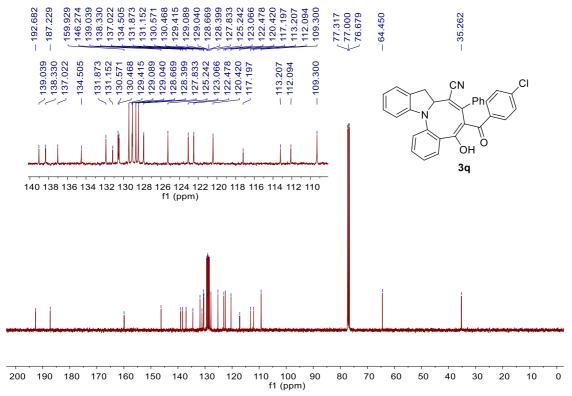




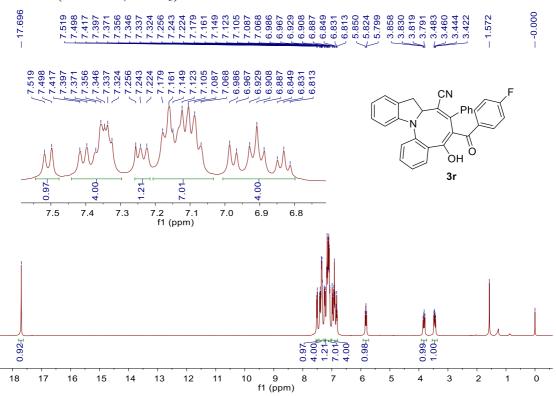


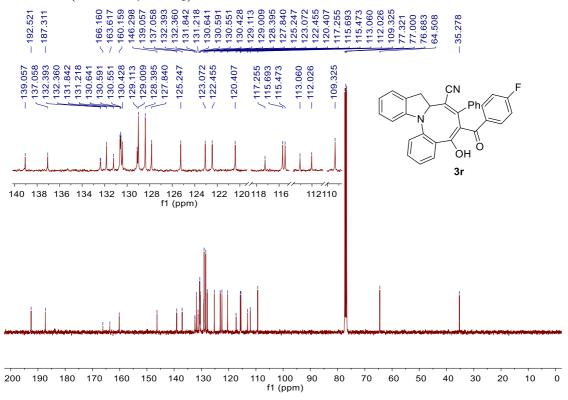


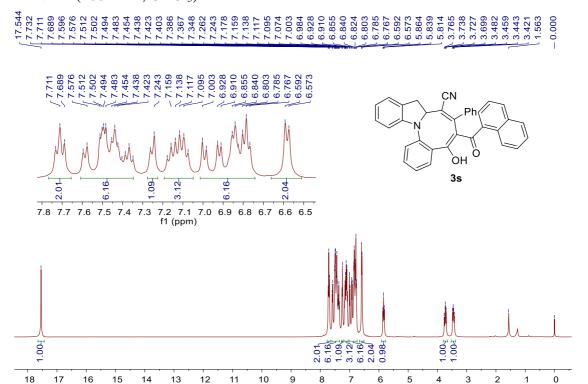


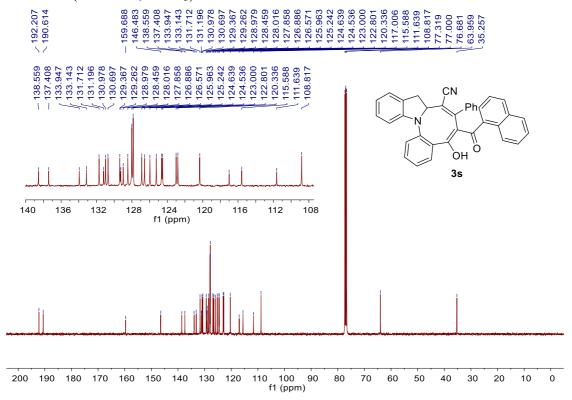


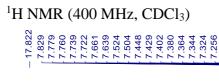


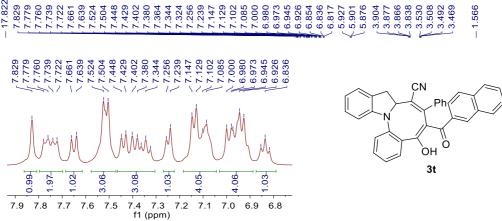


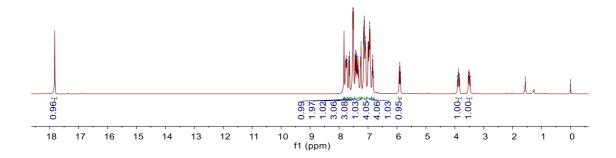


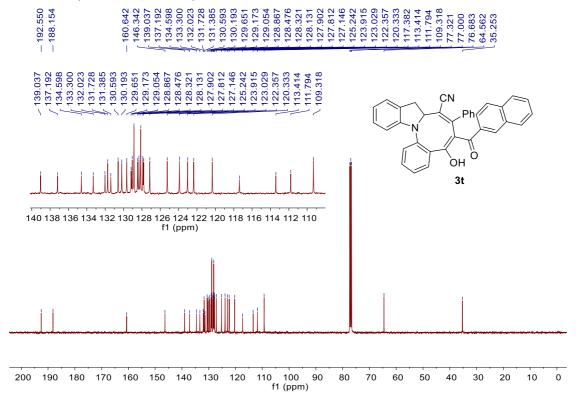


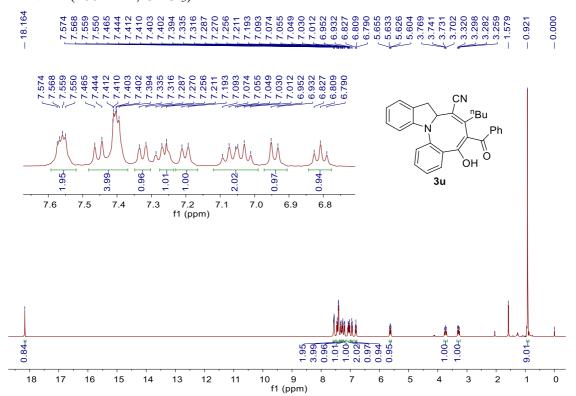


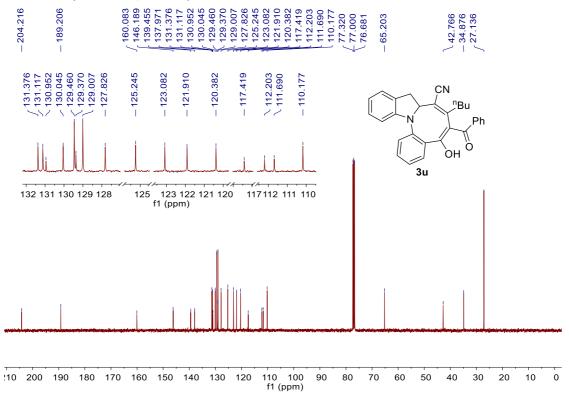


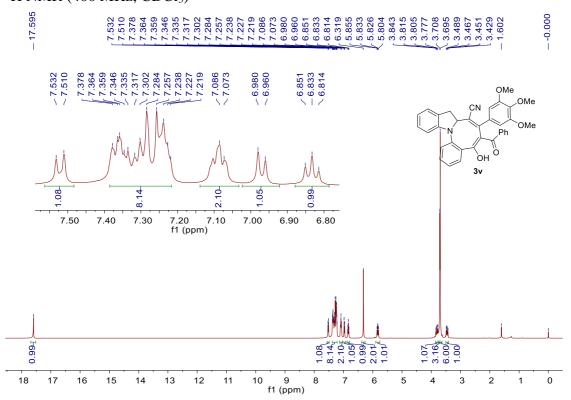


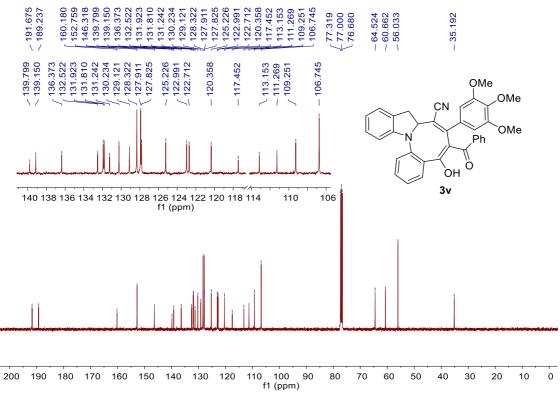


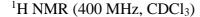

f1 (ppm)

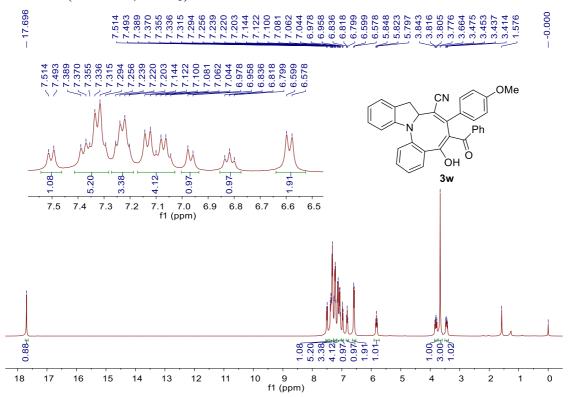


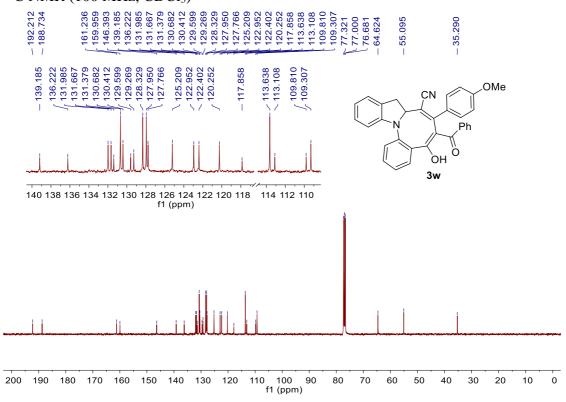


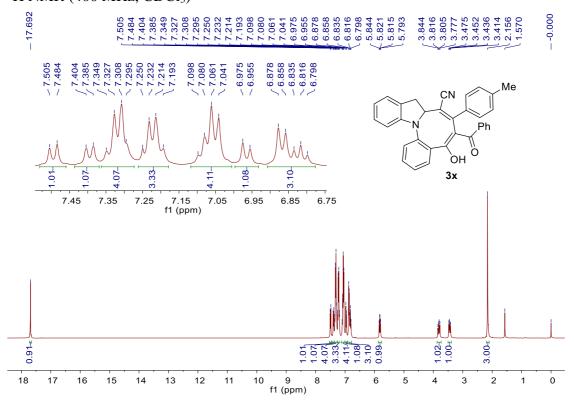


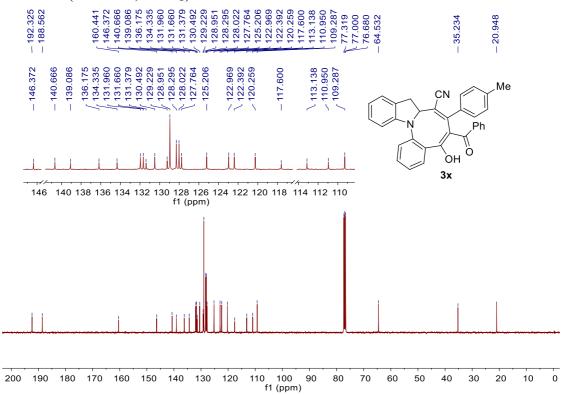


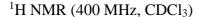


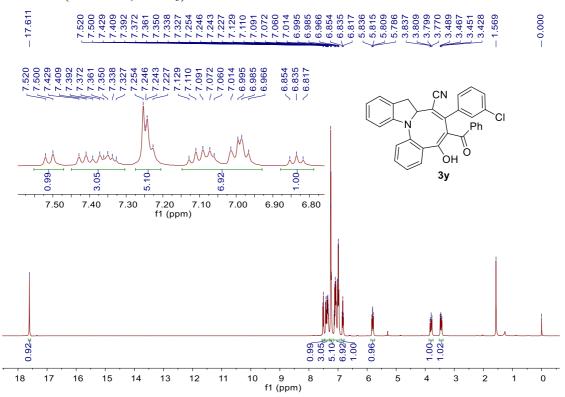


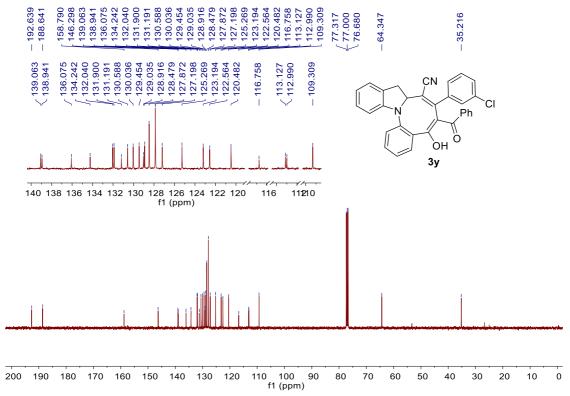


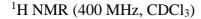


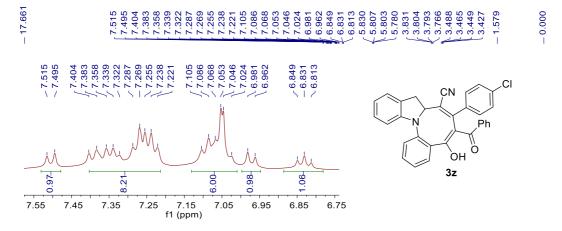


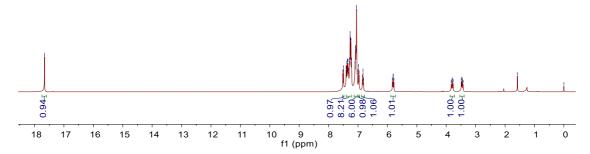


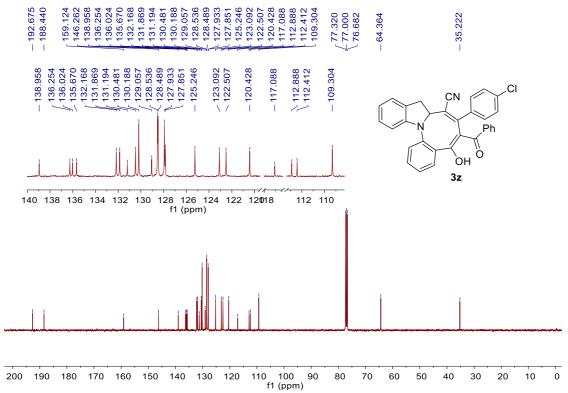


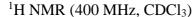


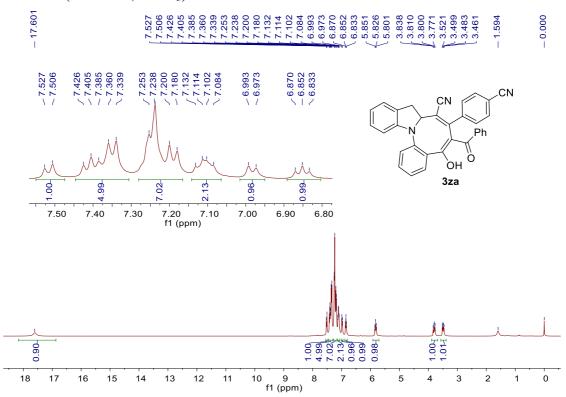


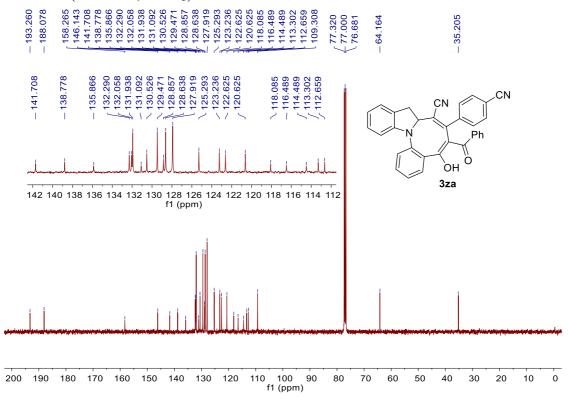


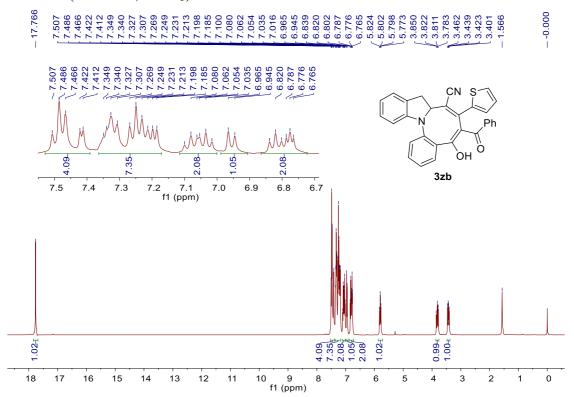


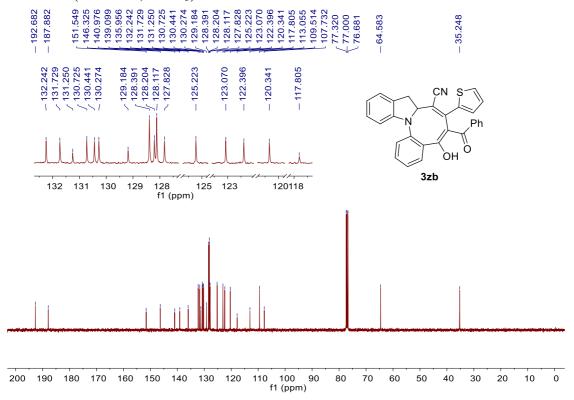


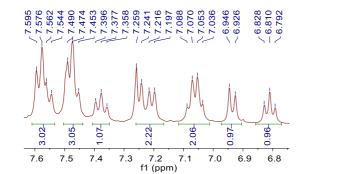


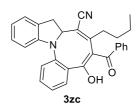


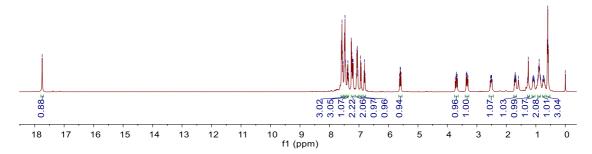


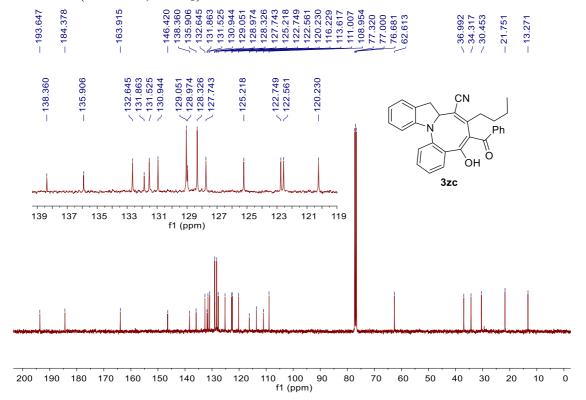


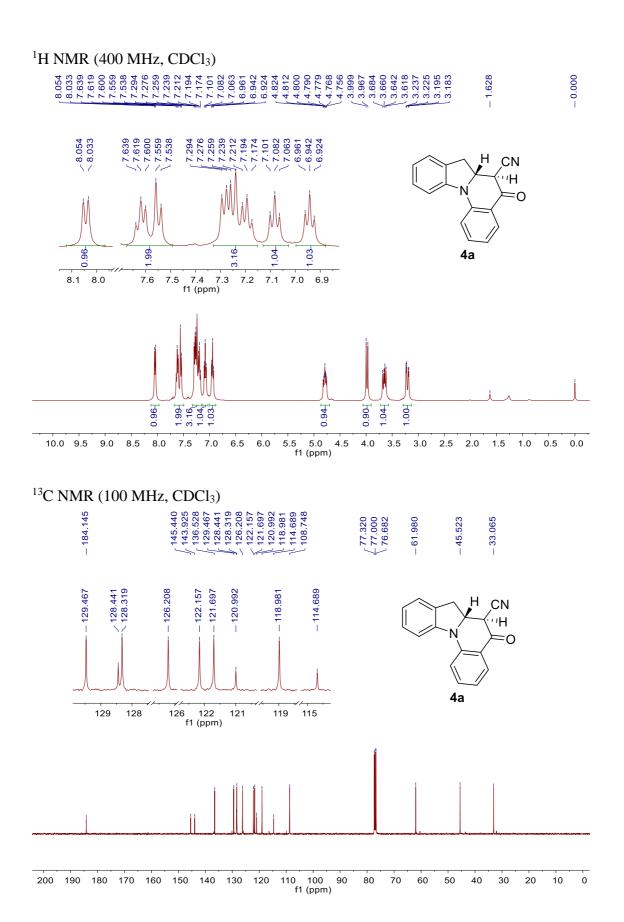


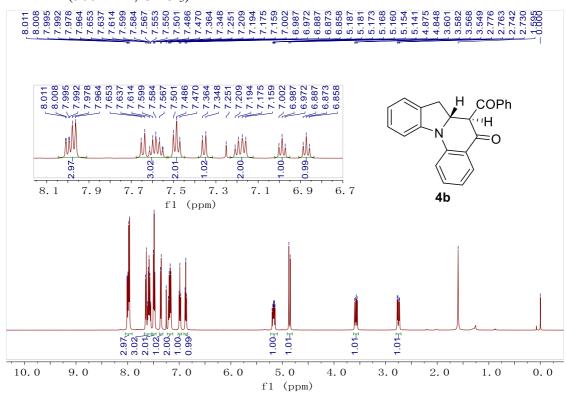


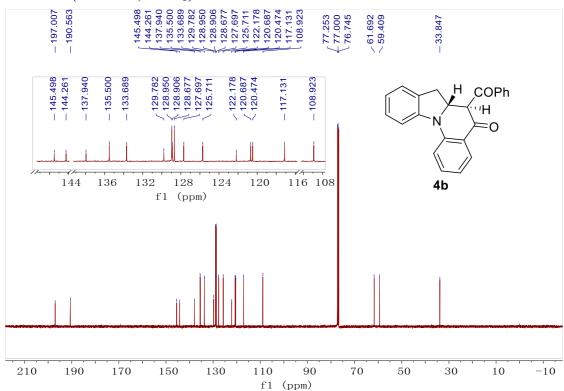




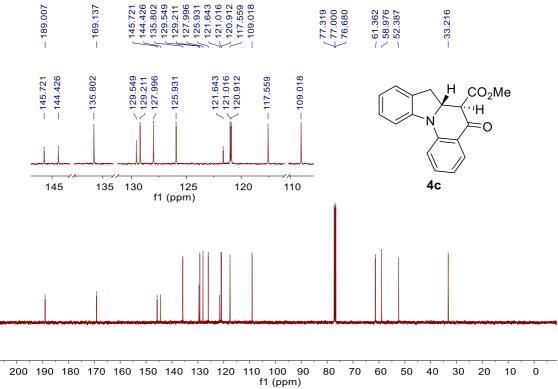












9. X-ray Crystallography of Compounds 3a.

$(5Z,7E)-6-benzoyl-5-hydroxy-7-phenyl-8a,9-dihydrobenzo[7,8] azocino[1,2-a] indole-8-carbonitrile \ (3a,mo_d8v18819_0m)$

(Ortep ellipsoids are depicted at the 50% level)

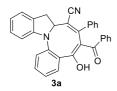
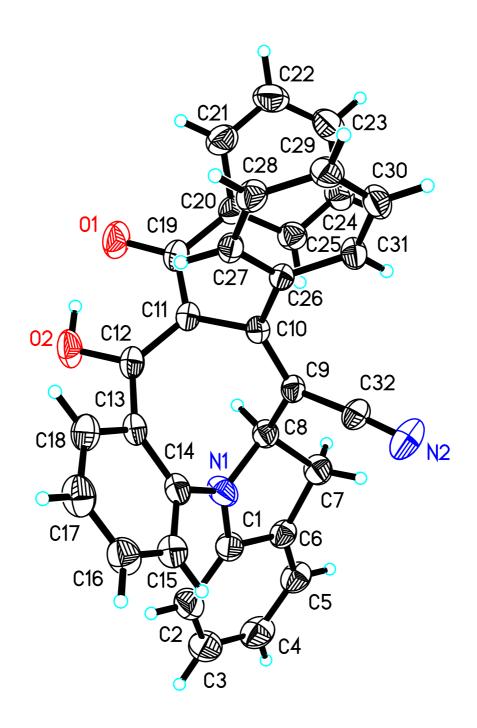
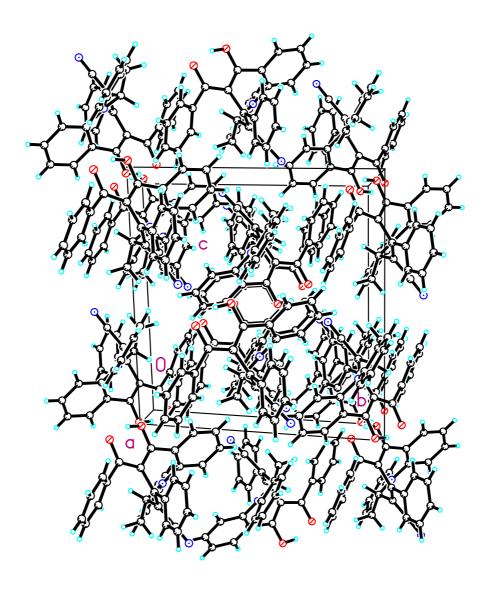
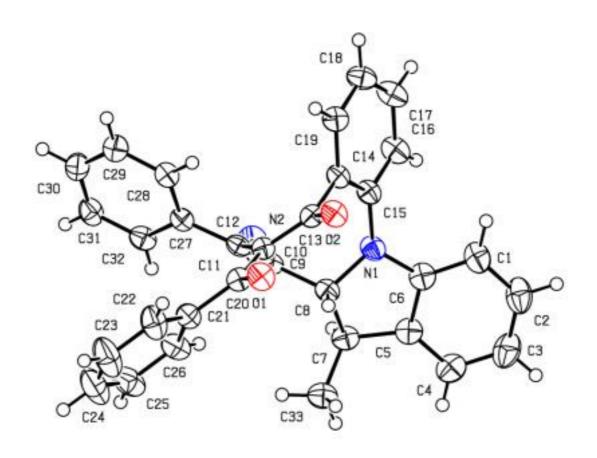




Table S1. Crystal data and structure refinement for 3a.

Identification code	3a
Empirical formula	$C_{32}H_{22}N_2O_2$
Formula weight	466.51
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P -1
Unit cell dimensions	$a = 13.6000(4) \text{ Å}, \alpha = 84.3160(10)^{\circ}.$
	$b = 14.2775(3) \text{ Å}, \beta = 67.8310(10)^{\circ}.$
	$c = 14.8066(4) \text{ Å}, \gamma = 65.8620(10)^{\circ}$
Volume	$2424.52(11) \text{ Å}^3$
Z	4
Density (calculated)	$1.278~\mathrm{Mg/m^3}$
Absorption coefficient	$0.080~{\rm mm^{-1}}$
F(000)	976
Crystal size	$0.200 \times 0.150 \times 0.110 \text{ mm}^3$
Theta range for data collection	2.700 to 26.000°.
Index ranges	-16<=h<=16, -17<=k<=17, -18<=l<=18
Reflections collected	48277
Independent reflections	9493 [R(int) = 0.0465]
Completeness to theta = 26.000°	99.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6484
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	9493 / 2 / 658
Goodness-of-fit on F ²	1.038
Final R indices [I>2sigma(I)]	R1 = 0.0456, $wR2 = 0.1008$
R indices (all data)	R1 = 0.0695, $wR2 = 0.1164$
Extinction coefficient	0.030(2)
Largest diff. peak and hole	$0.172 \text{ and } -0.143 \text{ e.Å}^{-3}$


10. X-ray Crystallography of Compounds 3k.

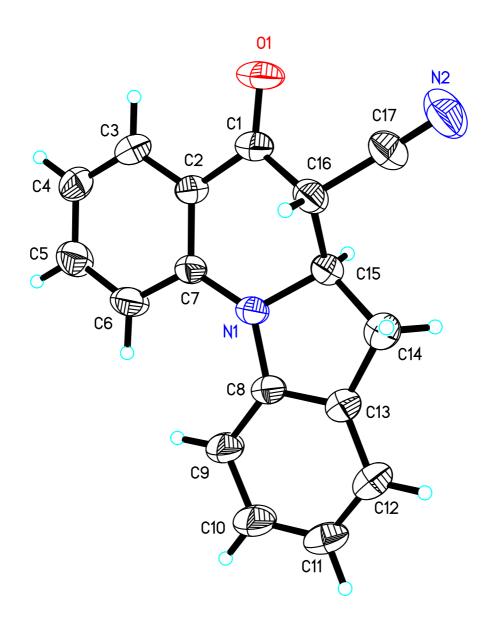
(5Z,7E,8aR,9R)-6-benzoyl-5-hydroxy-9-methyl-7-phenyl-8a,9-dihydrobenzo[7,8]azocino[1,2-a]i ndole-8-carbonitrile (3k,p-1)

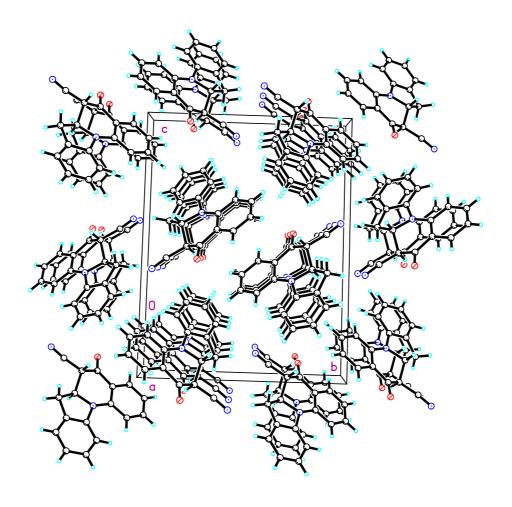
(Ortep ellipsoids are depicted at the 50% level)

Table S1. Crystal data and structure refinement for 3k.

Identification code	3k
Empirical formula	$C_{36}H_{30}N_2O_2$
Formula weight	522.62
Temperature	296.15 K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P -1
Unit cell dimensions	$a = 10.7752(14) \text{ Å}, \alpha = 72.994(5)^{\circ}.$
	$b = 11.1091(14) \text{ Å, } \beta = 77.380(4)^{\circ}.$
	$c = 12.6118(16) \text{ Å}, \gamma = 77.170(5)^{\circ}$
Volume	1388.4(3) Å ³
Z	2
Density (calculated)	1.250 Mg/m ³
Absorption coefficient	0.077 mm ⁻¹
F(000)	552.0
Theta range for data collection	3.93 to 59.392°.
Index ranges	-14<=h<=14, -15<=k<=15, -17<=l<=17
Reflections collected	40555
Independent reflections	7749 [$R_{int} = 0.0926$, $R_{sigma} = 0.0960$]
Data / restraints / parameters	7749 / 0 / 363
Goodness-of-fit on F ²	1.042
Final R indices [I>2sigma(I)]	R1 = 0.0696, wR2 = 0.1668
R indices (all data)	R1 = 0.1425, $wR2 = 0.1938$
Largest diff. peak/hole / e Å-3	0.42/-0.40

11. X-ray Crystallography of Compounds 4a.


(6S,6aR)-5-oxo-5,6,6a,7-tetrahydroindolo[1,2-a]quinoline-6-carbonitrile mo_d8v181004_0m)


(4a,

(Ortep ellipsoids are depicted at the 50% level)

Table S2. Crystal data and structure refinement for 4a.

Identification code	4a
Empirical formula	$C_{17}H_{12}N_2O$
Formula weight	260.29
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P 21/c
Unit cell dimensions	$a = 5.6800(3) \text{ Å}, \alpha = 90^{\circ}.$
	$b = 13.3266(7) \text{ Å}, \beta = 98.232(2)^{\circ}.$
	$c = 17.2554(10) \text{ Å}, \gamma = 90^{\circ}$
Volume	1292.69(12) Å ³
Z	4
Density (calculated)	1.337 Mg/m^3
Absorption coefficient	0.085 mm ⁻¹
F(000)	544
Crystal size	$0.200 \times 0.180 \times 0.130 \text{ mm}^3$
Theta range for data collection	3.282 to 25.500°.
Index ranges	-5<=h<=6, -16<=k<=16, -20<=l<=17
Reflections collected	5954
Independent reflections	2374 [R(int) = 0.0496]
Completeness to theta = 26.000°	98.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.4694
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2374 / 36 / 200
Goodness-of-fit on F ²	1.016
Final R indices [I>2sigma(I)]	R1 = 0.0547, wR2 = 0.1401
R indices (all data)	R1 = 0.0683, $wR2 = 0.1533$
Largest diff. peak and hole	0.171 and -0.139 e.Å ⁻³

