SUPPORTING INFORMATION

Phase-Selective Solution Synthesis of Perovskite-Related Cesium Cadmium Chloride Nanoparticles

Cameron F. Holder,¹ Julian Fanghanel,^{1,2} Yihuang Xiong,² Ismaila Dabo,² Raymond E. Schaak^{*1,3,4}

¹Department of Chemistry, ²Department of Materials Science and Engineering, ³Department of Chemical Engineering, and ⁴Materials Research Institute, The Pennsylvania State University, University Park, PA 16802

Email: res20@psu.edu

Material	Exp. <i>a</i> (Å)	PBE a (Å)	HSE06 <i>a</i> (Å)	Exp. <i>c</i> (Å)	PBE <i>c</i> (Å)	HSE06 <i>c</i> (Å)
CsCdCl ₃	7.58	7.57	7.52	18.87	18.86	18.70
Cs ₂ CdCl ₄	5.26	5.38	5.34	16.88	17.11	17.01
Cs ₃ Cd ₂ Cl ₇	5.24	5.37	5.32	27.24	27.67	27.51

Table S1. Experimental and computational lattice parameters.

Figure S1. Reaction schemes for the solution synthesis of $CsCdCl_3$, Cs_2CdCl_4 , and $Cs_3Cd_2Cl_7$ particles.

Figure S2. EDS spectra for CsCdCl₃, Cs₂CdCl₄, and Cs₃Cd₂Cl₇ nanoparticles.

Figure S4. Experimental XRD pattern showing a mixture of $Cs_3Cd_2Cl_7$ and Cs_2CdCl_4 after injecting the cesium oleate solution swiftly at 240 °C. The simulated references patterns are also shown on the bottom.

Figure S5. Experimental and simulated XRD pattern showing nearly phase-pure Cs_2CdCl_4 after injecting swiftly at 160 °C.

Figure S6. Diffuse reflectance spectrum from 200-800 nm for $CsCdCl_3$, Cs_2CdCl_4 , and $Cs_3Cd_2Cl_7$ particles.

Figure S7. Calculated PBE band structure corrected using a scissor operator with the HSE band gap for $CsCdCl_3$.

Figure S8. Calculated PBE band structure corrected using a scissor operator with the HSE band gap for Cs_2CdCl_4 .

Figure S9. Calculated PBE band structure corrected using the scissor operator with the HSE band gap for $Cs_3Cd_2Cl_7$.

Figure S10. (a,c,e) Computed total density of states of Cl, Cd, and Cs for CsCdCl₃, Cs₂CdCl₄, and Cs₃Cd₂Cl₇, respectively. (b,d,f) Computed projected density of states for Cl p, Cs p, Cd s, and Cd d orbitals for CsCdCl₃, Cs₂CdCl₄, and Cs₃Cd₂Cl₇, respectively. The insets show magnified projected density of states in order to discern the Cs p, Cd d, and Cd s orbitals.