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Discussion S1: Derivation of net propulsion force nF  calculation. 

The shape of the menisci between tracks under the droplet depends on the water contact angle at the edges of the 

microgrooves (see Figure S1). We assume that this contact angle is between advancing adv  and receding rec  contact 

angles on a planar superhydrophobic surface with an identical nanoneedle surface structure. Therefore, to assist and 

simplify our calculations of the net propulsion force nF  we are going to use o
adv rec( ) / 2 163.3     . The 

component of the surface tension, or adhesion force per unit length, xy , is normal to the top edge of the microgrooves. 

For the calculation of the radius of curvature of the meniscus at a position x  from the beginning of the microtracks 

we consider a cut A A   in such a way so that it is normal to the axis as shown in Figure S1a(i). Due to the fact that 

the ridge edges are not parallel, note the difference between the half-width normal to the microgroove edge , / 2w , 

compared to the half-width normal to the centerline, as shown in Fig S1. These are related as:  

cos
2

w w
  .                                                                        (S1) 

Since we examine opening angles o9   then we can safely assume with negligible error that cos 1
2


  which 

leads to the assumption w w   , and simplifies significantly the analysis (see Figure S1a(ii)). This is shown in a 

magnified view in Figure S1a(ii). For the same reason, for the shape analysis of the meniscus, we can assume that 

and its components z and xy  reside at the same plane, which is normal to the channel centerline and that xy y 

(Figure S1b). With the help of Figure S1 the width w at a position x is given by the following equation: 

o( ) 2 tan
2

w x x w


   ,                                                               (S2) 

where ow  corresponds to the start of the channel (Figure S1a(i)). In addition, from Figure S1b the radius of curvature 

( )R x  of the meniscus is given by the equation 

( )
( )

2sin

w x
R x


 ,                                                                 (S3) 

where / 2      . 

Combining equations S2 and S3 we obtain an expression of ( )R x   



 3

o2 tan
2( )

2sin

x w
R x





 
 .                                                                   (S4) 

Therefore, the pressure difference outside, outP  to inside, inP , of the meniscus at the position x is given by the Young-

Laplace equation:1 

L in out( ) ( )
( )

P x P x P
R x


    .                                                                   (S5) 

Combining equations S4 and S5 we obtain  

 in out

o

2 sin
( )

2 tan
2

P x P
x w

 


 
 

.                                                                   (S6) 

Taking into consideration equation S4 and Figure S1b we can derive the meniscus shape, which is part of a truncated 

cone of height ( )l x  and it is shown in Figure S1c(i)). Again, in order to simplify the analysis, since we are examining 

surfaces with o9  , the radius of curvature of the meniscus free surface can be approximated with the 

correspondning radius of the truncated cone cross section, as shown in Figure S1c(i) introducing a negligible 

maximum deviation of 0.34%. Therefore, the infinitesimal volume d   of the meniscus is given by the following 

equation: 

md = ( )dA x x ,                                                                     (S7) 

where m( )A x  is the surface area of the cross section of the meniscus (Figure S1c(ii)). The surface area m( )A x can be 

calculated by the following equation (Figure S1c(ii)): 

m s t( ) ( ) ( )A x A x A x  ,                                                            (S8) 

where s ( )A x is the surface area of the sector formed by the minor arc BD  and the center of the circle O  (Figure 

S1c(ii)) and t ( )A x is the surface area of the triangle O BD . Therefore: 

2
s ( ) ( )A x R x        and                                                             (S9) 

 2
t ( ) ( ) cos sinA x R x   .                                                           (S10) 

Combining equations S8, S9 and S10 we obtain the expression of m( )A x which is 

2
m ( ) ( )( cos sin )A x R x     .                                                      (S11) 



 4

Based on equations S7 and S11 d   is given by the following equation: 

 2d ( )( cos sin )dR x x     .                                                      (S12) 

The propulsion force pF  exerted on the meniscus, is estimated by integrating the pressure gradient inP over the 

volume of the meniscus  :2,3 

p in dF P


     .                                                                (S13) 

Based on equation S6, the pressure gradient inP can be approximated with the derivative of inP  with respect to x : 

in
in

2
o

4 tan sind 2
d (2 tan )

2

P
P

x x w

 



  
   

 
  .                                                    (S14) 

Moreover, combining equation S4 and S12 we obtain: 

2
o

2

(2 tan )
2d ( cos sin )d

4sin

x w
x



  


 
   .                                              (S15) 

With the help of equations S14 and S15, equation S13 becomes: 

f

r
p

cos sin
tan d

2 sin

x

x

a
F x

  



                                                         (S16) 

which leads to the final expression of pF : 

p

cos sin
( ) tan

2 sin

a
F l x

  



   .                                                     (S17) 

Since o9   then tan
2 2

 
  simplifying equation S17 to the following form: 

  p pF l a      ,                                                                 (S18) 

where p

cos sin

2sin

  



 .  
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The adhesion force , aF , also needs to be estimated (Figure S2a). This is done by integrating x over the length S  of 

the two microgroove edges with which the meniscus is in contact (Figure S2b) 

a x2 d
S

F S                                                                    (S19)  

where   is the fraction of the length of the microgroove top edge that is actually in contact with the meniscus 

through the tips of the nanoroughness.4 

 According to the definitions of Figure S2a,  

Figure S1. (a) (i) Simplification of the analysis by approximating w to w (ii) Magnification of the cut A A   
(b) Geometrical considerations about the meniscus’ cross section due to cut A A  . (c) Shape of the meniscus 
and associated geometrical considerations. (i) The meniscus is part of a truncated cone (teal color). (ii) Cross 
section of the truncated cone at position x . 
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xy cos    ,                                                                  (S20) 

x xy sin
2

   .                                                                  (S21) 

Hence, 

x cos sin
2

     .                                                             (S22) 

Combining equations S19 and S22 we obtain: 

a 2 cos sin d
2S

F S
         .                                                 (S23) 

Since 
d

d
cos

2

x
S


   equation S23 becomes: 

a 2 cos tan d cos
2 l

F x l 
                .                                       (S24) 

To simplify the estimation of the  we assume that the nanoneedles of the nanoroughness have a circular cross 

section of radius nR  and are forming an array with pitch np (Figure S2c).  The fraction   of the surface area in 

contact with water5 for the control volume, the top view of which is shown in Figure S2c with black translucent square, 

is given by the following equation: 

2 2
n n

2 2
n n

9 π π
=

9

R R

p p


  



.                                                              (S25) 

Also, at the sides of the cross section of the control volume the fraction of the length of each side of the square surface 

in contact with the liquid is: 

n n

n n

6 2

3

R R

p p
 

 


 .                                                             (S26) 

Combining S26 and S25: 

1
2

1
2

2
π


  .                                                                   (S27) 

With the help of equations S24 and S27, aF  reads: 
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1
2

a a1
2

cos 2
π

F l l
              .                                                 (S28) 

where 

1
2

a 1
2

2 cos
π

    .  

To estimate   we use the equation for the Cassie-Baxter state: 5,6 

Ecos 1 (cos 1)                                                                (S29) 

where E  is the static contact angle of water on a smooth copper surface coated with perfluorodecanethiol. 

From equation S29: 

E

cos 1

cos 1








.                                                                    (S30)   

For o163.3   and o
E 116.0  ,7    is estimated to be 0.075  .  

Finally, we estimate the net propulsion force nF  to be:  

1
2

n p a a p a 1
2

cos sin
( ) ( ) ( ) 2 cos

2 sin π
F F F F l x l x

         


                
  

 .                        (S31) 

It should be noted that the necessary condition for the movement of the meniscus is that p a 0   , which is the case 

for the explored opening angle range.  
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Figure S2. (a) Geometrical considerations and resolution of the adhesion force per unit length   into its 
components along x , y  and z directions. 3D view of the meniscus cross section. (b) Further geometrical 

considerations and force analysis on the meniscus, top view. (c) Approximation of nanostructure needles as an 
array of nanopillars with pitch np  and diameter of nanopillar cross section n2 200nmR  .  
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Discussion S2: Estimation of meniscus length l and parametric prediction of maximum net 

propulsion force nF . 

   The length of the meniscus under the droplet, l ,  is needed  to estimate the net propulsion force nF . This length is 

obtained from geometrical considerations combined with experimental recordings of the droplet motion. We assume 

that the meniscus length can be approximated based on the observed diameter of the droplet contact disc dl  (Figure 

S3a), for every position x of the droplet centroid. Here, the contact disc for all opening angles is intermittent 

comprising interchanging regions of solid-water (ridge contact) and water-air (hanging meniscus) interfaces. After 

deposition of the droplet on the structured surface, oscillations are induced during the droplet motion caused by the 

detachment of the droplet from the tip of the capillary tube. These oscillations affect the contact disc, which oscillates 

as well. Due to viscous dissipation, these oscillations weaken with time. We believe that these oscillations do not 

affect the problem investigated since they show a specific increasing trend which is clear if we apply moving averaging 

fitting. Therefore, in order to highlight and more clearly show this oscillation-free increasing trend we fitted the 

experimental data with moving averaging curve fitting. Thus, for the estimation of the propulsion force and associated 

variables, we considered this fitting (Figure S3b).   

With the help of the schematic depicted in Figure S3c the length of meniscus is considered to be the length of the 

trapezoidal segment of the droplet contact disc contained within the microtrack (Figure S3c): 

( ) (OA)+(OB)l x                                                                         (S32) 

Based on the geometrical considerations shown in Figure S3c the length of the meniscus is obtained by the following 

equation: 

                    

0.52
2 2
d o

2

1 tan 2tan
2 2

( )
1 tan

2

a a
l x w

l x
a

                 


 .                                                   (S33) 

Finally, with the help of equation S31, the net propulsion force nF is given by the following equation: 

0.52
2 2

1d o
2

n 1
22

1 tan 2tan
2 2 cos sin

2 cos
2 sin π1 tan

2

a a
l x w

F
a

     


                           
   

.                  (S34) 
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Next, we  use the above expression in order to obtain insights on the optimization of the droplet self-propulsion 

process. To this end, we  explore whether nF has a maximum at specific value of opening angle  . Since nF

increases monotonically with the position x of the droplet centroid, our parametric study is conducted at the end of 

the mictotrack length. Based on experimental observations for the angles we studied and interpolation for other angles 

we did not explicitly investigate, we define a continuous fitting curve that enables the estimation of dl  (Figure S3d(i)).  

Our parametric study shows that indeed nF  features a maximum at a specific value of the opening angle, which 

depends on the length of the microtracks (Figure S3d(ii)). Note that such values are only approximate estimates and 

are meant to serve as a guide for the range of angle values that should yield sufficient droplet transport depending on 

application needs. 
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Figure S3. (a) Contact disc meniscus diameter dl  as can be observed from the video recordings. (b) Extracted 

contact disc diameter dl versus time t  for o9  . Curve is fitted with moving averaging using 19 measurement 

points. (c) Geometrical considerations of the estimation of the meniscus’ length (x)l . (d) (i) Fitting curve for 

the estimation of the contact disc’s diameter dl . (ii) Net propulsion force nF versus opening angle a for various 

lengths of microtracks or alternatively for various travelling distances.  
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Discussion S3: Estimation of total propulsion force n,totalF  for the case of multiple menisci 

formation.  

Taking into consideration that nF l , for the case of the formation of multiple menisci, the calculation of the total 

net propulsion force n,totalF  is reduced to the calculation of the total length of the formed menisci altogether. As an 

example, we calculate the n,totalF  for the case of o1   where 5 menisci are formed. For the rest of the cases i.e. 

o5,9   only one meniscus is formed. Assuming that the projection of the bottom area of the droplet forms a circle 

of diameter dl , the condition for the formation of m menisci is d(m 1) (m+1)p l p   . For the case of o1   it is

d2 3
2

l
p p  which means that indeed 5 menisci are formed. A schematic representation of the menisci is shown in 

Figure S4. The total length totall  is given by the following equation: 

total 22 2p pl l l l                                                                      (S35) 

where pl and 2 pl  are the lengths of the menisci residing at distance p  and 2p  respectively from the centerline of 

the contact disc of the droplet (Figure S4). With the help of O AB  and O C D  we obtain the expressions : 

 
1

2 2 2
p d (2 )l l p  , and                                                                       (S36) 

 
1

2 2 2
2p d (4 )l l p   .                                                                          (S37) 

From the above, 

   
1 1

2 2 2 22 2
total d d2 (2 ) 2 (4 )l l l p l p        .                                              (S38) 

Combining equations S31 and S38 yields: 

   
1 1

2 2 2 22 2
n,total d d p a2 (2 ) 2 (4 ) ( )F l l p l p               

 
 .                                  (S39) 
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Figure S4.  Geometrical notations for the calculation of the total net propulsion force n,totalF . The contact disc 

(teal color) is intermittent comprising interchanging solid-water contact segments and menisci with radius d / 2l .  
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Discussion S4: Estimation of critical tilt angle cr  

In this section, we perform a force a balance on the droplet as it is formed and is released from a capillary tip inside a 

microchannel, including the case where the droplet is released in a tilted channel, which generates an additional 

component of the gravitational force, resisting the droplet release. The analysis includes also the capillary force at the 

needle tip releasing the droplet, which acts before droplet release. Note to this end, that in experiments this force can 

be easily eliminated with a quick withdrawal of the needle causing droplet separation.  However, for the sake of 

generality, we included it in the model as well and obtain result with and without its presence. The calculation of the 

critical tilt angle cr , defined as the tilt angle above which the droplet fails to detach from the tip of the capillary tube, 

starts with the following force balance (Figure S5a): 

 a,tip a,cd g,x n2 2F F F F                                                                   (S40) 

 where a,tipF is the pinning force exerted on the droplet, originating from the tip of the capillary tube, a,cdF  is the 

adhesion force due to the surface tension of the liquid and associated with the contact disc, g,xF  is the x-component of 

the droplet’s gravitational force and nF is the net propulsion force coming from the formed menisci of each of the 

structured walls of the channel. When n2 F  overcomes the total resisting force, ejection occurs.  First, it is necessary 

to estimate a,tipF  based on Video S4 at which ο0  (Figure S5b). We estimate the volume of the ejected droplet to 

be 110nl   based on the acquired video frames of the droplet moving along the superhydrophobic planar surfaces 

and assuming that the droplet forms a spherical cap. Then based on the geometrical considerations of the droplet shape 

at ejection, dl is calculated. The total volume of the droplet is given by the following equation (Figure S5b): 

m p2    ,                                                                   (S41) 

where p is the volume of the formed water “pancake” due to the squeezing of the droplet and m is the volume of 

the formed meniscus. Assuming that the pancake is a disc of diameter dl  and thickness h , its volume is given by the 

following equation: 
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2

d
p π

2

l
h

    
 

.                                                                  (S42) 

With the help of equation S15 the volume of each meniscus is calculated by the integral: 

tip

tip

2
o

m 2

(2 tan )
2= d ( cos sin )d

4sin

x l

x

x w
x



  



 

                                         (S43) 

which finally yields:  

3 3

tip o tip o

m

2 tan ( ) 2 tan2πsin 2 2 ( cos sin )
2sin 2sin3tan

2

x l w x w
 

   
  

          
       
            

.                          (S44)  

For the calculation of l included in the previous equation S44 we use equation S33: 

0.52
2 2 d
d tip o

d
tip

2

1 tan 2tan ( )
2 2 2

( )
2 1 tan

2

la a
l x w

l
l x

a

                  


 .                                             (S45) 

The combination of equations S41, S42, S44 and S45 yields an expression of the volume  with dl the unknown 

variable: 
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30.52

2 2 d
d tip o

3tip o
2

tip o

1 tan 2tan ( )
2 2 2

2 tan ( )
2 1 tan 2 tan2πsin 2 22

2sin 2sin3tan
2

( cos sin

la a
l x w

x w
a

x w





  

  

                          
              
     
   

  
  
    

 
2

d) π
2

l
h

   
 

 (S46) 

Solving equation S46 computationally, we obtain d 0.76mml  . Knowing dl , allows the calculation of the net 

propulsion force nF . Force nF is given by equation S34 and a,cdF is calculated by the following:  

a,cd d rec adv(cos cos )F l          ,                                                     (S47) 

where we introduce  owing to the fact the contact line is in contact with the features of the roughness topography 

that emerge at the surface.4,8 We also introduce a prefactor   that accounts for the actual deviation from the 

macroscopically measured dynamic contact angles i.e. the rec and adv , occurring due to the change (decrease) of the 

droplet size. 9–11 Therefore, in order to be able to obtain a,cdF  the estimation of   is necessary. To estimate   we are 

using the acquired video frames of the droplet travelling along the planar superhydrophobic surfaces of the 

microchannel (Figure S5c). The motion of the droplet is described by the following equation:  

v a,cdF F                                                                          (S48) 

where  is the density of water,  is the droplet deceleration and vF is the viscous force.  The deceleration of the 

droplet is calculated based on the velocity versus time data extracted by post processing of video S4 (Figure S5d). The 

velocity shows a linear dependence of time which means that the deceleration remains constant during the travel of 

the droplet at the value of   22.032 m s   . The viscous force vF originates from the velocity gradients in the droplet 
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caused by shear at the liquid-solid interface of the contact disc. Thus, the wall shear stress w  at the liquid-solid 

interface of the contact disc is estimated based on the equation: 

w 0|yu    ,                                                                        (S49) 

where  is the dynamic viscosity of water. With the assumption that the viscous dissipation occurs mainly within a 

volume contained between the contact disc and the center of the spherical-cap-like droplet12 and that the velocity 

distribution in this region resembles a Couette flow4,12–14 we can obtain an expression of the velocity gradient : 

c 0 /  |yu V l u    .                                                                         (S50) 

where cl is the vertical distance of the center of the spherical-cap-like surface from the contact disc of diameter d,dropl

. Based on the geometrical considerations shown in Figure S5c  

     d,drop
c tan( / 2)

2

l
l                                                                 (S51) 

Finally, combining equations S48, S49, S50 and S51 the viscous force vF  is estimated as follows: 

2

d,drop
v

d,drop2
tan( / 2)

2

l V
F

l
 

 

 
  

  
 .                                                              (S52) 

With the help of equations S47, S48 and S52 we obtain an expression for the prefactor  : 

 
2

d,drop
d,drop rec adv

d,drop

(cos cos )
2

tan( / 2)
2

l V
l

l         
 

 
  

        
    
 

.                        (S53) 
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 The estimation of   which has the value of 4.2, allows us the calculation of a,tipF as well as the ratio between the 

viscous and the adhesion forces v

a,tip

F

F
which is 0.9% . This denotes that vF  is negligible compared to the a,tipF . It 

should be noted that the calculated values are based on the analysis of video S4. 

Returning to equation S40 and since forces a,cdF , g,xF and nF can now be determined, we can calculate the pinning 

force a,tipF for o0  ( g,x 0F  ). Finally, assuming that the a,tipF remains the same irrespectively of the droplet size 

and tilt angle  , we can now determine for every 0  the ejected droplet size, using again equation S40. For this 

we use the force balance shown in S5a with unknown variables   and  dl . Consequently, S40 becomes: 

a,tip a,cd d d n d2 ( ) ( ) sin 2 ( ) 0F F l l g F l          .                                             (S54) 

Our model suggests that since we are able to minimize the adhesion force a,cdF  due to surface tension by reaching 

extreme water repellency, maximize the net propulsion force nF since we are using an opening angle of o9  (see 

Discussion S2), the force that needs to be regulated in order to achieve larger tilt angles   and smaller ejected volumes 

  is a,tipF . Therefore, by changing the size and the wetting properties of the capillary tube used, minimization of a,tipF

can be achieved.  It can even be nullified by introducing a mechanism where the capillary tube is rapidly removed 

from the deposited droplet. Therefore, we calculated the volume ejected for different magnitudes meaning for 

a,tip2 / 3F a,tip1 / 3F and a,tip 0F  .  The tilt angle  versus ejected volume  is shown in Figure S5e. By computing cr

for each case we are able to draw a line with the help of which we can define a region where no ejection is possible. 

The graph suggests that for the capillary tube used, for tilt angle o
cr 23   a droplet fails to eject and it is not 

possible to eject droplets with volumes 325nl  . On the other hand, by nullifying a,tipF , the critical tilt angle 

becomes o
cr 90   enabling ejection of tiny droplets down to 13nl . 
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Figure S5. Force balance on a droplet in microchannel while being pinned on the capillary tube’s tip and while 
growing for (a) o0    and (b) o0  . (c) Force balance on a droplet entering the planar superhydrophobic section 

of the microchannel. (d) Droplet velocity V versus time t along the planar superhydrophobic section of the 
microchannel. (e) Ejected droplet volume   versus tilt angle  of the microchannel.  
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Discussion S5: Laser micromachining 

 The fabrication of lateral gradients has been carried out by ultra-short pulsed laser ablation generating a distinct 

surface morphology on the copper substrates.15 A frequency-doubled Amphos 200 laser source with 515nm 

wavelength, 800fs pulse duration, average power up to 120W and a tunable repetition rate is coupled via modifying 

wave plate into a galvo scanner mounted on the z-axis, shown in Figure S6a. The polarization state at the focal plane 

is circular by wave plates (λ/2 and λ/4), thus reducing a directional ablation on the copper substrates and possible 

induced ripple structures (Laser-Induced Periodic Surface Structures, LIPSS). The positioning of the specimen with 

precision at the x and y axes enables stitching to overcome the limitation of the field of view (FOV) with length lFOV 

in Figure S6b. A galvo scanner with fast dielectric mirrors and a telecentric f-theta lens with focal length of 163mm 

leads to a laser spot diameter of 18μm with the used configuration. To reach a certain structural depth with high 

precision the laser ablation strategy is crucial and a layer by layer approach is used, depicted in Figure S6c. The laser 

beam moves over the surface leading to ablation in parallel lines with a distance of lb and switched on and off at the 

locations to be removed. An acceleration path of length dsky avoids effects of non-constant beam velocity that could 

possibly change the ablation condition. Additionally, each layer is rotated by an angle γLayer mitigating the 

accumulation of errors by superposition of ablation grooves from the previous removed layer. A parametric study on 

copper reveals the ablation behavior and point to a certain layer thickness and surface quality. This allows computation 

Figure S6. Laser ablation tool configuration including source, beam guidance with wave plates, and axes (a). 
Fast optical axes (UV) of a galvo scanner enable a high surface speed within the field of view with length lFOV 
(b). The orthogonal beam incidence needs a strategy to mitigate errors overlapping the laser with lb and rotating 
each layer by an angle γLayer (c). Example of covering a square geometry the galvo mirror accelerates with the 
laser off (red dotted) and turning it on (green) after a length dsky reaching constant velocity. 
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of the laser ablation paths with the designed geometry generating the numerical machine code to control the laser 

ablation tool.16 

 To laser manufacture the microtracks the laser was set to an average power of 2W at 1MHz repetition rate. Moving 

the pulsed laser radiation with 2μm step at 0.5 1m s  surface speed leads to an ablated layer thickness of 3.6μm. Next, 

the structures are laser machined starting by removing two layers with 90° rotation. Then, the microtracks are 

generated by ablation of 90 or 67 layers rotated by 23° each. This produces the defined structure with a surface 

roughness Ra<1μm and a structural depth of 330μm or 240μm respectively. 
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Discussion S6: Surface characterization 

Τhe surface morphology was examined using Scanning Electron Microscopy (SEM) as well as an optical 

microscope. Figure S7 shows the copper-based microtracks for opening angles o1  (Figure S7a), o5  (Figure 

S7b) and o9  (Figure S7c). We also employ Energy Dispersive X-ray Spectroscopy (EDX) for the chemical 

analysis of the fabricated surfaces. The laser-micromachined surface for an opening angle of o1   is shown in Figure 

S8a. We acquire SEM pictures at the beginning, middle and the end of the microstructured surface (Figure S8a(i)). 

The SEM pictures in Figure S8a(ii) show the precise surface architecture. Next step is the characterization of these 

laser-machined microstructures superimposed with the clustered nanoneedles. SEM pictures in Figure S8b show 

different magnifications of the clustered nanoneedles covering the microtracks and microgrooves at the beginning 

(Figure S8b(i)) and the middle (Figure S8b(ii)) of the laser machined surface. It is worth saying that the cluster of 

nanoneedles cover uniformly not only planar regions such as those of the microtracks, but also their sidewalls as well 

as the bottom of the microgrooves. This highlights the value of the wet chemistry etching, which accommodates the 

nanostructuring of 3D geometries.   

Implementing accelerating voltage of 10kV, EDX analysis on the laser micromachined surface (after cleaning) 

indicates only a strong signal corresponding to copper (Cu) as shown in Figure S8c (red dashed line). The analysis of 

the final surface (Figure S8c, black solid line) shows a peak of (Cu), and three distinctive signals of (C), (F) and (S) 

indicating the presence of the perfluorodecanethiol coating. Moreover, a signal of oxygen (O) is attributed to the 

etching process and the growth of Cu(OH)2 nanoneedles. It should be noted that plots are normalized by the maximum 

of the Counts Per Second i.e. CPSmax that correspond to the peak of Cu for the case of the laser micromachined surface 

and to the peak of F for the case of the superhydrophobic microtracks. 

Figure S7. Microscope pictures of the microtracks with opening angles: (a) o1   (SEM), (b) o5  (SEM), and 

(c) o9  (optical microscopy). 
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Figure S8. (a) (i) Schematic illustration and (ii) SEM pictures acquired at the beginning, middle and end of the 

laser micromachined backgammon-like surfaces. A surface with opening angle o1  is shown. (b) Laser 
micromachined surface superimposed with clustered nanoneedles. SEM pictures of different magnification are 
shown that correspond to the beginning (i) and middle (ii) of the backgammon-like surface. (c) EDX analysis of 
the laser-micromachined surface after cleaning (dashed red line) and the final micro/nano structured 
superhydrophobic surface.  
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Figure S9. Schematic of the experimental setup.
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Table S1. Summary of the geometrical parameters used of each of the tested surface 

 Opening angle ( o ), 
  

Pitch ( m ) ,  
p  

Length (mm) ,  
L  

Depth ( m ), 

d  

Surface #1 1 150 5.25 240 

Surface #2 5 500 5.25 330 

Surface #3 9 880 5.25 330 
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Supporting videos 

Video S1. Droplet self-propulsion on the three microtrack surfaces with opening angle o1,5,9  .  Recording 

frame rate 1000fps. Playback speed ×1/30. Scale bars correspond to 1mm. 

Video S2. Drop impact on a microtrack surface with opening angle o9  .  Recording frame rate 1000fps. 

Playback speed ×1/100. Scale bar corresponds to 1mm. 

Video S3. Mixing of two droplets with the assistance of microtracks with opening angle o9  .  Recording frame 

rate 1000fps. Playback speed ×1/30. Scale bar corresponds to 2mm. 

Video S4. Ejection and movement of droplet inside a microchannel (tilt anlge o0  )  , the walls of which 

consist of microtracks with opening angle o9  .  Recording frame rate 8000fps. Playback speed ×1/260. Scale 

bar corresponds to 5mm. 

Video S5. Ejection and movement of droplet inside a tilted microchannel (tilt anlge o10  ) the walls of which 

consist of  microtracks with opening angle o9  .  Recording frame rate 8000fps. Playback speed ×1/260. Scale 

bar corresponds to 5mm.  
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