Supporting Information

Manganese-Catalyzed Synthesis of Quaternary Peroxides: Application in Catalytic Deperoxidation and Rearrangement Reactions

Akash S. Ubale, Moreshwar B. Chaudhari, Moseen A. Shaikh, Boopathy Gnanaprakasam* Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune - 411008, India. *Email- gnanaprakasam@iiserpune.ac.in

TABLE OF CONTENTS

1. Deuteration and kinetic studies	S2-S3
2. Radical quenching experiment	S4
3. Detection of isobutylene gas using GC-MS	
4. Crystallographic data	S6
5. Copies of NMR spectra	

1. Deuteration experiments:

Figure S1.¹H NMR of deuterated benzyl alcohol at 400 MHz in CDCl₃

Figure S2. ¹H NMR of Compound 1a & 1a' at 400 MHz in CDCl₃

2. Radical quenching experiment:

Entry	Radical quencher (5 equiv.)	(%) Yield (2a)	(%) Starting Material Recovered (1)
1	None	85	-
2	TEMPO	80	-
3	1,1-diphenylethylene	68	15
4	α-methylstyrene	65	5
5	O ₂	85	-

Reaction conditions: In a 20 mL re-sealable vial was added $Mn(OAc)_{3.}2H_2O$ (0.0125 mmol, 3 mg, 5 mol%) and 2,2'-bipyridine (0.0125 mmol, 2 mg, 5 mol%) in acetonitrile 2 mL was stirred at room temperature for 20–30 min. To the deep-brown solution was added 9-benzyl-9*H*-fluorene (64 mg, 0.25 mmol, 1 equiv), 5.0-6.0 M *tert*-butyl hydroperoxide (TBHP) in decane solution (1.0 mmol, 90 mg, 4 equiv) and finally 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) (5 equiv) or 1,1-diphenylethylene (5 equiv) or α -methylstyrene (5 equiv) or molecular oxygen was added and resulting solution was stirred at room temperature for 4 h. Volatile component was evaporated using a vacuum. The residue was directly purified by silica gel column chromatography (EtOAc: n-hexane = 1:99) to afford 80, 68, 65, and 85% yield of the product **2a** respectively.

3. Detection of isobutylene gas using GC-MS:

Figure S3. GC-MS spectra of gaseous phase of reaction mixture. After reaction compeletion, the gaseous component was taken using Gas tight syringe and directly injected in the GC-MS instrument

4. Crystallographic data:

X-ray structure for entry (9e):

Figure S4: An ORTEP showing the crystal structure of **9e** with displacement ellipsoids drawn at the 50% probability level

Solvent and method for the crystal growth: The crystal was grown using dichloromethane and pet ether (2:1) as a solvent by slow evaporation. A needle shaped single crystal was mounted on a loop with applying small amount of a paraffin oil.

Crystal data for the compound 9e: $C_{23}H_{28}BrNO_{5}$, Volume = 2318.9 (2), Monoclinic, space group P 21/C with a = 10.6710(6) Å, b = 22.8755(15) Å, c = 9.5065 (6) Å, $\alpha = 90^{\circ}$, $\beta = 92.152^{\circ}$, $\gamma = 90^{\circ}$, T = 273 K, z = 4, F(000) = 992, Absorption coefficient = 2.687, radiation wavelength (λ) = 1.54178 Å, reflections were collected on a Brucker APEX-II, 3286 observed reflections I > 2\s(I).

5. Copies of NMR Spectra:

Figure S6. ¹³C NMR of Compound 2a at 100 MHz in CDCl₃

Figure S8. ¹³C NMR of Compound 2b at 100 MHz in CDCl₃

Figure S10. ¹³C NMR of Compound 2c at 100 MHz in CDCl₃

Figure S12. ¹³C NMR of Compound 2d at 100 MHz in CDCl₃

Figure S14. ¹³C NMR of Compound 2e at 100 MHz in CDCl₃

Figure S16. ¹³C NMR of Compound 2f at 100 MHz in CDCl₃

Figure S18. ¹³C NMR of Compound 2g at 100 MHz in CDCl₃

Figure S20. ¹³C NMR of Compound 2h at 100 MHz in CDCl₃

Figure S22. ¹³C NMR of Compound 2i at 100 MHz in CDCl₃

Figure S24. ¹³C NMR of Compound 2j at 100 MHz in CDCl₃

Figure S26. ¹³C NMR of Compound 2k at 100 MHz in CDCl₃

Figure S27. ¹H NMR of Compound 2l at 400 MHz in CDCl₃

Figure S28. ¹³C NMR of Compound 2l at 100 MHz in CDCl₃

Figure S30. ¹³C NMR of Compound 2m at 100 MHz in CDCl₃

Figure S32. ¹³C NMR of Compound 2n at 100 MHz in CDCl₃

Figure S34. ¹³C NMR of Compound 20 at 100 MHz in CDCl₃

Figure S36. ¹³C NMR of Compound 2p at 100 MHz in CDCl₃

Figure S37. ¹H NMR of Compound 2q at 400 MHz in CDCl₃

Figure S38. ¹³C NMR of Compound 2q at 100 MHz in CDCl₃

Figure S40. ¹³C NMR of Compound 2r at 100 MHz in CDCl₃

Figure S42. ¹³C NMR of Compound 2s at 100 MHz in CDCl₃

Figure S44. ¹³C NMR of Compound 2t at 100 MHz in CDCl₃

Figure S46. ¹³C NMR of Compound 2u at 100 MHz in CDCl₃

Figure S48. ¹³C NMR of Compound 2v at 100 MHz in CDCl₃

Figure S50. ¹³C NMR of Compound 2w at 100 MHz in CDCl₃

Figure S52. ¹³C NMR of Compound 5a at 100 MHz in CDCl₃

Figure S54. ¹³C NMR of Compound 5b at 100 MHz in CDCl₃

Figure S56. ¹³C NMR of Compound 5c at 100 MHz in CDCl₃

Figure S58. ¹³C NMR of Compound 5d at 100 MHz in CDCl₃

Figure S60. ¹³C NMR of Compound 5e at 100 MHz in CDCl₃

Figure S62. ¹³C NMR of Compound 7a at 100 MHz in CDCl₃

Figure S64. ¹³C NMR of Compound 7b at 100 MHz in CDCl₃

Figure S66. ¹³C NMR of Compound 7c at 100 MHz in CDCl₃

Figure S68. ¹³C NMR of Compound 7d at 100 MHz in CDCl₃

Figure S70. ¹³C NMR of Compound 7e at 100 MHz in CDCl₃

Figure S72. ¹³C NMR of Compound 9a at 100 MHz in CDCl₃

Figure S74. ¹³C NMR of Compound 9b at 100 MHz in CDCl₃

Figure S76. ¹³C NMR of Compound 9c at 100 MHz in CDCl₃

Figure S78. ¹³C NMR of Compound 9d at 100 MHz in CDCl₃

Figure S80. ¹³C NMR of Compound 9d' at 100 MHz in CDCl₃

Figure S82. ¹³C NMR of Compound 9e at 100 MHz in CDCl₃

Figure S83. ¹H NMR of Compound 9e' at 400 MHz in CDCl₃

Figure S84. ¹³C NMR of Compound 9e' at 100 MHz in CDCl₃

Figure S86. ¹³C NMR of Compound 10a at 100 MHz in CDCl₃

Figure S88. ¹³C NMR of Compound 6a at 100 MHz in CDCl₃

Figure S90. ¹³C NMR of Compound 10b at 100 MHz in CDCl₃

Figure S92. ¹³C NMR of Compound 6b at 100 MHz in CDCl₃

Figure S94. ¹³C NMR of Compound 10c at 100 MHz in CDCl₃

Figure S96. ¹³C NMR of Compound 6c at 100 MHz in CDCl₃

Figure S98. ¹³C NMR of Compound 10d at 100 MHz in CDCl₃

Figure S100. ¹³C NMR of Compound 6d at 100 MHz in CDCl₃

Figure S102. ¹³C NMR of Compound 1a at 100 MHz in CDCl₃

Figure S104. ¹³C NMR of Compound 1b at 100 MHz in CDCl₃

Figure S106. ¹³C NMR of Compound 1c at 100 MHz in CDCl₃

Figure S108. ¹³C NMR of Compound 1d at 100 MHz in CDCl₃

Figure S110. ¹³C NMR of Compound 1e at 100 MHz in CDCl₃

Figure S112. ¹³C NMR of Compound 1f at 100 MHz in CDCl₃

Figure S114. ¹³C NMR of Compound O at 100 MHz in CDCl₃