1		Supporting Information
2	MANUSCRIPT TITLE:	Global Riverine Plastic Outflows
3	AUTHORS:	Lei Mai, Xiang-Fei Sun, Lin-Lin Xia, Lian-Jun Bao, Liang-
4		Ying Liu, Eddy Y. Zeng*
5	ADDRESS:	Guangdong Key Laboratory of Environmental Pollution and
6		Health, School of Environment, Jinan University, Guangzhou
7		511443, China and Research Center of Low Carbon Economy
8		for Guangzhou Region, Jinan University, Guangzhou 510632,
9		China
10	NO. OF TEXTS:	4
11	NO. OF TABLES:	7
12	NO. OF FIGURES:	7
13	NO. OF PAGES:	26

14 Text S1. Riverine plastic outflow versus riverine plastic input to the ocean

15 Plastic waste derived from land-based activities can be flushed into rivers via 16 surface/subsurface runoff. In the journey to the ocean, plastic waste in rivers may 17 partially be buried in the river bed through sedimentation, ingested by aquatic 18 organisms, deposited along river shores, and inevitably fragmented to undetectable 19 fine particles. The remaining portion eventually reaching the ocean is defined as 20 riverine plastic input. On the other hand, the amount of riverine plastics measured at 21 a specific sampling point is defined as riverine plastic outflow, which is obviously 22 equal to riverine plastic input plus the amount of plastic waste lost during transport 23 from the sampling point to the ocean. Riverine plastic outflow instead of riverine 24 plastic input is used throughout the entire paper as the lost portion is not accounted 25 for.

26

27 Text S2. The definition and calculation of Human Development Index $(HDI)^{1}$

The Human Development Index (HDI) is a composite index focusing on three basic dimensions of human development: the ability to lead a long and healthy life, measured by life expectancy at birth; the ability to acquire knowledge, measured by mean years of schooling and expected years of schooling; and the ability to achieve a decent standard of living, measured by gross national income per capita.. The HDI is a broad measurement of human development that measures the average progress of a country from above three basic dimensions of human development.

Before calculating the HDI, an index has to be built for each dimension. To calculate the index of each dimension, the maximum and the minimum values have to be defined (Table S1). As a result, the index of each dimension will be a value between 0 and 1, by applying the following equation:

S2

Index of each dimension = $\frac{\text{Actual value-Minimum value}}{\text{Maximum value-Minimum value}}$ (1)

40 The HDI can be calculated from the arithmetic mean value of these indexes of all
41 three dimensions. The values of HDI and its parameters for each country/region can
42 be found at <u>http://hdr.undp.org/en/content/table-1-human-development-index-and-its-</u>
43 components-1.

44

39

45 Text S3. Overestimation of plastic outflows by MPW-based modeling: The case 46 of Changijang

47 The large difference in the estimated riverine plastic outflows of Changjiang is worth further discussion. Zhao et al.² conducted a sole sampling event in 2014 and 48 obtained a number microplastic concentration of 4140 ± 2460 particles m⁻³ with a size 49 50 range of 60 µm-5 mm using 100 L of bulk water. This value was used to calculate 51 the total plastic concentration in the MPW model, based on a particle microplastics to plastic debris ratio of 0.04 in oceans and rivers (size range of 0.3–5 mm using 52 trawling nets).³ In 2019, Zhao et al.⁴ revised the number and mass concentrations to 53 45.4–123 particles m⁻³ and 0.033 mg particle⁻¹, respectively, upon completion of an 54 55 extensive field sampling campaign at the Changjiang Estuary. Use of the conversion 56 ratio (The mass ratio of microplastic to plastic debris is at a median of 2.2%) reported in our previous study⁵ yields a mass concentration range of 68–186 mg m⁻³ for plastic 57 debris in Changjiang, which are substantially lower than 40800 mg m⁻³ which was 58 estimated by Lebreton et al.³ It should be noted that Lebreton et al.³ actually obtained 59 60 substantially different correlation coefficients of field measured plastic riverine 61 outflows with catchment characteristics (mass of MPW × riverine runoff discharge) 62 with (0.999) and without (0.174) the Changjiang data point. This should also invalidate the measurement conducted by Zhao et al.² in 2014. 63

S3

65 Text S4. Management of available plastic waste in China

66 Waste management has been substantially improved in the past decades. 67 Herein, we take China as an example to illustrate the improvements in past ten years (only ten years data are available). Data of domestic waste generation and treating 68 69 efficiency from 2003–2017 are provided by China Statistical Year Book (2004– 70 2018).⁶ Percent of plastic in the total solid waste is estimated to be 11%.⁷ Plastic 71 waste generation in China has increased dramatically in recent years. With rapid 72 development of waste treatment facilities, the gap between waste generation and 73 adequately treated amount is narrowing, resulting in a decrease on inadequately treated waste. This development was also confirmed by Geyer et al.,⁸ who reported 74 75 that the recycling and incineration rates in 2014 in China reached 25% and 30%, 76 respectively, only lower than those in Europe (30% recycling rate and 40% 77 incineration rate). Meanwhile, the global average recycling and incineration rates 78 accounted for 18% and 24%, respectively, of all waste generated in 2014, which are lower than those in China.⁸ The important development in China reflects the change 79 80 of HDI value, which has increased from 0.502 (lower than the world average HDI of 81 0.598) in 1990 to 0.752 (higher than the world average HDI of 0.728) in 2017 (Figure 82 S5).

S4

83	Table S1. The Maximum and Minimum Values Used for HDI Calculation. ¹						
84	dimension	Indicator	minimum	maximum			
85	Health	Life expectancy (years)	20	85			
86	Education	Expected years of schooling	0	18			
87		Mean years of schooling	0	15			
88	Standard of living	Gross national income per capita	100	75,000			
89		(purchasing power parity dollars)					

C1 NL J Mini Val. UDI Cal ~~ ւել TL .:. T L 1 f -1. 4: 1

90 Note: This table was adopted from the Training Material for Producing National

Human Development Reports (http://hdr.undp.org/sites/default/files/hdi_training.pdf) 91

which was originally sourced from UNDP (2014), Technical Note 1. p.2 92

(http://hdr.undp.org/sites/default/files/hdr14_technical_notes.pdf). 93

94 **Table S2.** Conversion of Field Measured Plastic Concentrations in Rivers from

95 Literature Studies

96	river	micro	micro	macro	macro	total
97		$(n m^{-3})$	$(mg m^{-3})$	$(n m^{-3})$	$(mg m^{-3})$	$(mg m^{-3})$
98	Patapsco	8.72	0.51	0.61	72.6	73.1
99	Patapsco	1.99	1.6	0.139	16.6	18.2
100	Patapsco	0.399	0.071	0.0279	3.32	3.39
101	Patapsco	0.886	0.54	0.062	7.38	7.92
102	Magothy	0.661	0.12	0.0463	5.51	5.63
103	Magothy	1.73	1.6	0.121	14.4	16
104	Magothy	0.369	0.18	0.0258	3.07	3.25
105	Magothy	0.24	0.035	0.0168	2	2.03
106	Rhode	0.249	0.023	0.0174	2.07	2.1
107	Rhode	0.88	0.37	0.0616	7.33	7.7
108	Rhode	0.546	0.063	0.0382	4.55	4.61
109	Rhode	0.124	0.021	0.00868	1.03	1.05
110	Corsica	0.617	0.13	0.0432	5.14	5.27
111	Corsica	0.364	0.077	0.0255	3.03	3.11
112	Corsica	0.0714	0.018	0.005	0.595	0.613
113	Corsica	0.0369	0.027	0.00258	0.307	0.334
114	Ро	7.06	0.955	0.494	59	60
115	Ро	14.3	3.2	1.00	119	123
116	Ро	0.892	0.625	0.062	7.43	8.06
117	Ро	0.797	0.467	0.056	6.64	7.11
118	Ро	0.718	0.104	0.05	5.98	6.08
119	Ро	0.307	0.050	0.021	2.56	2.61
120	Ро	2.049	0.338	0.143	17.07	17.41
121	Ро	0.096	0.285	0.007	0.8	1.09
122	Bio Bio	0.05	0.0085	0.0035	0.417	0.425
123	Maipo	0.647	0.11	0.0453	5.39	5.5
124	Maule	0.74	0.126	0.0518	6.16	6.29
125	Elqui	0.129	0.0219	0.00903	1.07	1.1
126	Ofanto	4.2	0.714	0.294	35	35.7
127	Rhine	5.5	0.935	0.385	45.8	46.8
128	Rhine	6.3	1.07	0.441	52.5	53.6
129	Rhine	5	0.85	0.35	41.7	42.5
130	Rhine	3.5	0.595	0.245	29.2	29.8
131	Yangtze	0.9	0.153	0.063	7.5	7.65
132	Delaware	1.24	0.211	0.0868	10.3	10.5
133	Delaware	0.62	0.105	0.0434	5.16	5.27
134	Tamar	0.04	0.0068	0.0028	0.333	0.34
135	Pasig	1.32	0.225	0.0926	11	11.2
136	Danube	0.823	9.8	0.12	1.1	10.9
137	Danube	0.04	2	0.015	0.2	2.2

138	Note: Average numerical (n m ⁻³) and mass (mg m ⁻³) concentrations of micro (< 5
139	mm) and macro (> 5 mm) plastics were reported in field studies. Macro plastic
140	numerical concentrations in bold were derived from microplastic concentrations using
141	a median ratio of 0.07 between macro and micro plastic particle numbers. Mass
142	concentrations in bold were derived from the numerical concentration using median
143	particle masses of 0.17 and 119 mg for micro and macro plastics, respectively. These
144	median values are obtained from 53 records of both micro and macro plastics
145	observed in rivers. ⁹⁻¹¹ The converted total concentrations are median values, which
146	used for model calibration.

1 +0 1 abit 55. 1 feld Studies Osca for Model Calibration	148	Table S3.	Field Studies	Used for	Model (Calibration
---	-----	-----------	----------------------	----------	---------	-------------

149	reference	sampling site	Q	PD	SWG^{12}	Р	median C ^a	HDI^{1}	Mout
150			$(km^3 day^{-1})$	(capita km ⁻²)	(kg capita ⁻¹ day ⁻¹)		$(mg m^{-3})$		$(kg day^{-1})$
151	Mai et al. ⁵	Humen	5.48E-02	849	0.43	11%	8.37	0.869	4.59E+02
152		Jiaomen	5.18E-02	248	0.43	11%	4.93	0.869	2.56E+02
153		Hongqimen	8.44E-02	233	0.43	11%	2.15	0.869	1.81E+02
154		Hengmen	7.65E-02	149	0.43	11%	6.31	0.869	4.83E+02
155		Modaomen	1.23E-01	157	0.43	11%	3.91	0.869	4.81E+02
156		Jitimen	8.89E-03	154	0.43	11%	0.52	0.869	4.58E+00
157		Hutiaomen	2.72E-02	153	0.43	11%	0.8	0.869	2.17E+01
158		Yamen	6.72E-02	159	0.43	11%	6.35	0.869	4.27E+02
159		Humen	7.07E-02	849	0.43	11%	58.4	0.869	4.13E+03
160		Jiaomen	7.87E-02	248	0.43	11%	15.3	0.869	1.21E+03
161		Hongqimen	3.99E-02	233	0.43	11%	5.44	0.869	2.17E+02
162		Hengmen	5.62E-02	149	0.43	11%	28.9	0.869	1.63E+03
163		Modaomen	1.08E-01	157	0.43	11%	5.95	0.869	6.41E+02
164		Jitimen	1.58E-02	154	0.43	11%	0.72	0.869	1.13E+01
165		Hutiaomen	1.40E-02	153	0.43	11%	0.18	0.869	2.54E+00
166		Yamen	1.88E-02	159	0.43	11%	1.17	0.869	2.19E+01
167		Humen	1.94E-01	849	0.43	11%	49	0.869	9.50E+03
168		Jiaomen	2.16E-01	248	0.43	11%	8.7	0.869	1.88E+03
169		Hongqimen	1.10E-01	233	0.43	11%	6.91	0.869	7.57E+02
170		Hengmen	1.54E-01	149	0.43	11%	8.39	0.869	1.29E+03
171		Modaomen	2.95E-01	157	0.43	11%	2.31	0.869	6.83E+02
172		Jitimen	4.34E-02	154	0.43	11%	4.58	0.869	1.99E+02
173		Hutiaomen	3.84E-02	153	0.43	11%	2.54	0.869	9.74E+01
174		Yamen	5.15E-02	159	0.43	11%	11.5	0.869	5.74E+02
175		Humen	1.76E-01	849	0.43	11%	15.7	0.869	2.76E+03

176		Jiaomen	1.96E-01	248	0.43	11%	18.4	0.869	3.62E+03
177		Hongqimen	9.96E-02	233	0.43	11%	3.74	0.869	3.73E+02
178		Hengmen	1.40E-01	149	0.43	11%	11.3	0.869	1.59E+03
179		Modaomen	2.69E-01	157	0.43	11%	35	0.869	9.39E+03
180		Jitimen	3.95E-02	154	0.43	11%	2.47	0.869	9.75E+01
181		Hutiaomen	3.49E-02	153	0.43	11%	1.97	0.869	6.87E+01
182		Yamen	4.68E-02	159	0.43	11%	12.6	0.869	5.90E+02
183		Humen	6.17E-02	849	0.43	11%	29.5	0.869	1.82E+03
184		Jiaomen	5.84E-02	248	0.43	11%	2.32	0.869	1.36E+02
185		Hongqimen	9.51E-02	233	0.43	11%	1.3	0.869	1.23E+02
186		Hengmen	8.62E-02	149	0.43	11%	6.15	0.869	5.30E+02
187		Modaomen	1.38E-01	157	0.43	11%	1.02	0.869	1.41E+02
188		Jitimen	1.00E-02	154	0.43	11%	1.54	0.869	1.54E+01
189		Hutiaomen	3.06E-02	153	0.43	11%	6.15	0.869	1.88E+02
190		Yamen	7.56E-02	159	0.43	11%	5.4	0.869	4.08E+02
191	Yonkos et al. ⁹	Patapsco	3.93E-04	550	2.24	12%	7.76	0.93	3.07E+00
192		Patapsco	4.75E-04	550	2.24	12%	18.2	0.93	8.55E+00
193		Patapsco	6.06E-04	550	2.24	12%	3.39	0.93	2.06E+00
194		Patapsco	8.84E-04	550	2.24	12%	7.92	0.93	6.98E+00
195		Magothy	4.14E-05	351	2.24	12%	5.63	0.93	2.32E-01
196		Magothy	4.97E-05	351	2.24	12%	16	0.93	7.95E-01
197		Magothy	6.90E-05	351	2.24	12%	3.25	0.93	2.28E-01
198		Magothy	7.45E-05	351	2.24	12%	2.03	0.93	1.49E-01
199		Rhode	8.71E-06	64	2.24	12%	2.1	0.93	1.83E-02
200		Rhode	1.14E-05	64	2.24	12%	7.7	0.93	8.78E-02
201		Rhode	2.35E-05	64	2.24	12%	4.61	0.93	1.08E-01
202		Rhode	4.02E-05	64	2.24	12%	1.05	0.93	4.42E-02
203		Corsica	2.13E-05	36	2.24	12%	5.27	0.93	1.13E-01
204		Corsica	1.84E-05	36	2.24	12%	3.11	0.93	5.70E-02
205		Corsica	3.10E-05	36	2.24	12%	0.61	0.93	1.89E-02

206		Corsica	4.56E-05	36	2.24	12%	0.33	0.93	1.50E-02
207	Vianello et al. ¹³	Po River Delta	2.26E-01	226	1.12	6%	60	0.88	1.36E+04
208		Po River Delta	2.26E-01	226	1.12	6%	123	0.88	2.78E+04
209		Po River Delta	2.26E-01	226	1.12	6%	8.06	0.88	1.82E+03
210		Po River Delta	2.26E-01	226	1.12	6%	7.11	0.88	1.61E+03
211		Po River Delta	1.54E-01	226	1.12	6%	6.08	0.88	9.39E+02
212		Po River Delta	1.54E-01	226	1.12	6%	2.61	0.88	4.02E+02
213		Po River Delta	1.54E-01	226	1.12	6%	17.4	0.88	2.69E+03
214		Po River Delta	1.54E-01	226	1.12	6%	1.09	0.88	1.68E+02
215	Rech et al. ¹⁴	Bio Bio	8.24E-02	83	1.05	11%	0.43	0.843	3.50E+01
216		Maipo	8.64E-03	467	1.05	11%	5.5	0.843	4.75E+01
217		Maule	4.79E-02	41	1.05	11%	6.29	0.843	3.01E+02
218		Elqui	8.64E-04	26	1.05	11%	1.1	0.843	9.47E-01
219	Campanale et al. ¹⁵	Ofanto	1.30E-03	104	1.34	5%	35.7	0.88	4.63E+01
220	Mani et al. ¹⁶	Rhine	1.91E-01	249	1.44	19%	46.8	0.931	8.91E+03
221		Rhine	1.43E-01	249	1.44	19%	53.6	0.931	7.65E+03
222		Rhine	2.21E-01	249	1.44	19%	42.5	0.931	9.39E+03
223		Rhine	2.25E-01	249	1.44	19%	29.8	0.931	6.69E+03
224	Xiong et al. ¹⁷	Yangtze	2.47E+00	312	0.43	11%	7.65	0.752	1.89E + 04
225	Cohen et al. ¹⁸	Delaware	2.74E-02	290	2.24	12%	10.5	0.924	2.89E+02
226		Delaware	2.74E-02	290	2.24	12%	5.27	0.924	1.44E+02
227	Sadri et al. ¹⁹	Tamar	8.50E-03	6	1.83	11%	0.34	0.939	2.89E+00
228	Deocaris et al. ²⁰	Pasig	1.81E-05	4038	0.34	14%	11.3	0.699	2.03E-01
229	Lechner et al. ²¹	Danube	5.75E-01	113	0.69	12%	10.9	0.811	6.27E+03
230		Danube	5.75E-01	113	0.69	12%	2.2	0.811	1.27E+03

231 Note: ^a Median plastic concentrations after sensitive analysis for uncertain factors.

232 Acronyms: Q: water discharge; PD: population density; SWG: solid waste generation; P: percent of plastic waste; C: Concentration of plastics;

233 Mout: calculated plastic input.

234	Table S4. Data Sources for Various Parameters Used in the HDI Model						
235	model parameter	data source					
236 237	Water discharge (Q)	(n = 1,252) Milliman and Farnsworth ²² ; (n = 266) Discharge data calculated from regression model in Figure S3					
238 239 240	Population density (PD)	(n = 1,357) Schmidt et al. ²³ and world population density increasing rate from 1960–2018 (World Bank); $(n = 161)$ Average population density of the country (World Bank)					
241 242 243	Plastic waste generation per capita (SWG × P)	(n = 1518) Kaza et al. ¹² for solid waste generate and Jambeck et al. ⁷ for percent of plastics					
244	HDI	United Nations Development Program (UNDP) 2018 update ¹					
245	Note: SWG: solid waste	generation; P: percent of plastics in SWG.					

247	f.			1	1		
247	reference	river	region/country	measured outflow(s)	lower estimate	median estimate	upper estimate
248				(MT year ⁻¹)			
249	Zhao et al. ⁴	Changjiang	China	24,400-41,000	6750	17000	33600
250	Xiong et al. ¹⁷	Changjiang	China	~18,900	6750	17000	33600
251	Mani et al. ²⁴	Rhine	Europe	~8160	178	1990	6210
252	Vianello et al. ¹³	Ро	Italy	~6120	43.5	330	892
253	Mai et al. ⁵	Zhujiang	Asia	2,400–3,800	855	2160	4290
254	Lechner et al. ²¹	Danube	Europe	~1,530	388	1470	3280
255	Rech et al. ¹⁴	Maule	Chile	~301	4.25	22.4	53.9
256	Cohen et al. ¹⁸	Delaware	the USA	~217	24	255	786
257	Faure et al. ²⁵	Rhône	Europe	~208	37.7	399	1230
258	Eo et al. ²⁶	Nakdong	Asia	193–301	16.2	153	446
259	Rech et al. ¹⁴	Maipo	Chile	~47.5	20.5	107	260
260	Campanale et al. ¹⁵	Ofanto	Italy	~46.3	0.076	0.57	1.52
261	Rech et al. ¹⁴	BioBio	Chile	~35	12.4	63.7	154
262	Gasperi et al. ²⁷	Seine	France	27 (22–36)	13.5	124	357
263	Sadri et al. ¹⁹	Tamar	England	~2.89	0.036	0.49	1.77
264	Rech et al. ¹⁴	Elqui	Chile	~0.95	0.032	0.167	0.402

246 **Table S5.** Comparison of Field Measurements and HDI Model Estimates for Riverine Plastic Outflows

265	Deocaris et al. ²⁰	Pasig	the Philippines	0.2	5.6	11.8	21.9
-----	-------------------------------	-------	-----------------	-----	-----	------	------

Note: Measured outflows are calculated from data in the literature. For Seine River, an median annual outflow of 27 MT plastics was reported 266 based on a six-year field monitoring campaign for floating debris from 2008 to 2013.²⁷ For Danube River, a daily plastic outflow of 4.2 MT was 267 obtained based on three and four sampling events in 2010 and 2012, respectively.²¹ A daily plastic outflow of 570 kg from the Rhône River to 268 the Mediterranean Sea was acquired.²⁵ Only microplastic annual outflows (53.3–118 MT or 5.4–11 trillion particles) were reported for Nakdong 269 River from field sampling in four seasons.²⁶ Annual outflows of meso-plastics from Nakdong River were estimated at 75–116 MT based on the 270 outflows of microplastics and the conversion method established by Lebreton et al.,³ resulting in annual plastic outflows of 193–301 MT from 271 Nakdong River. Plastic outflows from Changjiang are converted from microplastic outflows based on the ratio of microplastics to plastics in 272 Chinese waters.²⁸ For other rivers, the median values derived from the conversion in Table S1 are used for calculating the field-measured 273 outflows. Some European rivers flowing through two or more countries, therefore, Europe is used for the region of these rivers. 274

Table S6. Comparison of the Median Estimates (MT year⁻¹) in Different Models for the Top Ten Rivers with the Highest Annual Riverine

277 Plastic Outflows to Oceans

278		Schmidt	t model ²³			Lebreton model ³		HDI model		
279	river	location	estimate 1	estimate 2	river	location	estimate	river	location	estimate
280			(MT year ⁻¹)	(MT year ⁻¹)			(MT year ⁻¹)			(MT year ⁻¹)
281	Changjiang	Asia	1540000	155000	Changjiang	Asia	333000	Changjiang	Asia	17000
282	Indus	Asia	176000	24400	Ganges	Asia	115000	Brahmaputra	Asia	10400
283	Huanghe	Asia	134000	19200	Xi	Asia	73900	Ganges	Asia	7880
284	Haihe	Asia	99400	14900	Huangpu	Asia	40800	Vaippar	Asia	6200
285	Nile	Africa	91800	14000	Cross	Africa	40300	Amazon	South America	5670
286	Bramaputra	Asia	79100	12300	Brantas	Asia	38900	Bekasi	Asia	3770
287	Zhujiang	Asia	57800	9400	Amazon	South America	38900	Vaigai	Asia	3630
288	Amur	Asia	42000	7140	Pasig	Asia	38800	Mekong	Asia	3400
289	Niger	Africa	38700	6650	Irrawaddy	Asia	35300	Irrawaddy	Asia	3230
290	Mekong	Asia	36800	6370	Solo	Asia	32500	Congo	Afria	2830

294 295 296	region	total discharge (km ³ year ⁻¹) ²²	HDI ¹	population density (capita km ⁻²)	lower estimate (MT yr ⁻¹)	median estimate (MT yr ⁻¹)	upper estimate (MT yr ⁻¹)
297	Asia	11000	0.74	100	43000	92800	173000
298	SA	10000	0.74	56	6860	17300	34300
299	NCA	4600	0.86	81	2290	9600	24800
300	Europe	4000	0.75	57	1040	7360	21000
301	Africa	2600	0.56	7	3730	6730	11100
302	Oceania	1100	0.86	5	303	628	1170

293 **Table S7.** Riverine Plastic Outflows from Different Continents

303 Note: Population density data are adopted from the World Bank 2018 at

304 <u>https://data.worldbank.org/</u>. SA: South America; NCA: North and Central America.

Figure S1. Correlations between the annual water discharge and basin areas from
1,252 rivers draining to global oceans. The data are derived from
Milliman and Farnsworth²². The regression is shown as a solid black
line and the prediction intervals shown as blue dash lines.

Figure S2. Temporal trends of global plastic production and world HDI from 2010
to 2050. (a) Changing HDI values from 2010 to 2018 are adopted from
the United Nations Development Program (orange solid line) and
predictions to 2050 (orange dash line) are assumed with the current
increase rate. (b) Plastic production in the past years (blue solid line) is

- adopted from Plastic Europe²⁹⁻³¹ and predictions to 2050 (blue dash line)
- 317 are programed under the current increase rate.

number of the order of magnitude for overestimation or underestimation

320	0	1	1.5	2	2.5	3	4

- 321 **Figure S3.** The over- or under-estimations by both HDI-based and MPW-based
- 322 models against field measurements in observed rivers, presenting as the
- 323 number of order of magnitude.

The spatial comparison between available plastic waste (APW) and 325 Figure S4.

- mismanaged plastic waste (MPW), which is displayed as the (a) values 326
- of 1-HDI and (b) fractions of MPW. 327

Figure S5. Global plastic riverine outflows in different model estimates. (a) Gross
estimates of global rivers; and the share of top ten polluted rivers in the
total global rivers estimated by (b) HDI model, (c) Lebreton model, (d)
Schmidt model 1 and (e) Schmidt model 2.

Figure S6. Estimated cumulative riverine plastic outflows (million metric tons
(MT)) from 2010 to 2050. Lower, median, and upper values are derived
from the estimated range presented in the main text.

337

Figure S7. Temporal trends of plastic waste management and human development
index (HDI) in China. (a) Plastic waste generation (blue line),
adequately treated waste (brown line), and inadequately treated waste
(red line). (b) World HDI (red line)¹ and HDI for China (blue line).

343 **REFERENCES**

Human development indicators and indices: 2018 statistical update. United
 Nations Development Program, http://hdr.undp.org/en/data (accessed on July 2,
 2020).

Zhao, S. Y.; Zhu, L.; Wang, T.; Li, D., Suspended microplastics in the surface
 water of the Yangtze Estuary System, China: First observations on occurrence,
 distribution. *Mar. Pollut. Bull.* 2014, *86* (1–2), 562–568.

350 3. Lebreton, L. C. M.; van der Zwet, J.; Damsteeg, J.-W.; Slat, B.; Andrady, A.;
351 Reisser, J., River plastic emissions to the world's oceans. *Nat. Comm.* 2017, *8*, 15611.

352 4. Zhao, S.; Wang, T.; Zhu, L.; Xu, P.; Wang, X.; Gao, L.; Li, D., Analysis of
353 suspended microplastics in the Changjiang Estuary: Implications for riverine plastic
354 load to the ocean. *Water Res.* 2019, *161*, 560–569.

5. Mai, L.; You, S.-N.; He, H.; Bao, L.-J.; Liu, L.; Zeng, E. Y., Riverine microplastic pollution in the Pearl River Delta, China: Are modeled estimates accurate? *Environ. Sci. Technol.* **2019**, *53*, 11810–11817.

358 6. NationalStatisticsBureauofChina *China Statistical Yearbook*; 978-7-5037359 8528-3; China Statistics Press: Beijing, 2004–2018.

Jambeck, J. R.; Geyer, R.; Wilcox, C.; Siegler, T. R.; Perryman, M.; Andrady,
A.; Narayan, R.; Law, K. L., Plastic waste inputs from land into the ocean. *Science* **2015**, *347* (6223), 768–771.

363 8. Geyer, R.; Jambeck, J. R.; Law, K. L., Production, use, and fate of all plastics
364 ever made. *Sci. Adv.* 2017, *3* (7), 1–5.

365 9. Yonkos, L. T.; Friedel, E. A.; Perez-Reyes, A. C.; Ghosal, S.; Arthur, C. D.,
366 Microplastics in four estuarine rivers in the Chesapeake Bay, U.S.A. *Environ. Sci.*367 *Technol.* 2014, 48 (24), 14195–14202.

368 10. Kataoka, T.; Nihei, Y.; Kudou, K.; Hinata, H., Assessment of the sources and
369 inflow processes of microplastics in the river environments of Japan. *Environ. Pollut.*370 2019, 244, 958–965.

Moore, C.; Lattin, G. L.; Zellers, A. F., Quantity and type of plastic debris
flowing from two urban rivers to coastal waters and beaches of Southern California. *J. Integr. Cost. Zone Manag.* 2011, *11* (1), 65–73.

Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. *What a waste: A global snapshot of solid waste management to 2050*; World Bank Group: 2018.

Vianello, A.; Da Ros, L.; Boldrin, A.; Marceta, T.; Moschino, V., First
evaluation of floating microplastics in the Northwestern Adriatic Sea. *Environ. Sci. Pollut. Res.* 2018, *25* (28), 28546–28561.

14. Rech, S.; Macaya-Caquilpán, V.; Pantoja, J. F.; Rivadeneira, M. M.;

Campodónico, C. K.; Thiel, M., Sampling of riverine litter with citizen scientists —
findings and recommendations. *Environ. Monit. Assess.* 2015, *187* (6), 187–335.

382 15. Campanale, C.; Stock, F.; Massarelli, C.; Kochleus, C.; Bagnuolo, G.;

383 Reifferscheid, G.; Uricchio, V. F., Microplastics and their possible sources: The

example of Ofanto river in southeast Italy. *Environ. Pollut.* **2020**, *258*, 113284.

Mani, T.; Burkhardt-Holm, P., Seasonal microplastics variation in nival and
pluvial stretches of the Rhine River – From the Swiss catchment towards the North
Sea. *Sci. Total Environ.* 2020, *707*, 135579.
17. Xiong, X.; Wu, C.; Elser, J. J.; Mei, Z.; Hao, Y., Occurrence and fate of

microplastic debris in middle and lower reaches of the Yangtze River – From inland to
 the sea. *Sci. Total Environ.* 2019, 659, 66-73.

18. Cohen, J. H.; Internicola, A. M.; Mason, R. A.; Kukulka, T., Observations and
Simulations of Microplastic Debris in a Tide, Wind, and Freshwater-Driven Estuarine
Environment: the Delaware Bay. *Environ. Sci. Technol.* 2019, *53* (24), 14204-14211.

Sadri, S. S.; Thompson, R. C., On the quantity and composition of floating
plastic debris entering and leaving the Tamar Estuary, Southwest England. *Mar. Pollut. Bull.* 2014, 81 (1), 55-60.

20. Deocaris, C. C.; Allosada, J. O.; Ardiente, L. T.; Bitang, L. G. G.; Dulohan, C.
L.; Lapuz, J. K. I.; Padilla, L. M.; Ramos, V. P.; Padolina, J. B. P., Occurrence of
microplastic fragments in the Pasig River. *H2Open Journal* 2019, *2* (1), 92-100.

400 21. Lechner, A.; Keckeis, H.; Lumesberger-Loisl, F.; Zens, B.; Krusch, R.;

401 Tritthart, M.; Glas, M.; Schludermann, E., The Danube so colourful: A potpourri of
402 plastic litter outnumbers fish larvae in Europe's second largest river. *Environ. Pollut.*403 2014, 188, 177–181.

404 22. Milliman, J. D.; Farnsworth, K. L., *River discharge to the coastal ocean: A*405 *global synthesis*. Cambridge University Press: 2011.

406 23. Schmidt, C.; Krauth, T.; Wagner, S., Export of plastic debris by rivers into the 407 sea. *Environ. Sci. Technol.* **2017**, *51* (21), 12246–12253.

408 24. Mani, T.; Blarer, P.; Storck, F. R.; Pittroff, M.; Wernicke, T.; Burkhardt-Holm,
409 P., Repeated detection of polystyrene microbeads in the Lower Rhine River. *Environ.*410 *Pollut.* 2019, 245, 634-641.

- Faure, F.; Demars, C.; Wieser, O.; Kunz, M.; de Alencastro, L. F., Plastic
 pollution in Swiss surface waters: nature and concentrations, interaction with
 pollutants. *Environ. Chem.* 2015, *12* (5), 582–591.
- 414 26. Eo, S.; Hong, S. H.; Song, Y. K.; Han, G. M.; Shim, W. J., Spatiotemporal
- 415 distribution and annual load of microplastics in the Nakdong River, South Korea.
 416 *Water Res.* 2019, *160*, 228–237.
- 417 27. Gasperi, J.; Dris, R.; Bonin, T.; Rocher, V.; Tassin, B., Assessment of floating
 418 plastic debris in surface water along the Seine River. *Environ. Pollut.* 2014, *195*, 163–
 419 166.
- 28. Cheung, P. K.; Fok, L.; Hung, P. L.; Cheung, L. T. O., Spatio-temporal
 comparison of neustonic microplastic density in Hong Kong waters under the
 influence of the Pearl River Estuary. *Sci. Total Environ.* 2018, 628-629, 731–739.
- 423 29. PlasticsEurope, Plastics the Facts 2016. An analysis of European plastics
 424 production, demand and waste data. In 2016.

425 30. PlasticsEurope, Plastics - the Facts 2017. Analysis of European plastics
426 production, demand and waste data. In 2017.

427 31. PlasticsEurope, Plastics - the Facts 2018. Analysis of European plastics

428 production, demand and waste data. In 2018.