New lignin streams derived from heteropoly acids-enhanced neutral deep eutectic solvent fractionation: Towards structural elucidation and antioxidant performance

Zongwei Guo^{1, 2}, Deqiang Li¹, Tingting You¹, Xun Zhang¹, Feng Xu^{1*} Xueming, Zhang^{1*}, Yiqin Yang²

¹Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China

²Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China

*Corresponding authors

Tel: +86-10-62337993 Fax: +86-10-62337993

E-mail: xfx315@bjfu.edu.cn

xm_zhang@bjfu.edu.cn

Number of pages: 6

Number of Tables: 2

Number of Figures: 1

Table S1. The solubility of lignin fractions.

Table S2. Assignments of ¹³C-¹H correlated signals in the HSQC spectra of the lignin from bamboo.

Fig. S1. Photographs of lignin solubility in ethanol, tetrahydrofuran, dimethylacetamide solvents: (a) low solubility, (b) moderate solubility, (c) good solubility.

Table S1

	HPA-DES lignin		Alkali Lignin		Lignosulphonate	
Solvents	Solubility (mg/mL)	Solubility (wt %)	Solubility (mg/mL)	Solubility (wt %)	Solubility (mg/mL)	Solubility (wt %)
Methanol	<1	< 0.13	<1	< 0.13	<1	< 0.13
Ethanol	< 1	< 0.13	<1	< 0.13	<1	<0.13
Acetone	< 1	<0.13	<1	< 0.13	<1	< 0.13
Deionized water	< 1	<0.10	<3	<3.00	> 100	> 10
Ethylacetate	< 1	<0.11	<1	<0.11	<1	<0.11
Cyclohexane	< 1	<0.13	<1	< 0.13	<1	< 0.13
Phenylcarbinol	< 1	<0.10	<1	< 0.10	<1	< 0.10
Dichloroethane	< 1	< 0.08	<1	<0.08	<1	< 0.08
1,4-dioxane	< 1	<0.10	<1	< 0.10	<1	< 0.10
Tetrahydrofuran	4	0.45	4	0.45	3	0.34
Dimethyl sulfoxide	> 100	> 9.1	> 70	> 6.4	> 50	> 4.5
Dimethylacetamide	> 100	> 10.7	> 80	> 8.5	> 60	> 6.4

The solubility of lignin fractions.

Table S2

Assignments of ¹³C-¹H correlated signals in the HSQC spectra of the lignin from bamboo.

Labels	$\delta_C/\delta_H(ppm)$	Assignment
Cβ	53.8/3.71	C_{β} -H _{β} in phenylcomaran structures(C)
$\mathbf{B}_{\boldsymbol{\beta}}$	53.8/3.07	C_{β} -H _{β} in resinol substructures(B)
-OCH ₃	55.2/3.59	C-H in methoxyls
A_{γ}	59.5/3.62	C_{γ} - H_{γ} in β - O -4 substructures(A)
I_{γ}	62.3/4.09	C_{γ} -H _{γ} in cinnamyl(sinapyl/coniferyl) alcohol end groups(I)
X5	62.8/3.25	C ₅ -H ₅ β -D-xylopyranoside substructures(X)
Βγ	71.1/3.70 and	C_{γ} - H_{γ} in resinol substructures(B)

	4.12			
Aα	71.3/4.86	C_{α} -H _{α} in β -O-4 substructures(A)		
X_2	73.0/3.10	C_2 -H ₂ β -D-xylopyranoside substructures(X)		
X′2	73.1/4.46	C_2 -H ₂ in 2-O-Ac- β -D-xylopyranoside substructures(X)		
X3	74.1/3.26	C ₃ -H ₃ β -D-xylopyranoside substructures(X)		
X_4	76.4/3.63	C_4 - $H_4 \beta$ -D-xylopyranoside substructures(X)		
D'_{α}	79.4/4.01	C_{α} -H _{α} in spirodienone substructures(D')		
$A'_{\beta}(G)$	80.8/4.61	C_{β} -H _{β} in β -O-4 linked to a G (H)		
B′α	83.0/4.91	C_{α} - H_{α} in β - β (B', tetrahydrofuran)		
$A_{\beta}(G)$	83.2/4.34	C_{β} -H _{β} in β -O-4 linked to a G (H)		
Βα	84.8/4.62	C_{α} -H _{α} in resinol substructures(B)		
$A_{\beta}(S)$	85.7/4.10	C_{β} -H _{β} in β -O-4 linked to a S unit(A)		
C_{α}	87.5/5.48	C_{α} -H _{α} in phenylcomaran structures(C)		
S _{2,6}	103.7/6.59	C _{2,6} -H _{2,6} in syringyl units(S)		
T'2,6	105.4/7.34	C _{2,6} -H _{2,6} in tricin (T)		
G ₂	111.1/6.94	C ₂ -H ₂ in guaiacyl units(G)		
FA ₂	111.3/7.32	C ₂ -H ₂ in ferulate (FA)		
PCA_{β}/FA_{β}	113.6/6.23	C_{β} -H _{β} in p-coumarate (PCA) and ferulate (FA)		
G ₅	114.5/6.70	C ₅ -H ₅ in guaiacyl units(G)		
PCA _{3,5}	115.8/6.68	C _{3,5} -H _{3,5} in p-coumarate (PCA)		

G ₆	119.1/6.78	C ₆ -H ₆ in guaiacyl units(G)
FA ₆	122.5/7.13	C _{2,6} -H _{2,6} in ferulate (FA)
\mathbf{J}_{eta}	126.1/6.72	C_{β} -H _{β} in cinnamyl aldehyde end-group (J)
H _{2,6}	128.0/7.22	C _{2,6} -H _{2,6} in <i>p</i> -hydroxyphenyl units(H)
PCA _{2,6} /PCA _{2,6}	130.1/7.48	C _{2,6} -H _{2,6} in <i>p</i> -coumarate (PCA)
PCA_{α}/FA_{α}	144.6/7.46	C_{α} -H _{α} in p-coumarate (PCA) and ferulate (FA)

Fig. S1. Photographs of lignin solubility in ethanol, tetrahydrofuran, dimethylacetamide solvents: (a) low solubility, (b) moderate solubility, (c) good solubility.

