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Text S1. Atmospheric modeling system with data assimilation. The atmospheric dynamics 
was simulated using the Weather Research and Forecasting model (WRF;  1) assimilating 
meteorological observations continuously using the Four Dimensional Data Assimilation system 
(FDDA) originally developed for MM5 (2) and later implemented into WRF (3). The WRF 
configuration for the model physics used here was based on previous numerical modeling studies 
(4) using (1) the single-moment three-class simple ice scheme for microphysical processes, (2) 
the Kain-Fritsch scheme for cumulus parameterization on the 9 km grid, (3) the Rapid Radiative 
Transfer Model for longwave atmospheric radiation and the Dudhia scheme for shortwave 
atmospheric radiation, (4) the turbulent kinetic energy (TKE)-predicting 
Mellor-Yamada-Nakanishi-Niino (MYNN) Level 2.5 turbulent closure scheme for the turbulence 
parameterization in the planetary boundary layer (PBL), and (5) the five-layer thermal diffusion 
scheme for representation of the interaction between the land surface and the atmospheric 
surface layer. Assimilation of the wind field is applied through all model layers, but nudging of the 
mass fields (temperature and moisture) is only allowed above the model-simulated PBL so that 
the PBL structure produced by the model is dominated by the model physics. Similar to the 
configuration described in a previous study (5), World Meteorological Organization (WMO) 
observations were assimilated into the WRF-FDDA system to produce a dynamic analysis, 
blending the model simulations and the observations to produce the most accurate 
meteorological conditions possible to simulate the atmospheric CO2 concentrations in space and 
time throughout the Indianapolis region. The WRF model grid configuration used for this 
demonstration is comprised of three grids: 9 km, 3 km, and 1 km (cf. Figure 1 for the 3 km and 1 
km grids), all of which are co-centered over Indianapolis, Indiana. The 9 km grid, with a mesh of 
100 × 100 grid points, contains the eastern part of the U.S. Midwest. The 3 km grid, with a mesh 
of 99 × 99 grid points, contains the southern part of the state of Indiana. The 1 km grid, with a 
mesh of 87 × 87, covers the metropolitan area of Indianapolis and the eight counties surrounding 
Marion county. Fifty-nine vertical terrain-following layers are used, with the center point of the 
lowest model layer located ∼6 m above ground level (AGL). The thickness of the layers increases 
gradually with height, with 25 layers below 850 hPa (∼1550 m AGL). Model performances have 
been extensively studied (3) including surface wind conditions and vertical mixing heights. 
 
Text S2. Adjoint modeling with backward trajectories. The Lagrangian Particle Dispersion 
Model (LPDM; 6) is used as the adjoint model of the WRF-FDDA modeling system. The coupling 
between WRF-FDDA and LPDM has been described in previous work (5) with the same 
configuration used in this study. Particles are released from the receptors in a backward in time 
mode with the wind fields and the turbulence generated by the Eulerian model WRF-FDDA. In a 
backward in time mode, particles are released from the measurement locations and travel to the 
surface and the boundaries. Every 20 s, 35 particles are released at the position of the towers, 
which corresponds to 6,300 particles per hour per measurement site (or receptor). The dynamical 
fields in LPDM are forced by mean horizontal winds (u, v, w), potential temperature and turbulent 
kinetic energy (TKE) from WRF-FDDA. Particle locations and times are gridded to generate 1-km 
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tower footprints, the linear solution of the relationship between concentration measurements and 
surface fluxes. The formalism for inferring source-receptor relationships from particle distributions 
is described in previous studies (7). For an assessment of the adjoint system, the LPDM model 
performances have been recently evaluated and compared to other back-trajectory Lagrangian 
models over the Barnett shale using methane (CH4) mixing ratios collected during ten aircraft 
flights (8). Daily CH4 emissions computed with aircraft footprints from WRF-FDDA coupled to 
LPDM was the closest to the high-resolution CH4 emissions inventory over the Barnett shale 
among eight modeling systems, with a day-to-day standard deviation of 0.32 (WRF-LPDM) and a 
mean emission estimate agreeing within 25% of the inventory. 
 
Text S3. Building-level sectoral fossil fuel CO2 gridded emissions: Hestia. The Hestia CO2 
emission product (9) was coupled to the LPDM footprints to simulate the CO2 atmospheric mixing 
ratios over and around Indianapolis. The Hestia product combines observations and modeling to 
produce CO2 emissions from the combustion of fossil fuels. A wide range of data sources are 
used to quantify emissions at the scale of individual buildings and road segments, including local 
traffic monitoring, property tax assessor data, power plant emissions monitoring, and air quality 
pollution reporting. The data product includes some spatial and temporal proxies to attain hourly 
emissions at fine spatial scales for Marion County and the eight counties that surround Marion 
County. The space and time patterns are generated for the year 2011. Emissions for 2012 to 
2015 reflect the application of scale factors derived from the Department of Energy (DOE) Energy 
Information Administration (EIA) fuel statistics specific to sector and fuel type. Hence, the 
magnitude of emissions change over the time period but the sub-county spatial structure remains 
fixed. Furthermore, the submonthly time structure in all sectors other than power production are 
represented by fixed time cycles derived from multiple years of monitoring data. For example, the 
onroad CO2 emissions reflect a spatially explicit use of a mean weekly cycle (7 day cycle within a 
given month) and mean diurnal cycle (24 h cycle within a given week). The emissions available 
for each of the eight economic sectors were aggregated from the initial building-level product 
down to the 1-km resolution footprint grid, covering Marion County and the eight surrounding 
counties. Figure S1 shows the CO2 emissions in ktC km−2 

 
Text S4. Disaggregated national CO2 Emissions: ODIAC. The Open-Source Data Inventory for 
Anthropogenic CO2 (ODIAC) emission data (10) was used in this study as an alternative prior for 
the optimization system. ODIAC was originally designed to provide spatially-explicit emissions of 
CO2 anywhere over the globe for global- and regional-scale applications. Urban applications, 
beyond the initial scope of ODIAC, are used to evaluate the importance of the spatial resolution of 
the prior emissions at fine scales. Currently, nightlight satellite data used as a proxy to distribute 
national emissions can describe urban emissions at a resolution of about 3 km. The version of the 
ODIAC emission data used in this study is based on emission estimates updated using the 
Carbon Dioxide Information Analysis Center (CDIAC) global and national fossil fuel emission 
estimates (http://cdiac.ornl.gov/trends/emis/meth_reg.html; last access 27 March 2015) and 
annual BP statistical review of world energy 
(http://www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-world-en
ergy/statistical-review-downloads.html; last access 27 March 2015). Figure S2 shows the spatial 
distribution of CO2 emissions from ODIAC re-gridded on the inversion 1-km domain over the three 
years (Sept. 2012-Sept. 2015). ODIAC spatial distributions were estimated at 1 × 1 km resolution 
(10). The emissions from power plants are mapped using the geolocation reported in the Carbon 
Monitoring and Action (CARMA) global power plant database (www.carma.org; last access 27 
March 2015) and the rest of the emissions (nonpoint source emissions) are distributed using the 
satellite observed nightlight data. The nightlight data used in this version of ODIAC emission data 
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were developed using a new algorithm, improving the representation of suburban areas 
compared to the original version (11). ODIAC emission data only indicate monthly emissions 
(based on CDIAC monthly emission data) and do not have diurnal and weekly cycles. Further 
details of the ODIAC are described in (10). 
 
Text S5. Biogenic CO2 fluxes: Vegetation Photosynthetic Respiration Model (VPRM-Urban). 
Biogenic CO2 fluxes were estimated over Marion County, Indiana for the years 2012-2015 at 
hourly time step and 500 m spatial resolution using a version of the Vegetation Photosynthesis 
and Respiration Model (VPRM) that has been modified to represent urban ecosystems in general 
(12). VPRM is a data-driven, spatially explicit light use efficiency model that utilizes remotely 
sensed land surface greenness data and gridded climate data to estimate gross ecosystem 
carbon fluxes (gross ecosystem exchange and ecosystem respiration). The modified urban 
VPRM accounts for the lack of model parameters for urban ecosystems, which are typically not 
modeled in carbon flux products, by assuming that urban ecosystems are assemblages of 
impervious land cover (e.g. pavement) and the background, forested ecosystem. The model 
modifies the gross component carbon fluxes based on the per-pixel impervious land cover (13, 
14), assuming limited carbon flux through impervious surfaces (14). Estimated carbon fluxes from 
urban VPRM has been used in previous atmospheric inversion studies over Boston (15). 
Additionally, our modified urban VPRM estimates carbon fluxes for the nearby cropland, which 
has very different carbon exchange properties and impacts the background carbon concentration 
significantly. The urban VPRM incorporates the highly variable fraction of impervious surface area 
(ISA) from the National Land Cover Database (NLCD; 16) in order to modulate carbon fluxes from 
these heterogeneous landscapes. The total CO2 fluxes over September 2012 to September 2015 
are shown in Figure S3. We modeled the non-paved portions of Indianapolis as deciduous, 
broadleaf forest using parameters estimated from the nearby Morgan-Monroe flux tower (17). Our 
VPRM is driven by greenness data (as the Enhanced Vegetation Index) derived from the 
MCD43A4 MODIS product and NARR climate reanalysis (air temperature interpolated to 1-hourly 
time step). Emission of respired CO2 from soil under paved surfaces is assumed to be zero, while 
emission of respired carbon by urban forests is reduced by the proportion ISA within a given 
forested pixel. Because the area around Indianapolis is predominantly cropland, which has very 
different carbon exchange properties than forests, we estimated sub-pixel fractions of the primary 
crops in the area (maize, soybeans, and pastures) based on annual, 30m data from the Cropland 
Data Layer (18) and VPRM parameters for four land cover/land use types (irrigated maize, 
soybeans, grasslands, and forest) (19), and then estimated per-pixel, hourly carbon fluxes as the 
weighted average of carbon fluxes for each of the four land cover/land use classes. 
 
Text S6. The INFLUX CO2 observation tower network. The measurement network of the 
INFLUX project (20) includes 12 sites measuring continuously CO2 mixing ratios and 5 sites for 
CO mixing ratios (21) and shown in Fig. S4. The calibration protocol and the measurement errors 
have been documented previously (22) showing a drift of less than 0.2 ppm per year across the 
sites and a noise of 0.1 ppm on daily daytime averages. For the time period of this study, nine 
instruments were measuring CO2 continuously and 4 measuring CO between September 2012 to 
July 2013. After July 2013, the full network was operational except for specific periods of time 
(21). Typical operating stations represent between 60% to 100% of the full tower network over 
five days. The optimization system assimilates only hourly averaged CO2 and CO mixing ratios 
during daytime hours (17–22 UTC) between September 2012 and September 2015. Cavity Ring 
Down Spectrometer instruments (23) measured the atmospheric CO2 and CO mixing ratios 
continuously over the period at the sampling heights varying from 40-m to 136-m above ground 
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level. Instruments were deployed in temperature-controlled environment using existing tower 
infrastructures. All mixing ratio measurements have been made publicly available (24). 
 
Text S7. Biogenic and sectoral contributions in atmospheric mixing ratios. Before 
considering the assessment of fossil fuel emissions, we present the contributions of sectoral 
activities and biogenic fluxes caused by the local vegetation from an atmospheric standpoint. The 
whole-city emissions translate into 3-ppm CO2 enhancements (median) in winter and 1-ppm in 
summer, with higher observed peaks depending on wind speed and vertical mixing. These 
enhancements are quite small compared to day-to-day variations due to air masses crossing the 
continental United States carrying flux signatures from distant sources and sinks (on the order of 
10-20 ppm). The fossil fuel signals further decrease in summer due to CO2 uptake from the 
surrounding corn and soybean fields, grasslands and forests (Fig. S5). Hence, the critical first 
step for an atmospheric approach is to remove the large-scale fluctuations in CO2 mixing ratios by 
measuring the background conditions. To solve that problem, three instrumented towers were 
deployed around Indianapolis, IN, providing background conditions for any given meteorological 
condition. Because background mixing ratios are inferred from rural towers upwind of the city, a 
local biogenic contribution is always added by the plants around each upwind site. During the 
growing season, the local biosphere counter-balances positive emissions signals due to carbon 
uptake (~3- to 4-ppm decrease) and also increases the urban enhancement in winter due to soil 
respiration (~0.3 ppm). Despite all these sources of uncertainties, the atmospheric model is able 
to simulate hourly CO2 mixing ratios from fossil fuel and biogenic contributions within 22% of the 
observed enhancements averaged over 5-day periods. The use of an optimized vegetation model 
(14) and data-driven meteorological simulations (25) is critical to reaching such an agreement 
with the observations (26). Sectoral contributions are separated into traffic emissions (on-road 
and off-road) and static sources (residential, commercial, industrial, power generation, and 
airport), with a strong seasonality in static emissions caused by house heating and in the biogenic 
fluxes following the phenology of plants (Fig. S5). Fossil fuel and biospheric fluxes are spatially 
distinct, helping with the attribution of signals in the optimization procedure. During the growing 
season, the large contribution from the biosphere will inevitably limit our ability to optimize fossil 
fuel emissions, typically from June to August (27). However, the low mismatch in our simulated 
mixing ratios (about 20%), especially during the growing season, is promising for future 
deployments to detect significant discrepancies when using lower-quality biogenic or fossil fuel 
emission products. 
 
Text S8. Optimization framework: Kalman Filter inversion. The inversion system used in this 
study is based on a Kalman Filter approach computing the exact solution of the inverse problem 
(analytical solution) (5). Compared to this study, few improvements have been implemented, all 
documented in other publications. The inversion solves for two sectors of emissions referred as 
mobile (traffic and construction engines) and static (residential, commercial, airport, energy 
production, and industrial) sectors, following the method described in a previous study (28). The 
optimization framework assimilates carbon monoxide (CO) mixing ratios in addition to CO2 mixing 
ratios, for daytime hours (17-22 UTC). The two-specie inversion system relies on emission factors 
for CO and CO2 determined from discrete flask samples collected at specific locations (27). Each 
sector of the original Hestia emission product has been assigned a CO:CO2 ratio as described 
previously (28). Compared to previous studies (5), biogenic fluxes are also being optimized using 
the prior fluxes from VPRM. The error structures associated with each component of the state 
vectors (mobile, static, and biogenic) are constructed following the same methodology (5), using 
an exponentially decaying length scale (here 4km), a mask to remove correlations when sectoral 
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emissions are equal to zero, and variances scaled relative to the prior emissions for each 1-km 
pixel. Power plant emissions were assigned lower uncertainties (less than 10%) as emissions 
from energy production is well-documented compared to other sectors (29, 30). Overall, the 
optimization system solves for 1-km resolution 5-day average daytime estimates for the three 
components (3x87x87=22,707 unknowns). No correlation was applied between 5-day inversion 
windows. An initial evaluation of the inverse emissions has been performed for October and 
November of 2014, comparing aircraft mass-balance estimates, the inverse solution over 
Indianapolis (using the exact same system described here), and a high-resolution inventory 
(Hestia), reconciled by removing the biogenic contribution using 14CO2 flask measurements (31). 
 
Text S9. Sensitivity experiments on power plant uncertainties. Uncertainties in prior 
emissions were assigned relative to the a priori emissions (100% for sectoral emissions, 30% for 
biogenic fluxes) and spatial structures were constructed as described in section 7 of the Supp. 
Info. Here, we describe the impact of assigning larger uncertainties to power plant emissions and 
evaluate its impact on the spatial distribution of emission adjustments. Figure S6 shows the 
adjustments made to sectoral prior emissions for the static (lower row) and mobile (upper row) 
sectors. The original configuration with low power plant uncertainties (right column) shows a 
distinct spatial distribution of the emission adjustments compared to high power plant 
uncertainties (left column). The decrease in emissions for the mobile sector in the southwestern 
part of the city is re-attributed to the power plant emissions when power plant emissions are 
highly uncertain. Similarly, the decrease in static emissions (southern and eastern part of the city) 
is reduced, the decrease being attributed to the power plant emissions. Overall, the power plant 
emissions decrease by about 35% when large uncertainties are assigned. However, uncertainties 
of 100% are unlikely considering the recent studies on power plant emissions compiled from two 
different methodologies (29, 30). A comparison of the Environmental Protection Agency (EPA) 
estimates and the Department of Energy estimates showed a median difference of 1.2%, with a 
kurtosis of 24% revealing that few power plants (about 12% of the samples) exhibit differences 
larger than 20%. Estimates for the Harding Street power plant in Indianapolis did not reveal any 
large differences, which justifies the use of a low error variance in the optimization, here the 
median of inventory differences for US power plants. 
 
Text S10. Dependence of optimized emissions to the granularity in prior emissions. We 
evaluated the sensitivity of the optimization system to granularity in the prior emissions by 
comparing two configurations. The first configuration is using Hestia emissions as a prior, 
assimilating CO2 mixing ratios only (no CO measurements). The second configuration is identical 
except for the a priori emissions, here ODIAC, and the prior emission error covariance 
constructed according to ODIAC emissions. For this second configuration, error correlations 
match the coarser resolution of ODIAC, generated with the same correlation length-scale (4-km) 
but extending further due to the smoother spatial gradients within the urban area (diffusive nature 
of the nighttime satellite data). The maps of the relative adjustments for the two configurations are 
shown in Figure S7. When using ODIAC, an increase in prior emissions is observed, consistent 
with the lower whole-city emissions compared to Hestia and the original optimized emissions. 
Most of the urban area is increased relative to the prior except for the Harding Street power plant, 
slightly decreased, similar to the configuration using Hestia as a prior. This result is consistent 
with the prior emissions as ODIAC is using reported power plant emissions similar to Hestia. 
Larger correlations in the ODIAC-based prior error covariances, due to the diffuse distribution of 
sources, generates spurious corrections in distant urban area as seen in the northeastern corner 
of the optimization domain (left panel). Overall, the convergence of the two configurations shows 
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the potential of the atmospheric optimization system (Fig. 2 in the main text) despite the lack of 
granularity in the prior emissions. However, no sectoral information is available (only total CO2 
emissions from ODIAC) and the spatial attribution of correction is less precise than using Hestia 
as a priori. 
 
Text S11. Convergence potential estimated by perturbation experiments. We estimated the 
potential of convergence of the optimization system by perturbing the Hestia emissions. Based on 
the agreement between Hestia and the optimized emissions, the objective is to evaluate the 
actual constraint from the atmospheric measurements, inferring the adjustment of an incorrect 
prior estimate when the spatial distribution is preserved. For degraded spatial distribution, we 
refer to the optimization using ODIAC which amounts to adjust a 3-km resolution a priori with 
point sources similar to Hestia but a lower granularity for distributed sources (cf. Fig. S2 of Supp. 
Info.) as described in section 4 of the Supp. Info. ODIAC whole-city emissions are slightly lower 
than Hestia (cf. Figure 3 of the main text). The results of biased prior experiments are presented 
in Figure S8 with three time series showing the whole-city 5-day emissions before and after 
optimization (upper panel), the relative correction of the biased prior emissions in percent (middle 
panel), and the biogenic fluxes from Urban VPRM and after optimization (lower panel). We 
increased Hestia emissions by 40% corresponding to a seasonally-varying bias. The relative 
adjustment over 5-day periods reaches 26% (median value) with a maximum around 40% 
reached for about 20% of the 5-day periods. Non-convergence is not significantly correlated with 
meteorological variables nor data availability. We conclude here that the inversion is able to 
detect biases in prior emissions and reduce the systematic differences by up to 70%. A second 
experiment with a lower bias (+15%), discussed in the main text, shows a higher convergence 
similar to the original optimized emissions. During the three summer periods, the optimization 
shows less potential to reduce the mismatch between the prior and the original Hestia emissions 
due to the additional uncertainties from biogenic CO2 fluxes in and around the city. Convergence 
potential is reduced by half during summers, or less than half in 2015 during which the uptake 
from biogenic fluxes remains smaller than 2013 and 2014. Summer of 2015 was particularly wet 
in Indianapolis with twice the normal amount of precipitation in June and July and very dry 
conditions in August and September with half the normal precipitation (compared to 1981-2010 
averages, National Weather Service statistics 
https://www.weather.gov/ind/Precip_scorecard_IND). These unusual conditions decreased the 
Urban VPRM simulated uptake from the vegetation in Summer 2015 as shown in Fig. S8 (lower 
panel). In addition, two sector-specific experiments were conducted by introducing biases (+15%) 
in the Hestia prior estimates for one of the two sectors. Results are presented in Figure S9. 
Theoretically, and considering the agreement between the sectoral emissions in Hestia and in the 
optimized solution from the unbiased case, both experiments should produce unbiased optimized 
sectoral emissions, hence converging toward the center of the figure. Here, biases are incorrectly 
attributed to the complementary sector in both experiments, revealing the lack of convergence at 
the sectoral level despite the use of two trace gas species (CO and CO2). Attribution of biases 
between the two sectors is primarily driven by uncertainties, with larger adjustments of sectoral 
emissions driven by larger error variances, here the mobility sector. 
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Fig. S1. Maps of the Hestia static (upper panel) and mobile (lower panel) sectoral emissions in 
log(ktC) over September 2012 to September 2015. The Harding Street power plant (star symbol, 
left panel) emissions are not correctly represented here to improve the visualization of the spatial 
gradients. Tower signs indicate the locations of the INFLUX tower network for CO2 
measurements. 
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Fig. S2. Map of the ODIAC CO2 emissions in log(ktC) over September 2012 to September 2015. 
The Harding Street power plant emissions are beyond the color scale to improve the visualization 
of the spatial gradients. Tower signs indicate the locations of the INFLUX tower network for CO2 
measurements. 
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Fig. S3: Map of biogenic CO2 fluxes from Urban VPRM used in the optimization system in ktC 
over September 2012 to September 2015. Carbon uptake by the vegetation has been assigned a 
negative sign whereas release of carbon by autotrophic and heterotrophic respiration is indicated 
as positive. Tower signs indicate the locations of the INFLUX tower network for CO2 
measurements. 
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Fig. S4: Map of the instrumented tower INFLUX measurement network including sites measuring 
both CO2 and CO atmospheric mixing ratios (purple circles) and sites measuring only CO 
atmospheric mixing ratios (blue circles). The Harding Street power plant, the largest source of 
CO2 per surface area representing about 30% of the total CO2 emissions from the domain, is 
indicated by a red star. Background sites are indicated by a green circle, selected for each hourly 
observations depending on the observed wind direction. The background of the map represents 
the urban area (brown), the rural area (yellow), state forest (light green), and major roads 
including state highways and state roads (in orange). The background was created using 
ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and are 
used herein under license. Copyright © Esri. All rights reserved. For more information about Esri® 
software, please visit www.esri.com. 
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Fig. S5: Atmospheric CO2 mixing ratio differences between upwind and downwind measurement 
locations (in ppm) averaged over 5-day periods for daytime only from September 2012 to 
September 2015. Observed atmospheric mixing ratio differences (red circles) and 2-week running 
averages (red line) are compared to WRF-LPDM simulations coupled to Hestia and VPRM-Urban 
(orange line). Simulated mixing ratio differences are shown for each individual component, i.e. 
mobile (in blue) and stationary (in purple) sources, and biogenic (in dark green) fluxes. Growing 
seasons are indicated in shaded blue areas. Negative values correspond to a net uptake of 
carbon between upwind and downwind sites while positive values indicate a net release of carbon 
into the atmosphere. 
 
  

S12 
 



 
 

 
Fig. S6: Maps of the sectoral emission adjustments (in % of the prior emissions, here Hestia) for 
the mobile (upper row) and the stationary (lower row) sectors over 3 years (Sept. 2012 to Sept. 
2015) assuming large uncertainties in power plant emissions (Harding Street power plant, star) in 
the error variance (left column) and low error variance in the original inversion configuration (right 
column). Uncertainty estimates for the Harding Street power plant correspond to median values 
from statistical analyses of US power plants (7). Tower signs indicate the locations of the INFLUX 
tower network for CO2 measurements. 
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Fig. S7: Maps of the total CO2 emission adjustments (in %) relative to prior emissions 
(percentage of change between prior and posterior emissions) when using Hestia emissions 
(right panel) and ODIAC emissions (left panel) as a priori in the optimization system over 3 years 
(Sept. 2012 to Sept. 2015). Tower signs indicate the locations of the INFLUX tower network for 
CO2 measurements. 
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Fig. S8: Whole-city 5-day daytime (12-22 UTC) averaged CO2 emissions from the city of 
Indianapolis, IN (nine counties) in ktC from September 2012 to September 2015 when using a 
biased prior (+40%) based on Hestia, before (black line, upper panel) and after (orange line, 
upper panel) optimization for the fossil fuel emissions compared to the original Hestia values 
(bold red line, upper panel). The adjustments after optimization (relative change in %) are shown 
in the middle panel with a median value of 26%. The dash-dotted line at -40% represents the 
relative change to match the Hestia emissions. Biogenic fluxes from Urban VPRM (in black) and 
after optimization (in green) are shown in the lower panel. Values correspond to the aggregated 
totals of 1-km resolution fluxes. 
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Fig. S9: Radial representation of bias removals from two sectoral bias experiments (biases are 
represented as fractions of the original Hestia sectoral estimates). A priori estimates were 
constructed by adding 15% to the Hestia sectoral estimates. The optimization procedure over the 
three years (September 2012 - September 2015) mis-attributes part of the original biases (only 
applied to the mobility or the stationary sector) to the complementary sector. The arrows 
represent the corrections applied to the two sectors for both experiments (mobility-only bias and 
stationary-only bias). 
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