Supporting Information

Multifunctional Binding Strategy on Nonconjugated Polymer Nanoparticles for Ratiometric Detection and Effective Removal of Mercury Ions

Yu Zhu Fan,[†] Lei Han,[†] Yu Zhu Yang,[†] Zhe Sun,[†] Na Li,[‡] Bang Lin Li,[†] Hong Qun Luo,^{* †} and Nian Bing Li^{* †}

- [†]Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
- ^{*}School of Pharmaceutical Science, Nanchang University, Nanchang 330006, P. R. China
- *Corresponding Author. Tel: +86 23 68253237; Fax: +86 23 68253237; E-mail address: linb@swu.edu.cn (NB Li); luohq@swu.edu.cn (HQ Luo).

This supporting information contains 18-page document, including EXPERIMENTAL SECTION, 6 tables, 12 figures, references and this cover page.

1 EXPERIMENTAL SECTION

1. Chemicals. Mercaptosuccinic acid (MSA) and thiosemicarbazide (TSC) were 2 supplied by Adamas Reagent, Ltd., China. Hg(NO)₃, HNO₃ (wt. 68%), Na₂HPO₄, 3 KH₂PO₄, NaF, NaCl, NaBr, KI, Na₂S, Cu(NO₃)₂, Al(NO₃)₃, CdCl₂, FeCl₃, FeCl₂, 4 Co(NO₃)₂, Ni(NO₃)₂, CrCl₃, KCrO₄, Zn(NO₃)₂, HAuCl₃, AgNO₃, and EDTA were 5 obtained from Aladdin Reagent Co., Ltd., Shanghai, China. Phosphate buffers (PB, 6 1/15 M) with different pH values were prepared according to a standard protocol. All 7 8 chemicals used were of analytical reagent grade. Ultrapure water (18 M Ω cm) was used in all experiments. 9

2. Instruments. Transmission electron microscopy (TEM) analysis was obtained 10 with a Talo F200X transmission electron microscope (FEI, Czech Republic). X-ray 11 12 photoelectron spectra (XPS) were taken on a Thermo ESCALAB 250XI surface analysis system. A Bruker IFS 113v spectrometer (Bruker, Germany) was utilized for 13 recording Fourier transform infrared (FTIR) spectrum. An F-4500 spectrofluorometer 14 (Hitachi, Japan) was applied for collecting fluorescence (FL) and second-order 15 16 scattering (SOS) spectra. Photomultiplier tube (PMT) voltage was fixed at 700 V, and the slits were set at 5 nm for both excitation and emission. Ultraviolet visible (UV-vis) 17 absorption spectra were collected on a UV-vis 2450 spectrophotometer (Shimadzu, 18 Japan). Fluorescence lifetimes were measured with a Fluorolog-3 fluorescence 19 20 spectrophotometer (Horiba, USA). The dynamic light scattering (DLS) and zeta potential were using a NanoBrook Omni particle size and zeta potential analyzer 21 22 (Brook, China). A pH meter (FE28, Mettler-Toledo, Switzerland) was used for the measurement of solution pH values. 23

3. Preparation of MT-PNPs. The nonconjugated PNPs were synthesized by one-pot hydrothermal treatment. Typically, 2.00 g of MSA and 1.20 g of TSC were dissolved with 80 mL of ultrapure water (18 M Ω cm). The mixed solution was then moved into a Teflon-lined autoclave, where it was heat-treated for 6 h at 200 °C. After the autoclave was cooled naturally to room temperature, the resultant brown solution was dialyzed with a filter bag (molecular weight cut off = 500 Da) for 24 h to obtain the pure MT-PNPs. The purified MT-PNPs solution was concentrated to 5 mL by rotary evaporation as a stock solution for analytical experiments. In addition, the product was freeze-dried (-70 °C) to obtain the powder for characterization.

33

4. Hg²⁺ Detection Procedure with MT-PNPs.

Ratiometric Detection Procedure of Hg^{2+} . At room temperature, 10 µL of MT-PNPs stock solution, 200 µL of phosphate buffer (PB, 1/15 M, pH = 5.0), and 300 µL of ultrapure water were mixed. Then, various concentrations of Hg^{2+} standard solution (10 µL) was added to the mixture. The total volume of sensing system was 520 µL. After the reaction for 30 min, the fluorescence and second-order scattering spectra were collected at 365 nm excitation.

Ratiometric Detection Procedure of Hg²⁺ in Natural Water. The real water 40 sample was collected in the Beibei reservoir (Chongqing, China). Firstly, the water 41 was centrifugated (10000 r/min, 10 min) and filtrated (0.22 µM membrane filter) to 42 remove the precipitable and suspended particles, respectively. Then, HNO₃ (0.1 M, 43 100 µL) was added to the water sample (5.0 mL) until the pH reaches about 2.5 to 44 prevent metal ions hydrolysis and precipitation. Before measurement, 0.1 M NaOH 45 (80 μ L) was added to the water sample to recover the pH approximately 5.0. 300 μ L 46 of real water, 200 µL of phosphate buffer, and 10 µL of MT-PNPs stock solution 47 were mixed. After reaction for 30 min, the FL and SOS spectra were collected under 48 excitation at 365 nm. Then, various concentrations of Hg²⁺ standard solution (10 μ L) 49 was added to the mixture and the FL and SOS spectra were recorded with the same 50 procedure. 51

52

5. Hg²⁺ Removal Procedure with MT-PNPs.

Procedure for Hg^{2+} Removal. The removal experiment was carried out at room temperature. In detail, Hg^{2+} aqueous solution (20 μ M, 5 mL, pH 6.0 regulated with 0.1 M NaOH and 0.1 M HCl) was mixed with MT-PNPs (0.4576 mg). After reaction for 50 min, the precipitate was separated from the mother liquid via centrifugation at 10000 r/min for 10 min. Finally, the supernatant was taken for ICP-MS analysis of the residual Hg^{2+} . The ICP-MS technique offers the advantages including high sensitivity, accuracy, and good selectivity. Each result in the work is obtained in three determinations in parallel.

Procedure for Hg²⁺ Sorption Isotherm. Hg²⁺ aqueous solution (5 mL, pH 6.0)
with different concentrations was mixed with MT-PNPs (0.4576 mg). The mixtures
were stirred at room temperature for 50 min, and then suffered centrifugation (10000
r/min, 10 min). The remaining Hg²⁺ in supernatant was analyzed by ICP-MS.

Procedure for Hg^{2+} Removal at pH 2.0-6.0. 5 mL of Hg^{2+} solution (20 μ M) at different pH (2.0-6.0) was mixed with MT-PNPs (0.4576 mg). The mixtures stirred at room temperature for 50 min, and then suffered centrifugation (10000 r/min, 10 min). The remaining Hg^{2+} in supernatant was analyzed by ICP-MS.

Procedure for Hg^{2+} Sorption Kinetics. MT-PNPs (0.4576 mg) were added to the Hg²⁺ aqueous solution (20 μ M, 5 mL, pH 6.0). The mixtures were stirred at room temperature for different contact times (10–110 min) followed by centrifugation (10000 r/min, 10 min). Finally, the supernatant was collected and analyzed by ICP-MS to determine the remaining Hg²⁺ content.

Procedure for Hg^{2+} Removal with Coexisting Metal Ions. Firstly, 5 mL of aqueous solution (pH 6.0) containing Hg^{2+} (20 μ M) and coexisting metal ions (20 μ M) were prepared. Then, MT-PNPs (0.4576 mg) were added to the solution and reacted for 50 min. After centrifugation (10000 r/min) for 10 min, the supernatant was taken for ICP-MS analysis of the metal concentrations.

Procedure for Hg^{2+} Removal from Real Sample. The water sample was collected from Beibei reservoir (Chongqing, China), and then was filtrated with 0.22 μ M membrane filter to remove the suspended particles. Then, $Hg(NO_3)_2$ standard solution were spiked in the 5 mL of water sample to obtained 20 and 40 μ M spiking level, respectively. After the pH value of the spiking water sample was adjusted to 6.0, it was treated with MT-PNPs (0.4576 mg) for 50 min. Upon equilibrium, samples were centrifugated and analyzed for Hg^{2+} .

- cells, LO2 cells were incubated in 96-well plates and allowed to grow for 24 h at 37 $\$ with 5% CO₂. Then, different concentrations of MT-PNPs (0, 0.88, 2.20, 4.40, 6.60, 8.80, and 11.00 mg/mL) were added to the wells followed by incubation for 24 h at 37 $\$ under 5% CO₂. The cell viability was assessed colorimetrically using cell counting kit-8 (CCK-8). The optical density (OD) was measured at 450 nm. The following equation was used to calculate the cell viability:¹
- 93 cell viability (%) = ([OD]_{treated}/[OD]_{control})×100%
- where $OD_{control}$ and $OD_{treated}$ were obtained in the absence and presence of MT-PNPs, respectively. The results are the mean standard deviation of four separate measurements.
- 97

99 List of Figures

100 Figure S1. FL emission spectra of MT-PNPs with different excitation wavelengths.

101 [MT-PNPs] = 2% v/v.

- 102 Figure S2. Normalized absorption spectrum (Abs) of NaBH₄ solution (1.0 mM) and
- the normalized excitation (Ex) and emission (Em) spectra of MT-PNPs (2% v/v).
- **Figure S3.** High-resolution TEM image of MT-PNP-Hg²⁺ complex. [MT-PNPs] = 2%
- 105 v/v, $[Hg^{2+}] = 192 \ \mu M$, PB (pH = 5.0).
- **Figure S4.** XPS spectrum of MT-PNPs in the presence of Hg^{2+} .
- **Figure S5.** Fluorescence lifetimes of MT-PNPs in the absence and presence of Hg^{2+} .
- 108 [MT-PNPs] = 2% v/v, [Hg²⁺] = 192 μ M, PB (pH = 5.0), λ_{Ex} = 365 nm; λ_{Em} = 430 nm.
- 109 **Figure S6.** FTIR spectra of MT-PNPs and MT-PNP-Hg²⁺.
- **Figure S7** Effect of pH value on the FL and SOS intensity of MT-PNPs. [MT-PNPs] =
- 111 2% v/v, PB.
- **Figure S8.** FL and SOS intensity of PNPs containing Hg^{2+} as a function of time.
- 113 [MT-PNPs] = 2% v/v, [Hg²⁺] = 192 μ M, PB (pH = 5.0), λ_{Ex} = 365 nm; λ_{Em} = 430 nm,
- 114 $\lambda_{SOS} = 730 \text{ nm.}$
- Figure S9. Effect of standing time (0-10 monthes) on the FL and SOS spectra of MT-PNPs. [MT-PNPs] = 2% v/v.
- 117 Figure S10. Normalized FL intensity (430 nm) of MT-PNPs (2% v/v) irradiated by a
- 118 700 W xenon lamp (365 nm) for 60 min.
- 119 Figure S11. Mercury removal efficiency of MT-PNPs and other polymer materials
- 120 after reaction with Hg^{2+} (20 μ M) for 50 min.
- **Figure S12.** Application of MT-PNPs for Hg^{2+} removal from reservoir water at 20
- 122 μ M and 40 μ M spiking levels.
- 123

126 Figure S1. FL emission spectra of MT-PNPs with different excitation wavelengths.

127 [MT-PNPs] = 2% v/v.

128

129

130

Figure S2. Normalized absorption spectrum (Abs) of NaBH₄ solution (1.0 mM) and the normalized excitation (Ex) and emission (Em) spectra of MT-PNPs (2% v/v).

Figure S3. High-resolution TEM image of MT-PNP-Hg²⁺ complex. [MT-PNPs] = 2%

136 v/v,
$$[Hg^{2+}] = 192 \ \mu M$$
, PB (pH = 5.0).

137

Figure S4. XPS spectrum of MT-PNPs in the presence of Hg^{2+} .

140

Figure S5. Fluorescence lifetimes of MT-PNPs in the absence and presence of Hg²⁺. [MT-PNPs] = 2% v/v, [Hg²⁺] = 192 μ M, PB (pH = 5.0), λ_{Ex} = 365 nm; λ_{Em} = 430 nm.

145 **Figure S6.** FTIR spectra of MT-PNPs and MT-PNP-Hg²⁺.

147 Figure S7. Effect of pH value on the FL and SOS intensity of MT-PNPs. [MT-PNPs]

150

151

Figure S8. FL and SOS intensity of PNPs containing Hg^{2+} as a function of time. (MT-PNPs] = 2% v/v, $[Hg^{2+}] = 192 \ \mu M$, PB (pH = 5.0), $\lambda_{Ex} = 365 \ nm$; $\lambda_{Em} = 430 \ nm$, $\lambda_{SOS} = 730 \ nm$.

157 Figure S9. Effect of standing time (0-10 monthes) on the FL and SOS spectra of

158 MT-PNPs. [MT-PNPs] = 2% v/v.

159

160

161

163 700 W xenon lamp (365 nm) for 60 min.

Figure S11. Mercury removal efficiency of MT-PNPs and other polymer materials 167 after reaction with Hg^{2+} (20 μ M) for 50 min.

Figure S12. Application of MT-PNPs for Hg^{2+} removal from reservoir water at 20 and 40 μ M spiked levels.

175 List of Tables

- **Table S1.** XPS analysis of MT-PNPs before and after NaBH₄ treatment.
- 177 **Table S2.** Binding energy of N and O of MT-PNPs in the absence and presence of
- 178 Hg²⁺.
- **Table S3.** Photostability comparison of MT-PNPs with the commercially available
- 180 organic dyes and quantum dots.
- **Table S4.** Determination of Hg^{2+} in real water samples (n = 3).
- **Table S5.** Detailed information of reactants involved in the experiments.
- **Table S6.** XPS analysis of MT-PNPs, MSA-AU, and MA-AU.

184

Sample	C (%)	N (%)	O (%)	S (%)
MT-PNPs	60.60	15.59	17.36	6.45
MT-PNPs with NaBH ₄	39.79	4.92	51.79	3.49

Table S1. XPS analysis of MT-PNPs before and after NaBH₄ treatment.

Table S2. Binding energy of N and O of MT-PNPs in the absence and presence of
Hg²⁺.

G	C-NH ₂	C–NH–C	C=N-N	С–ОН	C = O(eV)	
Sample	(eV)	(eV)	(eV)	(eV)	C=O(ev)	
MT-PNPs	397.25	399.43	400.65	531.21	532.77	
MT-PNP-Hg ²⁺	397.86	399.11	400.56	531.30	532.73	

194 **Table S3.** Photostability comparison of MT-PNPs with the commercially available

195 organic dyes and quantum dots.

Material	Light source	Bleaching ¹	References	
BODIPY	500 W iodine-tungsten	5.0/(60 min)	2	
FLC5-Ceramide	lamp (>400 nm)	~3 % (00 mm)		
	500 W iodine-tungsten	7.5% (60 min)	2	
NBD Co-Cerainide	lamp (>400 nm)	~7.5% (00 mm)		
	450 W xenon lamp			
FITC ^a	(100	100% (10 min)	3	
	(488 nm)			
3,3'-diethyl-2,2'thiadicar	150 W Hg(Xe) lamp	32% (2 min)	Δ	
bocyanine ethyl sulfate	(>550 nm)	5270 (2 mm)	·	
SYTO RNA select	Xe lamp (620 nm)	~ 50% (60 min)	5	
	450 W xenon lamp			
CdTe QDs ^b		>90% (20 min)	3	
	(365 nm)			
	450 W xenon lamp		3	
CdTe/CdS/ZnS QDs ^c		>90% (30 min)		
	(365 nm)			
	700 W xenon lamp			
MT-PNPs		<0.8% (60 min)	This work	
	(365 nm)			

196 ¹ Percentage of fluorescence lost after continuous irradiation.

197 ^a fluorescein isothiocyanate

198 ^b CdTe quantum dots

199 ^c CdTe/CdS/ZnS quantum dots

200

Sample	lancii	1 4 /			
1		0	ND ^a		
2		10	10.49	104.93	5.29
3		100	101.79	101.79	1.05
^a ND: No	t detected	l.			
Table S	5. Detai	led information of	reactants involve	ed in the experim	ients.
Table S	5. Detai	led information of	reactants involve Molecular	ed in the experim Molecular	ients.
Table Same	5. Detai Reactar	led information of	reactants involve Molecular formula	ed in the experim Molecular weight	ents. Structure
Table Salarian Number	5. Detai Reactar Mercap	led information of hts (abbreviation) tosuccinic acid (MSA	reactants involve Molecular formula A) C ₈ H ₁₀ O ₈ S	ed in the experim Molecular weight 266.22	Structure
Table Sa Number 1 2	5. Detai Reactar Mercap Malic a	led information of nts (abbreviation) tosuccinic acid (MSA cid (MA)	reactants involve Molecular formula A) C ₈ H ₁₀ O ₈ S C ₄ H ₆ O ₅	ed in the experim Molecular weight 266.22 134.09	tents. Structure Hooc, Hooc, Hooc, он Hooc,
Table SNumber123	5. Detai Reactar Mercap Malic a Thioser	led information of nts (abbreviation) tosuccinic acid (MSA cid (MA) nicarbazide (TSC)	reactants involve Molecular formula A) $C_8H_{10}O_8S$ $C_4H_6O_5$ CH_5N_3S	ed in the experim Molecular weight 266.22 134.09 91.14	hents. Structure $HOOC \xrightarrow{SH} COOH$ $HOOC \xrightarrow{OH} COOH$ $H_2N \xrightarrow{S} H_2N \xrightarrow{N} H_2$

Table S4. Determination of Hg^{2+} in real water samples (n = 3).

Samples	C (%)	N (%)	O (%)	S (%)
MT-PNPs	60.6	15.59	17.36	6.45
MSA-AU	72.64	3.47	22.58	1.31
MA-AU	50.61	14.7	34.69	0

Table S6. XPS analysis of MT-PNPs, MSA-AU, and MA-AU.

214 **REFERENCES**

215 (1) Ge, X.; Sun, L.; Ma, B.; Jin, D.; Dong, L.; Shi, L.; Li, N.; Chen, H.; Huang, W.,

Simultaneous Realization of Hg²⁺ Sensing, Magnetic Rresonance Imaging and
Upconversion Lluminescence in Vitro and in Vivo Bioimaging Based on Hollow
Mesoporous Silica Coated UCNPs and Rruthenium Complex. *Nanoscale* 2015, *7*,
(33), 13877-13887.

- 220 (2) Zhang, H.; Fan, J.; Wang, J.; Zhang, S.; Dou, B.; Peng, X., An Off-on
- 221 COX-2-specific Fluorescent Probe: Targeting the Golgi Apparatus of Cancer Cells. J.
- 222 Am. Chem. Soc. 2013, 135, (31), 11663-11669.
- 223 (3) He, Y.; Kang, Z.-H.; Li, Q.-S.; Tsang, C. H. A.; Fan, C.-H.; Lee, S.-T., Ultrastable,
- Highly Fluorescent, and Water-Dispersed Silicon-Based Nanospheres as Cellular
 Probes. *Angew. Chem.* 2009, 48, (1), 128-132.
- 226 (4) Renikuntla, B. R.; Rose, H. C.; Eldo, J.; Waggoner, A. S.; Armitage, B. A.,
- 227 Improved Photostability and Fluorescence Properties Through Polyfluorination of a
- 228 Cyanine Dye. Org. Lett. **2004**, *6*, (6), 909-912.
- 229 (5) Cao, C.; Wei, P.; Li, R.; Zhong, Y.; Li, X.; Xue, F.; Shi, Y.; Yi, T., Ribosomal
- 230 RNA-Selective Light-up Fluorescent Probe for Rapidly Imaging the Nucleolus in
- 231 Live Cells. ACS sensors **2019**, *4*, (5), 1409-1416.