Supporting Information

Stabilizing Liquid Electrolytes in Porous PVDF Matrix Incorporated with Star Polymers with Linear PEG Arms and CycloPEG Cores

Shaoqiao Li,[†] Zhuliu Xiao,[†] Kairui Guo,[†] Huihui Gan,[†] Jirong Wang,[†] Yong Zhang,[†] Liping Yu,[†] and Zhigang Xue^{*,†,‡}

[†] Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China. [‡] State Key Laboratory of Materials Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China.

E-mail address: zgxue@mail.hust.edu.cn (Z. Xue)

Number of pages: 3

Number of figures: 4

Table of Contents

Figure S1. Electrolyte leakage behavior	S2
Figure S2. Electrolyte uptake and porosity	S2
Figure S3. Activation energy	S3
Figure S4. Current-time curve for the calculation of t_{Li}^+	S3

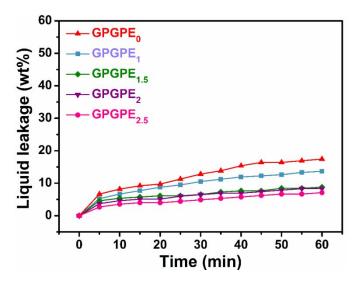
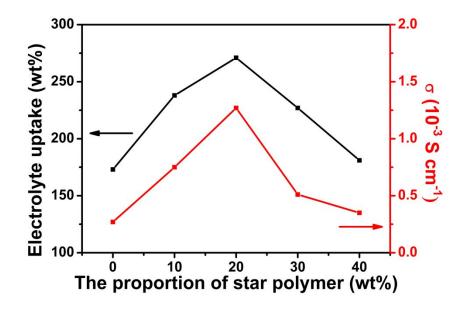



Figure S1. Electrolyte leakage curves of GPGPEs

Figure S2. Electrolyte uptake and porosity of PGPEs membranes with different mass ratios of star polymer.

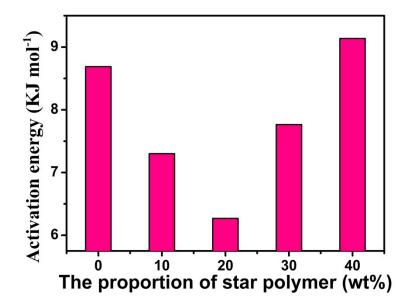
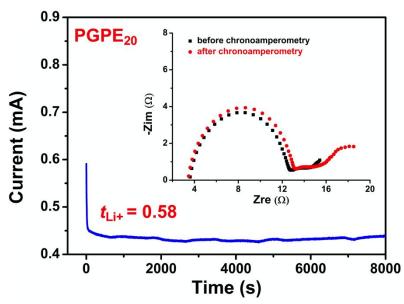



Figure S3. Activation energy of PGPEs with different mass fractions of star polymer.

Figure S4. Current-time curve obtained for $PGPE_{20}$ from chronoamperometry at a DC polarization of 10 mV, inset: Nyquist profiles of the cells before and after polarization. The test was run at 60 °C.