Unveiling Synergistic Effects of Interstitial Boron in Palladium-Based Nanocatalysts for Ethanol Oxidation Electrocatalysis

Lizhi Sun,¹ Hao Lv,² Yaru Wang,¹ Dongdong Xu,¹ and Ben Liu^{*,1,2} ¹Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China. *E-mail: ben.liu@njnu.edu.cn ²College of Chemistry, Sichuan University, Chengdu 610064, China

Table of Contents

1.	Chemicals and Materials	S3
2.	Synthesis of ternary PdB@N-G and PdCuB@N-G as well as their counterparts	S3
3.	The preparation of nanocatalysts ink	S3
4.	Electrochemical ethanol oxidation reaction	S4
5.	Characterizations	S4
6.	Supporting Figures and Tables	S5

Figure Contents

Supporting Figure S1. Size distributions of (a) Pd@N-G, (b) PdB@N-G, (c) PdCu@N-G, and PdCuB@N-G.

Supporting Figure S2. CV curves of the nanocatalysts collected in 1.0 M KOH with different scan rates.

Supporting Figure S3. CV curves of the nanocatalysts collected in different KOH concentrations.

Supporting Figure S4. CV curves of the nanocatalysts collected in 1.0 M KOH and 1.0 M ethanol with different scan rates.

Supporting Figure S5. CV curves of the nanocatalysts collected in 1.0 M KOH and 1.0 M ethanol with different test temperatures.

Supporting Figure S6. The relationship between mass activities and test temperatures for the nanocatalysts.

Supporting Figure S7. CV curves and corresponding relationships between \log_j and $\log C_{KOH}$ at different potentials for the nanocatalysts collected in 1.0 M ethanol with different KOH concentrations.

Supporting Figure S8. CV curves and corresponding relationships between log_j and logC_{ethanol} at different potentials for the nanocatalysts collected in 1.0 M KOH with different ethanol concentrations.

Supporting Figure S9. CV curves of the nanocatalysts collected in 1.0 M KOH and 1.0 M ethanol for 5000 cycles.

Supporting Figure S10. TEM images of the nanocatalysts after electrochemical EOR stability tests.

Table Contents

Supporting Table S1. Elemental compositions of B-alloyed Pd-based nanocatalysts collected with ICP-MS. **Supporting Table S2.** Summarizations of the activities of Pd-based nanocatalysts in EOR electrocatalysis.

1. Chemicals and Materials

Palladium (II) chloride (PdCl₂), copper nitrate (Cu(NO₃)₂), ammonium fluoride (NH₄F), boric acid (H₃BO₃), and borane dimethylamine complex (DMAB) were obtained from Alfa Aesar. Commercial Pd/C (30 wt. %) and Nafion solution (5 wt. % in alcohol and H₂O) were purchased from Sigma Aldrich. Nitrogen-functionalized graphene (N-G with N content of 3.0-5.0 wt %) were purchased from Nanjing XFNANO Materials Tech Co. Ltd. Ethanol, hydrazine hydrate (N₂H₄, 50%), and potassium hydroxide (KOH) were obtained from Sinopharm Chemical Reagent Co. Ltd. (Shanghai). To prepare 10 mM (mmol L⁻¹) H₂PdCl₄ solution, 0.355 g of PdCl₂ was dissolved with 20 mL of 0.2 M HCl solution in a 200 mL volumetric flask and further diluted to 200 mL by deionized H₂O. All the reagents are of analytical reagent grade and used without further purification. Deionized H₂O with the resistivity of 18.25 mΩ was used in all experiments.

2. Synthesis of ternary PdB@N-G and PdCuB@N-G as well as their counterparts

Binary PdB and ternary PdCuB nanoparticles on N-G (PdB@N-G and PdCuB@N-G) were synthesized by a solutionphase route, in which H₂PdCl₄ (and Cu(NO₃)₂), DMAB and H₃BO₃, and N-G were served as metal precursors, the B sources, the functional support, respectively. DMAB and H₃BO₃ were also behaved as the co-reducing agents to drive the crystalline growth of ternary PdCuB alloys. The synthetic temperatures were fixed at 95 °C. In a typical synthesis of PdCuB@N-G, 1.0 mL of 0.0338 M NH₄F, 1.0 mL of 0.101 M H₃BO₃, 0.5 mL of 10 mM H₂PdCl₄, and 0.5 mL of 10 mM Cu(NO₃)₂ were carefully added into 10 mL of deionized H₂O. Then, 0.4 mL of 1.0 mg mL⁻¹ N-G was injected into the above solution and further incubated at 95 °C for 30 min. Subsequently, 1.0 mL of freshly prepared 0.1 M DMAB was quickly injected with gentle shaking. The color of the solution was immediately turned to black, implying the formation of PdCuB alloys. After kept the reaction vial at 95 °C for another 2 h, the product was collected by centrifuged and washed several times with ethanol/H₂O. In contrast, **PdB@N-G** was synthesized by using H₂PdCl₄ as the sole metal precursor. As the controls, **metallic Pd NPs@N-G** and **bimetallic PdCu NPs@N-G** were obtained with the same procedures but using N₂H₄ as the reducing agent.

3. The preparation of nanocatalysts ink

Before electrochemical tests, the nanocatalysts and work electrode [glassy carbon electrode (GCE, 0.07065 cm²)] were totally cleaned with H_2O /ethanol. The ink of the catalyst was prepared as followed: 1.0 mg of nanocatalyst was mixed into 0.75 mL of ethanol and 0.25 mL of H_2O , and further sonicated for 30 min. Then, 50 µL of Nafion solution (5 wt. % in alcohol and H_2O) was injected and further sonicated for another 30 min. Last, 3.0 µL of the prepared ink solution (~ 3 µg of catalyst) was directly casted on the GCE electrode and dried at 40 °C before the tests.

4. Electrochemical ethanol oxidation reaction

All the electrocatalytic tests were repeated more than five times. Electrocatalytic studies were carried out on a CHI 660E electrochemical analyzer with a three-electrode system in which a GCE was used as working electrode, a carbon rod as counter electrode, and a silver/silver chloride electrode as reference electrode. The potentials used in this work were reported with respect to the saturated calomel electrode (SCE). The cyclic voltammogram (CV) was continuously scanned until a stable curve was obtained for further removal of the surfactant in N₂-saturated 1.0 M KOH. The mass activity of the nanocatalyst for the electrooxidation of ethanol was collected by scanning CV in 1.0 M KOH and 1.0 M ethanol at a scan rate of 50 mV s⁻¹. For electrochemical CO stripping tests, the catalysts electrode was first immersed in 1.0 M KOH, followed by purging with CO at 0.15 V for 30 min (full coverage of CO on the catalysts). Then, the electrode was moved to 1.0 M KOH for electrochemical CO stripping measurements in the potential range between -0.6 V and 0 V.

Electrochemical active surface areas (ECSAs) of the nanocatalysts were calculated from CVs in the area of PdO reduction peaks with a scan rate of 50 mV s⁻¹: $ECSA = \frac{Q_{PdO}}{0.405 \text{ mC cm}^{-2} \times m_{Pd}}$, where Q_{PdO} is the charge by integrated the reduction peak area of PdO to Pd, 0.405 mC cm⁻² is the charge for the reduction of PdO, and m_{Pd} is the mass of Pd on the electrode. The activation energy (E_a) values of the nanocatalysts were calculated based on Arrhenius equation as follows: I = Ae $-\frac{E_a}{RT}$, where I is the current at a specific potential, R is the gas content (8.315 J mol⁻¹ K⁻¹), T is the test temperature in K, and E_a is the apparent activation energy at a specific potential.

5. Characterizations

Transmission electron microscopy (TEM) observations were performed at 200 kV using a JEOL JEM-2100 microscope. TEM samples were prepared by casting a sample suspension onto a carbon coated nickel grid (300 mesh). Wide-angle X-ray diffraction (XRD) patterns were obtained on powder samples using a D/max 2500 VL/PC diffractometer (Japan) equipped with graphite-monochromatized Cu Kα radiation. X-ray photoelectron spectroscopy (XPS) was performed using a scanning x-ray probe of Al Kα radiation (thermal ESCALAB 250 Xi). The binding energy of the C 1s peak (284.8 eV) is used as a criterion for calibrating the binding energy of other elements. Inductively coupled plasma mass spectrometry (ICP-MS) was recorded on a NexION 350D. Gas chromatographymass spectrometry (GC-MS) was studied on an Agilent 7820A GC system connected with a thermal conductivity detector of 5974 series MSD.

6. Supporting Figures and Tables

Figure S1. Size distributions of (a) Pd@N-G, (b) PdB@N-G, (c) PdCu@N-G, and PdCuB@N-G.

Figure S2. CV curves of (a) Pd/C, (b) Pd@N-G, (c) PdB@N-G, and (d) PdCu@N-G collected in 1.0 M KOH with different scan rates.

Figure S3. CV curves of (a) Pd/C, (b) Pd@N-G, (c) PdB@N-G, (d) PdCu@N-G, and (e) PdCuB@N-G collected in different KOH concentrations (50 mV s⁻¹).

Figure S4. CV curves of (a) Pd/C, (b) Pd@N-G, (c) PdB@N-G, (d) PdCu@N-G, and (e) PdCuB@N-G collected in 1.0 M KOH and 1.0 M ethanol with different scan rates.

Figure S5. CV curves of (a) Pd/C, (b) Pd@N-G, (c) PdB@N-G, (d) PdCu@N-G, and (e) PdCuB@N-G collected in 1.0 M KOH and 1.0 M ethanol with different test temperatures.

Figure S6. The relationship between mass activities and test temperatures for (a) Pd/C, (b) Pd@N-G, (c) PdB@N-G, (d) PdCu@N-G, and (e) PdCuB@N-G (The results were summarized from Figure S5).

Figure S7. (a,c,e,g,i) CV curves and (b,d,f,h,j) corresponding relationships between log_j and logC_{KOH} at different potentials for (a,b) Pd/C, (c,d) Pd@N-G, (e,f) PdB@N-G, (g,h) PdCu@N-G, and (i,j) PdCuB@N-G collected in 1.0 M ethanol with different KOH concentrations.

Figure S8. (a,c,e,g,i) CV curves and (b,d,f,h,j) corresponding relationships between log_j and logC_{ethanol} at different potentials for (a,b) Pd/C, (c,d) Pd@N-G, (e,f) PdB@N-G, (g,h) PdCu@N-G, and (i,j) PdCuB@N-G collected in 1.0 M KOH with different ethanol concentrations.

Figure S9. CV curves of (a) Pd@N-G, (b) PdB@N-G, (c) PdCu@N-G, and (d) PdCuB@N-G collected in 1.0 M KOH and 1.0 M ethanol for 5000 cycles.

Figure S10. TEM and (insets) high-resolution TEM images of (a) PdCuB@N-G, (c) PdCu@N-G, (c) PdB@N-G, (d) Pd@N-G, and (e) Pd/C after EPR stability tests. (f) TEM and (inset) high-resolution TEM images of fresh Pd/C.

Table S1. Elemental compositions of B-alloyed Pd-based nanocatalysts before and after stability tests collected with ICP-MS.

Samples	Pd@N-G	PdB@N-G	PdCu@N-G	PdCuB@N-G
Pd/Cu/B ratios (fresh samples)	100 : 0 : 0	92.0 : 0 : 8.0	51.1 : 48.9 : 0	46.3 : 45.7 : 8.0
Pd/Cu/B ratios (after tests)	100:0:0	91.9: 0 : 8.1	55.3 : 44.7 : 0	49.3 : 42.8 : 7.9

Notes for Table S1: The B amounts in fresh PdB@N-G and PdCuB@N-G are 8 at. %. Pd/Cu ratios in PdCu@N-G and PdCuB@N-G are \sim 1:1, which are almost same to the feed ratios of H₂PdCl₂ and Cu(NO₃)₂ (1:1). After EOR stability tests, B amounts in both PdB@N-G and PdCuB@N-G are still 8 at. %, indicating the high structural stability.

Table S2. Summarizations of the activities of Pd-based nanocatalysts in EOR electrocatalysis.

Nanocatalysts	Measurement Conditions		Mass Activity	Poforoncoc
Nanocatalysis	CH ₃ CH ₂ OH (M)	KOH (M)	(A mg _{NM} ⁻¹)	Nererences
PdCuB @N-G	1.0	1.0	5.83	This work
c-Pd-Ni-P@a -Pd-Ni-P	1.0	1.0	3.05	Adv. Mater. 2020 , 32, 2000482
Pd/amorphous-SrRuO ₃	1.0	1.0	4.0	Nano Energy 2020 , 67, 104247
Pd₃Pb/C	0.5	0.5	2.05	Chem. Mater. 2020 , 32, 2044
CoP/RGO-Pd	1.0	1.0	4.597	ACS AMI 2020 , 12, 28903
Cu-Pd/Ir@Au _{1/6ML} NSs	1.0	1.0	3.583	ACS AMI 2020 , 12, 25961
PdAgCu BMSs	1.0	1.0	6.36	Nano Lett. 2019 , 19, 3379
PdCuP NWs	1.0	1.0	6.7	Appl. Catal. B Environ. 2019 , 253, 271
Pt ₅₆ Cu ₂₈ Ni ₁₆	1.0	1.0	5.6	Nano Lett. 2019 , 19, 5431
PdBP MSs	1.0	1.0	3.65	ACS Nano 2019 , 13, 12052
PdP ₂ /rGO	0.5	0.5	1.6	Appl. Catal. B Environ. 2019, 242, 258
PdAgCu MSs	1.0	1.0	4.64	Chem. Sci. 2019 , 10, 1986
PdPtCu NSs	1.0	1.0	2.67	Green Chem. 2019 , 21 , 2367
Pd-WO _{2.75} NB	1.0	1.0	1.98	ACS AMI 2019 , 11, 10028
Pt₅FePd₂ NWs	1.0	1.0	4.965	ACS AMI 2019 , <i>11</i> , 30880
Pt ₅₄ Rh ₄ Cu ₄₂ CNBs	1.0	1.0	4.09	Adv. Energy Mater. 2018 , 8, 1801326
PdAgCu HMSs	1.0	1.0	5.13	ACS Cent. Sci. 2018 , 4, 1412
Pd/NiSA	1.0	1.0	1.20	Chem. Commun. 2018 , 54, 12404
PdNi HNCs	1.0	1.0	1.201	Nano Energy 2017 , 42, 353
PtPd ₃ Ag ₅ /C-D	1.0	1.0	4.5	Electrochim. Acta 2017 , 236, 72
Pd/Ni(OH) ₂ /rGO	1.0	1.0	1.546	Adv. Mater. 2017 , 29, 1703057
v-PdCuCo-AS	1.0	1.0	0.823	Adv. Mater. 2017 , 30, 1704171
Pd NN	1.0	1.0	2.04	ACS AMI 2017 , 9, 39303
3D PdCu NSs	1.0	1.0	4.3	Small 2017 , 13, 1602970
Pd ₆₈ Cu ₃₂ Aerogels	1.0	1.0	3.472	Adv. Mater. 2016 , 28, 8779
PdCu ₂ NPs	.1.0	1.0	1.63	ACS AMI 2016 , <i>8</i> , 34497
Au NR _{core} -Pt/Pd _{shell}	1.0	1.0	2.5	J. Mater. Chem. A 2016 , 4, 3765