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Figure S 1. Overall molar monomer conversion as a function of polymerization time for 

duplicated synthese of MIP-VAc17-VCL17-DVA66 with the corresponding size distributions 

determined at 0.05 g.L-1. 

 

 

Figure S 2. Number of moles NP extracted after each centrifugation cycle with ethyl acetate 

for the MIP-DVA15-VCL42-VAc43.  
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Liquid-liquid extraction of the nonylphenol in water, derivatization step and quantification 

of extracted NP by  GC-MS analysis. 

To measure the residual concentration of the NP in water, it is necessary to extract NP with an 

organic solvent because the aqueous phase cannot be directly injected into GC-MS. Different 

liquid-liquid extractions were attempted in order to select the most suitable organic solvent. The 

protocol was as follows: 500 μl of the aqueous NP solution are mixed with 500 μl of the organic 

solvent in a 2 mL Eppendorf tube. The mixture was sonicated for 3 minutes and then vortexed 

for 5 minutes before being left to decant.  

Prior to quantitative GC-MS analysis of the NP, a trimethylsilylation derivatization of NP was 

performed as follows (Scheme S1): 125 µL of the NP solution were mixed with 50 µL of N,O-

Bis(trimethylsilyl)trifluoroacetamide (BSTFA) and the mixture was placed in an oven for 45 

min at 60°C: 1-3 

 

Scheme S1: Chemical reaction involved in the derivatization process of the NP prior to GC-

MS injection. 

The extraction yield (r) was calculated from Eq S. 1. 

𝑟 (%) =  
𝐶𝑁𝑃 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑

𝐶𝑁𝑃 𝑖𝑛𝑖𝑡𝑖𝑎𝑙
× 100 

Eq S. 1 

CNP extracted (mol.L-1) is the concentration of the NP in the organic phase after the extraction and 

C0 is the initial concentration of the NP in water (C0 =  4.54 µmol.L-1   = 1 mg.L-1 = 1 ppm).  It 

is required to establish calibration curves in order to calculate CNP extracted.  For that purpose, 20 

μL of a reference solution of NP in isopropanol at 1004 ppm was poured into 20 mL of an 

organic solvent. Several solutions of NP at 0.5 ppm, 0.2 ppm, 0.1 ppm and 0.01 ppm were 
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prepared by dilution to plot the calibration curve of GC-MS area signal versus derivatized NP 

concentration. Calibration curves were performed directly in ethyl acetate, and in 

dichloromethane after extraction from water (Figure S 3). 

  

Figure S 3. Calibration curves for the NP in ethyl acetate (orange) and for the NP extracted 

with dichloromethane from water solutions (blue) of NP at 0.1, 0.2, 0.5 and 1 ppm for GC-MS 

analysis. 

 

Ethyl acetate, isooctane and dichloromethane provided extraction yield of 4%, 55% and 94% 

respectively. Thus, dichloromethane was selected to extract NP from water samples and 

triplicate measurements provided an average NP extraction yield of 92 %. In order to provide 

an accurate measurement of NP present in water, the GC-MS peak area of derivatized NP 

extracted with dichloromethane was plotted against the concentration for 5 aqueous solutions 

of NP at 1 ppm, 0.5 ppm, 0.2 ppm, 0.1 ppm and 0.01 ppm.   
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 Figure S 4. Example of the absorbance spectra of NP in EtOH/water at various concentrations 

and calibration curves for NP in water/ethanol mixtures at different water content (H2O/EtOH 

v/v). Spectra were recorded with a 1 cm long quartz cells with solution concentrated from 0.1 

to 1.1 mmol.L-1. The absorbance was monitored at 278 nm. The corresponding molar absorption 

coefficients ( in L.mol-1.cm-1) corresponds to the slope of each linear plot. 
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Figure S 5. Chemical structures of (a) 2-ethylhexanoate vinyl ester (VeoVaEH), (b) vinyl 

benzoate (VB) and (c) vinyl acetate (VAc) used as co-monomer, (d) N-vinylcaprolactam (VCL) 

used as functional monomer, (e) divinyl adipate (DVA) used as crosslinker, (f) acetaldehyde 

and (g) caprolactam used to monitor the hydrolysis of the VCL by 1H NMR, (h) nonylphenol 

(NP) used as template and (i) trioxane used as internal standard to determine the double bond 

conversion by 1H NMR. 
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Figure S 6. 1H NMR spectra of (1) vinyl acetate, (2) N-vinylcaprolactam, (3) vinyl benzoate, 

(4) 2-ethylhexanoate vinyl ester, (5) divinyl adipate and (6) nonylphenol in deuterated 

dimethylsulfoxide (DMSO-d6) at room temperature. 

 

Figure S 7. 1H NMR spectrum of a VAc/VCL miniemulsion (MIP-DVA50-VCL25-VAc25) 

polymerization at t = 270 min in presence of nonylphenol in DMSO-d6 at room temperature. 
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Optimization of miniemulsion polymerization of VCL/VAc/DVA in the absence (NIP) or 

presence (MIP) of nonylphenol. 

The VCL/VAc/DVA miniemulsion polymerizations conducted at 65°C with 0.05 to 0.07 mol-

% of AIBN (Table S1) ended up with low monomer conversion of about 40 % for 6h of 

polymerization while 90 % of monomer conversion were achieved in 5 hours by increasing 

AIBN content up to 0.10 mol-% (Figure S 8). 

Table S1. Set up of the optimum experimental conditions for the miniemulsion 

copolymerization of VAc and VCL performed at 65°C with 10 wt-% of initial solids content.a   

Expt f 

NaHCO3
b 

mol-%  

fAIBN
c 

mol-% 

[𝐍𝐏]𝟎

[𝐕𝐂𝐋]𝟎
 

Xm
 d 

% 

pH rHy
e  

% 

Dh
f 

nm 

PDIf 

NIP-AIBN0.07-Buffer0.3  0.3 0.07 0 40 4.1 29 na g na g 

NIP-AIBN0.05-Buffer2 1.9 0.05 0 40 5.4 13 na g na g 

NIP-AIBN0.1-Buffer2 1.9  0.11 0 69 5.4 15 282 0.20 

NIP-AIBN0.1-Buffer3 2.9  0.10 0 77 5.5 10 306h 0.23 

MIP-AIBN0.1-Buffer2 1.8  0.10 0.25 22 4.1 22 na g na g 

MIP-AIBN2-Buffer2 1.9  1.85 25 52 3.9 19 195 0.10 

MIP-AIBN4-Buffer2 1.9  3.93 25 75 3.6 10 176 0.06 

MIP-AIBN8-Buffer2 1.8  7.72 25 79 3.5 8 179 0.07 

a Experimental conditions: 6 mol.-% DVA as cross-linker versus the total number of moles of 

monomers; molar fraction of the monomers : fVAc,0 = fVCL,0 = 0.5. b fNaHCO3 is the molar fraction 

of buffer versus the total number of moles of monomers: fNaHCO3 = 100  nNaHCO3 /(nVAC + nVCL 

+ nDVA). c fAIBN is the molar fraction of initiator versus the total number of moles of monomers 

and crosslinker: fAIBN = 100  nAIBN /(nVAC + nVCL + nDVA). d Xm is the overall molar conversion 

of vinylic monomers and crosslinker at  6 h of polymerization, see Erreur ! Source du renvoi 

introuvable.. e rHy is the hydrolysis yield of VCL. The hydrolysis yield (rHy) are calculated from 

by using the ratio of integrals of acetaldehyde at the end of polymerization and of the integral 

of the VCL measured at the initial time (I1H,VCL at 4.4 ppm, 1H) using Itrioxane as internal 

standard. f Hydrodynamic diameter (Dh) and polydispersity index (PDI) measured by DLS. g 

The conversion was too low so the diameter was not measured. h Low fraction of sedimented 

particles. 

𝑟𝐻𝑦 (%) =
(𝐼1𝐻𝑎𝑐𝑒𝑡𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒)

𝑡
/(𝐼1𝐻𝑡𝑟𝑖𝑜𝑥𝑎𝑛𝑒)𝑡

(𝐼1𝐻𝑉𝐶𝐿)0/(𝐼1𝐻𝑡𝑟𝑖𝑜𝑥𝑎𝑛𝑒)0
× 100  

Eq S. 2 
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Figure S 8. Overall molar conversion of VAc, VCL and DVA versus polymerization for NP-

free miniemulsion polymerization carried out at 65 °C at different molar fractions of AIBN 

initiator and NaHCO3 buffer: () NIP-AIBN0.05-Buffer2, () NIP-AIBN0.07-Buffer0.6, () NIP-

AIBN0.1-Buffer2, () NIP-AIBN0.1-Buffer3 (see Table S1). 

Herein, sodium hydrogen carbonate buffer was used for the particle synthesis in order to 

counterpart the hydrolysis of the VCL. Indeed, Imaz et al.4 highlighted a noticeable VCL 

hydrolysis in acidic media, producing acetaldehyde and caprolactam, but the hydrolysis yield 

was significantly hindered in buffered aqueous phase.  The yield of hydrolysis rate was 

decreased from 29 % for NIP-AIBN0.07-Buffer0.3 to 13-15 % by increasing NaHCO3 

concentration up to 2-3 mol-% (NIP-AIBN0.1-Buffer2, NIP-AIBN0.1-Buffer3, see Table S1).  It 

should be noticed that 3 mol-% of NaHCO3 versus all led to the lowest yield of hydrolysis 

(10%). For all the series of NIP colloids synthesized with 2-3 mol-% of NaHCO3 

(corresponding to 4 to 6 mol-% of NaHCO3 versus VCL), a monomodal particle size 

distribution was observed by DLS (Figure S 11). The average Dh of the initial monomer 

droplets was about 180 nm, which is lower than the final polymer particle diameter ranging 

from 280 to 310 nm suggesting slight monomer diffusion or particle aggregation during 

miniemulsion process (Figure S 12). In conclusion of this part, well-defined crosslinked 

P(VCL-co-VAc) NIP colloids dispersed in an aqueous phase are successfully synthesized by 

using 0.1 mol.-% of AIBN and 2 mol-% of buffer based on monomers. 

We thus explored miniemulsion copolymerization of VCL, DVA and VAc in the presence of 

NP as template to prepare the imprinted colloids (Table S1). As mostly reported in the 
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literature, a fraction of 25 mol-% of nonylphenol versus the H-bonding VCL functional 

monomer was chosen. The polymerization rate was drastically reduced by the presence of the 

nonylphenol (Figure S 9), which was expected as the phenoxyl radicals formed from phenolic 

compounds are known as radical scavengers.5 Thus, a series of MIPs were synthesized with an 

increasing amount of initiator (from 0.1 mol.-% to 8 mol.-% vs. monomers) in order to 

determine the minimum concentration required to overcome this retardation (Figure S 9b and 

Figure S 10).  

 

 

Figure S 9.  Kinetics of miniemulsion copolymerization of VCL, VAc and DVA in the presence 

of 25 mol-% of NP based on VCL with various amounts of AIBN initiator: () MIP-AIBN0.1-

Buffer2, () MIP-AIBN2-Buffer2, () MIP-AIBN4-Buffer2, () MIP-AIBN8-Buffer2 (see 

Table S1). Comparison with kinetics of miniemulsion polymerization in the absence of NP ( 

NIP-AIBN0.1-Buffer2). 

 

A concentration of 4 mol-% of AIBN based on monomers and crosslinker was sufficient to 

overcome the retardation and to reach a good level of monomer conversion of 75-80 %. 

Increasing the concentration up to 8 mol-% increased the initial polymerization rate but ending 

with a similar range of final monomer conversion.  As the inhibition period is sharply reduced 

in the case of 2 – 8 mol-% of initiator, the nucleation time was lowered producing higher 

number of particles as the particle hydrodynamic diameter was in a lower range (180 – 195 nm) 

compared to NIP particles synthesized at 0.1 mol-% of initiator (Table S1). A faster droplet 

nucleation tends to reduce monomer diffusion across the water phase so the final particle 

diameter was in the range of the initial monomer droplets (180 nm, Figure S 12). 
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Figure S 10. Kinetics of the miniemulsion of VAc and VCL  with 4 or 8 mol.-% of initiator in 

the presence (MIP) or absence (NIP) of nonylphenol. Polymerization temperature = 65°C, 14 

mol.-% of DVA based on VCL, VAc and DVA and 25 mol.-% of NP vs. VCL. 

Table S2: Weights of monomers, crosslinker and nonylphenol for MIP and NIP synthesized by 

miniemulsion polymerization 

Expt.a 

m cob 

(g) 

m VCL 

(g) 

m DVA 

(g) 

m NP 

(g) 

NIP-DVA6-VCL47-VAc47  1.66 2.64 0.45 - 

NIP-DVA15-VCL42-VAc43  1.45 2.25 1.21 - 

NIP-DVA33-VCL33-VAc34  0.99 1.56 2.22 - 

NIP-DVA50-VCL25-VAc25  0.67 1.07 3.13 - 

NIP-DVA67-VCL17-VAc17  0.42 0.66 3.74 - 

MIP-DVA6-VCL47-VAc47 1.64 2.67 0.45 1.03 

MIP-DVA15-VCL42-VAc43 1.37 2.24 1.14 0.83 

MIP-DVA33-VCL33-VAc34  0.97 1.67 2.22 0.66 

MIP-DVA50-VCL25-VAc25 0.71 1.07 3.05 0.43 

MIP-DVA67-VCL17-VAc17   0.42 0.67 3.88 0.28 

NIP-DVA32-VCL32-VeoVA36  1.91 1.31 1.906 - 

MIP-DVA34-VCL33-VeoVA33  1.63 1.31 1.951 0.51 

NIP-DVA33-VCL34-VB33  1.51 1.43 1.97 - 

MIP-DVA33-VCL34-VB33  1.51 1.37 1.96 0.57 
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Characterization of initial liquid miniemulsion and final dispersed polymer colloids by 

dynamic light scattering. 

 

  
Figure S 11. Overlay of average particle size distribution measured by DLS in deionized water 

for a series of (Left) NIP-DVA-VCL-VAc colloids with various mol-% of crosslinker and 

(Right) MIP-DVA-VCL-VAc colloids with various mol-% of crosslinker. [NIP] = [MIP] = 0.05 

g.L-1. [NaHCO3] = 4 mol-% of based on VCL. 

  
Figure S 12. Overlay of droplet size distribution (= initial liquid monomer droplets prior 

polymerization, [DVA + VCL + VAc] = 100 g.L-1) (black) and particle size distribution of the 

final polymer colloids (red, [NIP] = 0.05 g.L-1): Left) NIP-DVA6-VCL47-VAc47 particles, 

Right) MIP-DVA6-VCL47-VAc47.   
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NIP / MIP-DVA15-VCL42-VAc43 

 

NIP / MIP-DVA33-VCL33-VAc34 

 

 

NIP / MIP-DVA50-VCL25-VAc25 

 

NIP / MIP-DVA66-VCL17-VAc17 

 

 

   

Figure S 13. Overlay of average particle size distribution measured by DLS in deionized water 

for each corresponding MIPs and NIPs. [NIP] = [MIP] = 0.05 g.L-1.  

 

Figure S 14. Final average hydrodynamic diameters as a function of the temperature for NIP-

DVA6-VCL47-VAc47 colloids.  
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Table S3 : Hydrodynamic diameters and related polydispersities obtained for a series of MIPs 

and NIPs after dialysis and 11 months later. Measured at 0.05 g.L-1. 

Sample 

After dialysis After 11 months 

Dh (nm) PDI Dh (nm) PDI 

NIP-DVA15-VCL42-VAc43  166 0.076 176 0.108 

NIP-DVA33-VCL33-VAc34  163 0.074 171 0.111 

NIP-DVA50-VCL25-VAc25  130 0.086 129 0.115 

NIP-DVA67-VCL17-VAc17  122 0.08 126 0.11 

MIP-DVA15-VCL42-VAc43  178 0.091 180 0.066 

MIP-DVA33-VCL33-VAc34  174 0.094 178 0.081 

MIP-DVA50-VCL25-VAc25  177 0.12 182 0.118 

MIP-DVA67-VCL17-VAc17  164 0.084 168 0.078 

 

 

 

Figure S 15. Adsorption capacity of NP onto DVA33-VCL33-VAc34 (black squares) and DVA67-

VCL17-VAc17 (red circles) MIP (empty symbols) and NIP (plain symbols) colloids as function 

of water fraction in the hydro-alcoholic solvent. 
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Figure S 16. Top) Adsorption capacities (µg/g) and adsorption yield, bottom) kinetics of the 

NP adsorption in 100 % water for MIP and NIP colloids synthesized with VAc as co-monomer 

and different DVA crosslinker ratios (in % based on VAc, VCL and DVA) . [NP]0, H2O = 1 ppm 

and [MIP]0, H2O = [NIP]0, H2O = 10 g.L-1.  
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Table S4: Residual NP concentration in washed MIPs determined by GC-MS in ethyl acetate 

prior to adsorption experiment in H2O. The initial concentration of NP used for the synthesis of 

MIP is on average 8 to 11 g.L-1. 

Sample 

Centrifugation cycle 

number 

[NP]supernatant (µg.L-1) 

MIP-DVA6-VCL47-VAc47 19 32.55 

MIP-DVA15-VCL42-VAc43 18 35.92  

MIP-DVA33-VCL33-VAc34 20 28.03 

MIP-DVA50-VCL25-VAc25 17 14.72 

 

 

 

Figure S 17. Imprinting factors versus the molar DVA crosslinker fraction for NP adsorption 

carried out in 40/60 and 50/50 v/v H2O/EtOH mixtures for DVA-VCL-VAc colloids.  
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Figure S 18. Adsorption capacity (Q) for NP at different water contents of a series of NIP-

DVA33-VCL33-M and MIP-DVA33-VCL33-M crosslinked with 33 % DVA, with M = VAc, VB 

or VeoVA co-monomer. Adsorption of NP ([NP]0 = 0.5 mmol.L-1, 110 ppm) in EtOH/H2O 

50/50 v/v for [MIP]0 = [NIP]0 = 10 g.L-1. 
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Figure S 19. Comparison of the adsorption capacity (Q) (top), adsorption yield (middle) and 

corresponding imprinting factor (α) (bottom) at different water contents for NIP and MIP 

crosslinked with 66 % of DVA:  PVCL-based MIP and NIP (Blue, DVA66-VCL34) or P(VCL-

VAc)-based MIP and NIP (Black, DVA66-VCL17-VAc17). Adsorption of NP ([NP]0 = 0.5 

mmol.L-1, 110 ppm) for [MIP] = [NIP]0 = 10 g.L-1. 
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Figure S 20. Comparison of ITC traces for titration 20 mM of different injectants with 

ethanol/water 50/50 v/v at 25°C. Injectants are Nonylphenol, octanol, p-cresol and phenol. 

 

 

 

Figure S 21. Titration of NP with  acetonitrile and with MIP-DVA50-VCL25-VAc25 in 

acetonitrile 
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Figure S 22. Comparison of ITC traces for titration 20 mM of different injectants with NIP-

DVA50-VCL25-VAc25 at 5 g.L-1 in ethanol/water 50/50 v:v at 25°C. Injectants are Nonylphenol, 

p-cresol and phenol. 
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Figure S 23. Titration of 20 mM of nonylphenol with MIP-DVA50-VCL25-VAc25 and NIP-

DVA50-VCL25-VAc25  at 5 g.L-1 in ethanol/water 50/50 v:v at 25°C with water at pH10.7 (top) 

or pH 3 (bottom). 

 

 

  
 

Figure S 24. Langmuir and Freundlich adsorption isotherm models (left) and corresponding 

Scatchard plots (right) for adsorption of NP onto MIP-DVA66-VCL17-VAc17 carried out at room 

temperature in 50/50 (v/v) water/ethanol mixture. [MIP]0 = 2.0 g.L-1 
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Figure S 25. Desorption yield of NP (calculated from Eq. S 7)  for the MIP-DVA66-VCL17-

VAc17 in pure ethanol according to the temperature and the use of ultrasonication. US: 

ultrasonication. 

 

 

 

Figure S 26. FTIR spectra of NIP-DVA33-VCL33-VAc34 (orange thin line), NIP-DVA34-VCL33-

VeoVA33 (Bold black line), NIP-DVA33-VCL34-VB33 (Dotted blue line) in ATR mode. 
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Figure S 27. Comparison of ITC traces for titration of NP (black squares), 1-octanol (inverse 

blue triangles), p-cresol (green triangle) and phenol (red dots) with MIP-DVA34-VCL33-

VeoVA33 (left) and MIP-DVA34-VCL33-VB34 (right). 
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