Supporting Information

Entropy-Driven Assembly of Nanoparticles within EmulsionEvaporative Block Copolymer Particles: Crusted, Seeded, and Alternate-Layered Onions

Meng Xu ${ }^{1}$, Kang Hee Ku ${ }^{1}$, Young Jun Lee ${ }^{1}$, Jaeman J. Shin ${ }^{1}$, Eun Ji Kim ${ }^{1}$, Se Gyu Jang ${ }^{2}$, Hongseok Yun*, ${ }^{*}$, and Bumjoon J. Kim ${ }^{*}$,
${ }^{1}$ Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
${ }^{2}$ Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea

* E-mail: bumjoonkim@kaist.ac.kr (B. J. K.), hongsyun@kaist.ac.kr (H. Y.)

■ Supporting Figures and Table

Figure S1. Characterization of $\mathrm{Au} @$ PS with different M_{n} of PS ligands. TEM images and histograms of (a, b) as-synthesized Au NPs, (c, d) 4Au@2kPS, (e, f) 4Au@4kPS, and (g, h) 4Au@6kPS. Scale bars are 20 nm . The average core diameter of the Au NPs was $4.3 \pm 0.4 \mathrm{~nm}$, and the interparticle distance (d) was $8.0 \pm 0.5,11.4 \pm 0.6$, and $11.7 \pm 0.8 \mathrm{~nm}$ for $4 \mathrm{Au} @ 2 \mathrm{kPS}, 4 \mathrm{Au} @ 4 \mathrm{kPS}$, and $4 \mathrm{Au} @ 6 \mathrm{kPS}$, respectively.

Figure S2. TGA analysis of (a) Au@PS and (b) only PS-SH ligands. The amount of PS-SH ligands in each sample was determined by calculating the weight loss from the thermal decomposition temperature of PS-SH (the temperature corresponding to 5% weight loss in Figure S2b) to the temperature at which weight $\%$ reaches its minimum.

■ Calculation of Minimum Grafting Density Fully Covering the NP Surface.

The theoretical minimum value of grafting density for PS-SH ligands to effectively shield the gold surface from interacting with P4VP blocks can be calculated as ${ }^{1}$:

$$
\Sigma_{\min }=\frac{1}{\pi}\left(\frac{R+R_{\mathrm{g}}}{R_{\mathrm{g}} R}\right)^{2}
$$

where R is the radius of Au NP core, and the radius of gyration $R_{\mathrm{g}}=1.15 \mathrm{~nm}$ for 2 k PS-SH, $R_{\mathrm{g}}=1.78$ nm for 4 k PS-SH, and $R_{\mathrm{g}}=2.18 \mathrm{~nm}$ for 6 k PS-SH.

Table S1. Detailed information of Au@PS used in this study.

PS-grafted $\mathbf{A u} \mathbf{N P}$	Core Diameter $(\mathbf{n m})$	Ligand $\boldsymbol{M}_{\boldsymbol{n}}\left(\mathbf{k g ~ m o l}^{-1}\right)$	Overall Size $\boldsymbol{d}(\mathbf{n m})$	$\boldsymbol{d} / \boldsymbol{L}_{\mathrm{PS}}$ $\left(\boldsymbol{L}_{\mathbf{P S}}=\mathbf{1 0 . 2}\right.$ $\pm \mathbf{1 . 8} \mathbf{~ n m})$	Grafting Density $\boldsymbol{\sigma}\left(\mathbf{c h a i n s} \mathbf{~ n m}^{-2}\right)$
$4 \mathrm{Au} @ 2 \mathrm{kPS}$	4.3 ± 0.3	1.8	8.0 ± 0.5	0.78	1.14
$4 \mathrm{Au} @ 4 \mathrm{kPS}$	4.3 ± 0.3	4.3	11.4 ± 0.6	1.12	1.08
$4 \mathrm{Au} @ 6 \mathrm{kPS}$	4.3 ± 0.3	6.4	11.7 ± 0.8	1.15	1.13

Figure S3. TEM image of pristine PS-b-P4VP particles.

Figure S4. Low-magnification TEM images of PS-b-P4VP/Au@PS hybrid particles. TEM images of PS-b-P4VP particles containing (a) 4Au@2kPS, (b) 4Au@4kPS, and (c) 4Au@6kPS. Scale bars are 50 nm .

Figure S5. Characterization of Au@PS within a homopolymer PS (hPS) matrix. TEM images of (a) 9khPS/4Au@2kPS, (b) 9khPS/4Au@4kPS, and (c) 9khPS/4Au@6kPS hybrid particles. Scale bars are 100 nm .

Figure S6. Characterization of Au@PS with different core sizes and M_{n} of ligands. TEM images and histograms of (a, b, and c) 7Au@2kPS, and (d, e, and f) $3 \mathrm{Au} @ 6 \mathrm{kPS}$. Scale bars are 20 nm .

Figure S7. Effect of P / N values on Au@PS assembly within BCP particles. TEM images of PS-bP4VP particles containing (a) 7Au@2kPS $\left(P / N=5.4, d / L_{P S}=1.04\right)$ and (b) $3 \mathrm{Au} @ 6 \mathrm{kPS}(P / N=1.5$, $\left.d / L_{P S}=1.03\right)$.

Scheme S1. Schematic illustration of (a-d) PS-b-P4VP/4Au@2kPS, (e-h) PS-b-P4VP/4Au@4kPS, and (i-l) PS- $b-\mathrm{P} 4 \mathrm{VP} / 4 \mathrm{Au} @ 6 \mathrm{kPS}$ particle formation process.

Figure S8. Characterization of $2 \mathrm{Au} @ 2 \mathrm{kPS}$ and the corresponding assembly structure within BCP particles. (a) TEM images and (c, d) histograms of 2Au@2kPS, and (b) TEM image of PS-b-P4VP particles containing 2Au@2kPS.

Figure S9. Low-magnification TEM image of PS-b-P4VP/Au@PS hybrid particles containing 2Au@2kPS and 4Au@6kPS.

References

(1) Yun, H.; Yu, J. W.; Lee, Y. J.; Kim, J.-S.; Park, C. H.; Nam, C.; Han, J.; Heo, T.-Y.; Choi, S.H.; Lee, D. C.; Lee, W. B.; Stein, G. E.; Kim, B. J. Symmetry Transitions of Polymer-Grafted Nanoparticles: Grafting Density Effect. Chem. Mater. 2019, 31, 5264-5273.

