Supporting Information

Photocatalytic intramolecular C-H amination using *N*-oxyureas as nitrene precursors

Ryan A. Ivanovich, Dilan E. Polat, André M. Beauchemin*

Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada

*andre.beauchemin@uottawa.ca

GENERAL INFORMATION

MATERIALS

EXTENDED OPTIMIZATION EFFORTS	4
Table S1. Thermal cascade reaction of 4b	4
Scheme S1: Preliminary scope of thermal C-H amination (cascade reaction)	5
Table S2. Thermal C-H amination of 4b via microwave irradiation	5
Table S3. Thermal C-H amination of 5c	6
Table S4. Thermal C-H amination of 5c via microwave irradiation	7
Scheme S2: Preliminary scope of thermal C-H amination (sequential) via microwave irradiation	7
Table S5. Metal catalyzed C-H amination of 1A	8
Scheme S3. Preliminary scope of metal catalyzed C-H amination / mechanism for dimerization	8
Scheme S4. C-H amination using photocatalytic conditions (initial benzoate precursors)	9
Figure S1. Optimization of the O-acyl substituent Table S6. Optimization of photocatalytic C-H amination using 1p	9 10
Table So. Optimization of photocatalytic C-H amination using 1p	10
Table 37. Optimization of photocatalytic C-n annihiltion using 1g	10
MECHANISTIC PROBES OF THE PHOTOCATALYTIC C-H AMINATION	11
Figure S2. Mixture of urea (3a and 3b) obtained from photocatalytic reaction using 1ar	11
Scheme S5. N-methylation probe casts doubt on above N-centered radical mechanism	13
Figure S3. Radical trap experiments using BHT	15
HPLC	16
Figure S4. HPLC spectrum of 1k	16
Figure S5. HPLC spectrum of enantioenriched 1an	16
Figure S6. HPLC spectrum of 2k from photocatalytic C-H amination of 1k	17
Figure S7. HPLC spectrum of 2k from photocatalytic C-H amination of enantioenriched 1an	17
	10
	18
Figure S9. Cyclic voltammetry of 1a	18
Figure S10. Cyclic voltammetry of 1h	19 20
Figure S11. Cyclic voltammetry of 1am	20
ALTERNATE MECHANISM CONSIDERED: SINGLE ELECTRON A-ELIMINATION	21
Scheme S6. Alternative mechanism invoking sequential PCET oxidation / reduction	21
GENERAL PROCEDURES	22
General Procedure A: Substitution of N-hydroxycarbamates	22
General Procedure B: Synthesis of N-oxycarbamates ¹³	22
General Procedure C: Substitution of N-acyloxycarbamates ¹³	22
General Procedure D: Synthesis of N-oxyureas via carbamoyl chloride formation	23
General Procedure E: Synthesis of hydroxamic acids	24
General Procedure F: Synthesis of N-p-methoxybenzoylhydroxamic acid	24
General Procedure G: Photoinduced C-H amination of N-oxyureas.	24
	25
CHARACTERIZATION DATA	25
Synthesis of phenyl N-hydroxycarbamate	25

Synthesis of phenyl N-hydroxycarbamate Synthesis of N-acyloxycarbamates

25

3

4

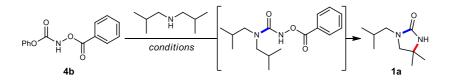
Supporting Information

Synthesis of N-oxyureas	26
Synthesis of imidazolidin-2-one via photoinduced C-H amination	50
Aziridination	62
Site competition experiments	65
Synthesis of tetrabutylammonium dibutyl phosphate base	70
Synthesis of benzoyl N-oxyureas for initial reaction screening	70
COMPUTATIONAL DETAILS/DFT CALCULATIONS	74
Vibrational frequency of 1p	75
Vibrational frequency of 1p radical	78
Vibrational frequency of H-atom	81
Vibrational frequency of 1h	82
Vibrational frequency of 1h radical	85
Vibrational frequency of anionic 1p (triplet)	86
Vibrational frequency of anionic 1p (singlet)	89
Vibrational frequency of neutral 1p (triplet)	92
Vibrational frequency of nitrene 1p (triplet)	95
Vibrational frequency of nitrene 1p (singlet)	97

NMR SPECTRA

101

General Information


Purification of reaction products was carried out by flash column chromatography using silica gel (40- 63μ m), unless otherwise noted. Analytical thin layer chromatography (TLC) was performed on aluminum or glass, cut to size. Visualization was accomplished with UV light followed by staining with a potassium permanganate solution, and heating. ¹H NMR and ¹³C NMR spectra were recorded on Bruker AVANCE 300 MHz and 400 MHz spectrometers at ambient temperature, unless otherwise indicated. Spectral data was reported in ppm using solvent as the reference (CDCl₃ at 7.26 ppm or DMSO-d₆ at 2.50 ppm or CD₃CN at 1.94 ppm for ¹H NMR and CDCl₃ at 77.0 ppm or DMSO-d₆ at 39.43 for ${}^{13}C$ NMR). ¹H NMR data was reported as: multiplicity (app = apparent, br = broad, s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextuplet, sept = septuplet, m = multiplet), integration and coupling constant(s) in Hz. Infrared (IR) spectra were obtained were recorded on a Attenuated Total Reflectance Fourier transform infrared spectrometer (ATR-FTIR). High-resolution mass spectroscopy (HRMS) was performed on a mass spectrometer with an electron beam of 70ev (EI) or Micromass Q-TOF I - Time of flight Electrospray Ionization mass spectrometer (ESI). Reactions were performed at 0.3 to 1.0 mmol reaction scale. Microwave reactions were conducted on a Biotage Initiator 8 series microwave reactor. Photoredox reactions were conducted using 12V flexible blue LED strip lights or a Kessil 40W Tuna blue LED lamp when specified.

Materials

Unless otherwise noted, all commercially available materials were purchased from commercial sources and used without further purification.

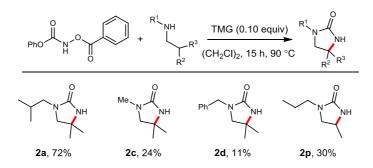
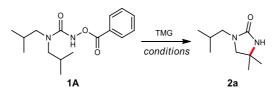

Extended optimization efforts

Table S1. Thermal cascade reaction of 4b


Entry	Base	Solvent	Temp °C	Time h	% 1a
1	Et ₃ N	THF	70	15	0
2	<i>i</i> -Pr ₂ NEt	THF	90	15	0
2 3	<i>i</i> -Pr ₂ NEt	EtOH	90	15	<10
4	<i>i</i> -Pr ₂ NEt	MeCN	90	15	16
5	Et ₃ N	MeCN	90	20	23
6	K_2CO_3	MeCN	90	20	11
7	<i>i</i> -Pr ₂ NEt	$(CH_2Cl)_2$	90	15	20
8	Et ₃ N	$(CH_2Cl)_2$	90	15	35
9	Et ₃ N	$(CH_2Cl)_2$	90	65	73
10	DMAP	$(CH_2Cl)_2$	90	15	7
11	DABCO	$(CH_2Cl)_2$	90	15	12
12	TMG	$(CH_2Cl)_2$	90	15	62
13	Imidazole	$(CH_2Cl)_2$	90	15	6
14	DBU	$(CH_2Cl)_2$	90	15	6
15	Pyridine	$(CH_2Cl)_2$	90	15	5
16	Et ₃ N	PHCF ₃	120	15	10
17	Et ₃ N	$(CH_2Cl)_2$	120	15	45
18	Et ₃ N	$(CH_2Cl)_2$	150	15	46
19	Imidazole	$(CH_2Cl)_2$	120	15	70
20	Imidazole	$(CH_2Cl)_2$ [Ar]	120	15	65
21	Imidazole	CDCl ₃	120	15	72
22	Imidazole	$(CH_2Cl)_2$ - sieves	120	15	62
23	Imidazole	CHCl ₃	120	15	8
24	Imidazole	DMSO	120	15	53
25	Imidazole	DMF	120	15	50

Conditions: phenyl *N*-benzoyloxycarbamate **4b** (1.00 equiv), diisobutylamine (1.00 equiv), base (0.20 equiv) in solvent (0.30 M) stir in oil bath. NMR yields are shown using 1,3,5-trimethoxybenzene as an internal standard.

Scheme S1: Preliminary scope of thermal C-H amination (cascade reaction)

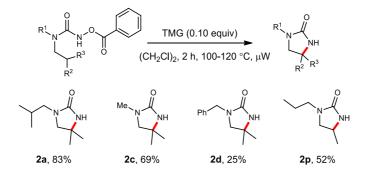
Table S2. Thermal C-H amination of 4b via microwave irradiation

Entry	Solvent	Temp °C	Time h	%2a
1	$(CH_2Cl)_2$	100	1	66
2	$(CH_2Cl)_2$	100	2	83
3	$(CH_2Cl)_2$	150	3	67
4	CHCl ₃	90	2	0

Conditions: 3-(benzoyloxy)-1,1-diisobutylurea **1A** (1.00 equiv), TMG (0.10 equiv) in solvent (0.30 M) stir under microwave irradiation. NMR yields are shown using 1,3,5-trimethoxybenzene as an internal standard.

Table S3. Thermal C-H amination of 5c

	\sim			н	
		5c	2p		
Entry	Additive	Solvent	Temp °C	Time h	%2p
1 2 3 4 5 6 7 8 9	TMG TMG TMG TMG TMG TMG TMG TMG	(CH ₂ Cl) ₂ CHCl ₃ PHCF ₃ DMSO EtOH - sieves MeCN Monoglyme Diglyme PhCF ₃	90 90 90 90 90 90 90 90 90 150	15 15 15 15 15 15 15 15 15 15	$20 \\ 13 \\ <10 \\ 0 \\ 25 \\ 18 \\ 0 \\ 0 \\ 26 \\ 26 \\ 26 \\ 26 \\ 20 \\ 20 \\$
10 11 12 13	TMG TMG TMG TMG	DMSO DMF Diglyme Dichlorobenzene	150 150 150 150	15 15 15 15	0 0 69 0
13 14 15 16 17	Benzoic acid Phosphazene AIBN	CHCl ₃ CHCl ₃ MeCN MeCN	90 90 90 90	15 15 15 15	0 27 0 0
18 19 20 21		DMSO PhCF ₃ EtOH - sieves EtOH	90 90 90 90	15 15 15 15	0 0 30 30
22 23 24		MeOH <i>i</i> -PrOH <i>t</i> -BuOH	90 90 90	15 15 15	0 15 0


Conditions: 3-(benzoyloxy)-1,1-dipropylurea 5c (1.00 equiv), additive (0.10 equiv) in solvent (0.30 M) stir in oil bath. NMR yields are shown using 1,3,5-trimethoxybenzene as an internal standard.

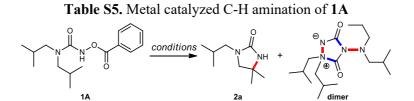
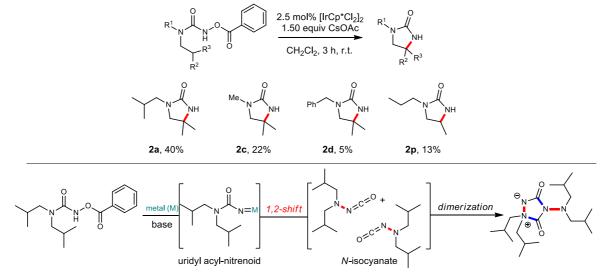
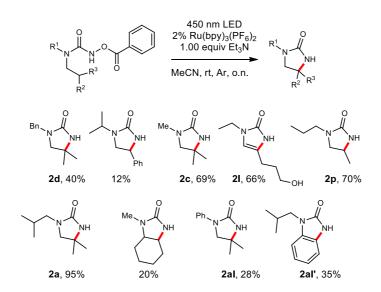

	√ N H H Sc		2p	
Entry	Additive (equiv)	Solvent	Temp °C	%2p
1	TMG (0.10)	$(CH_2Cl)_2$	120	60
2	DBU (0.10)	$(CH_2Cl)_2$	120	52
3	Et ₃ N (0.10)	$(CH_2Cl)_2$	120	60
4	<i>i</i> -Pr ₂ NEt (0.10)	$(CH_2Cl)_2$	120	57
5	TMG (0.10)	$(CH_2Cl)_2$	90	14
6	DMAP (0.10)	$(CH_2Cl)_2$	120	14
7	$BF_{3}.OEt_{2}(1.00)$	MeCN	100	0
8	$PhI(OAc)_{2}$ (1.20)	MeCN	120	0
9	HCl (g) (excess)	MeCN	120	0

Table S4. Thermal C-H amination of 5c via microwave irradiation

Conditions: 3-(benzoyloxy)-1,1-dipropylurea 5c (1.00 equiv), additive in solvent (0.30 M) stir under microwave irradiation. NMR yields are shown using 1,3,5-trimethoxybenzene as an internal standard.

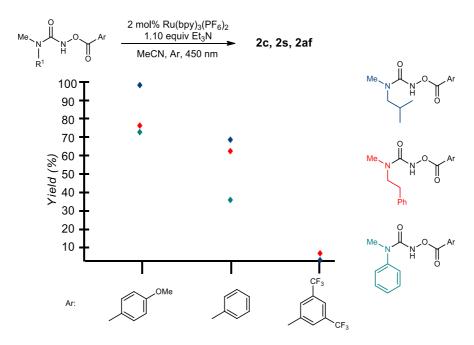
Scheme S2: Preliminary scope of thermal C-H amination (sequential) via microwave irradiation





Entry	Metal (mol%)	Base (equiv)	Solvent	Temp °C	Time	%1A	%2a	%dimer
1	$[IrCp*Cl_2]_2$ (2.5)	K_2CO_3 (1.5)	CH_2Cl_2	rt	3	0	16	20
2	[IrCp*Cl ₂] ₂ (2.5)	CsOAc (1.5)	CH_2Cl_2	rt	3	0	20	33
3	$[IrCp*Cl_2]_2(2.5)$	Imidazole (1.5)	CH_2Cl_2	rt	16	100	0	0
4	$[IrCp*Cl_2]_2$ (2.5)	CsOAc(0.2)	CH_2Cl_2	rt	3	0	17	20
5	$[IrCp*Cl_2]_2(0.5)$	CsOAc(0.2)	CH_2Cl_2	rt	3	0	21	15
6	$[IrCp*Cl_2]_2(0.5)$	CsOAc(5.0)	CH_2Cl_2	rt	3	0	18	14
7	$[IrCp*Cl_2]_2(0.5)$	CsOAc(0.2)	THF	rt	13	72	11	3
8	$[IrCp*Cl_2]_2(0.5)$	CsOAc(0.2)	PhCF ₃	rt	13	0	27	18
9	$[IrCp*Cl_2]_2(0.5)$	CsOAc(0.2)	MeCN	rt	13	37	11	6
10	$[IrCp*Cl_2]_2(0.5)$	CsOAc (0.2)	DMSO	rt	13	60	0	0
11	$[IrCp*Cl_2]_2(0.5)$	KOAc (0.2)	CH_2Cl_2	rt	3	24	21	11
12	[IrCp*Cl ₂] ₂ (0.5)	NaOAc (0.2)	CH_2Cl_2	rt	3	25	19	10
13	[IrCp*Cl ₂] ₂ (0.5)	MgO (0.2)	CH_2Cl_2	rt	3	15	7	7
14	$[IrcodCl_2]_2(2.5)$	CsOAc (1.5)	CH_2Cl_2	rt	16	100	0	0
15	$[IrcodCl_2]_2$ (2.5)	CsOAc (1.5)	MeOH	rt	16	40	24	0
16	$[IrcodCl_2]_2(2.5)$	CsOAc (0.2)	CH_2Cl_2	rt	16	0	17	20
17	[RhCp*Cl ₂] ₂ (2.5)	$K_2CO_3(1.5)$	MeOH	rt	16	0	5	0
18	[RhCp*Cl ₂] ₂ (2.5)	CsOAc (1.5)	MeOH	rt	16	0	0	0
19	$[RhCp*Cl_2]_2$ (2.5)	$Cs_2OAc_3(1.5)$	MeOH	rt	16	0	7	0
20	$[RhCp*Cl_2]_2(2.5)$	<i>t</i> -BuOK (1.5)	MeOH	rt	16	0	13	0
21	[RhCp*Cl ₂] ₂ (2.5)	<i>t</i> -BuOK (1.5)	MeOH	rt	16	0	0	0
22	$[RhCp*Cl_2]_2(2.5)$	t-BuOK (1.5)	<i>i-</i> PrOh	rt	16	0	0	0
23	$[RhOAc]_2(5.0)$	$K_2CO_3(1.5)$	CH_2Cl_2	rt	16	0	10	
24 ^a	$[RhOAc]_2(5.0)$	Imidazole (1.5)	$(CH_2Cl)_2$	90	16		37	
$\frac{25}{Canditia}$	$[Rhesp_2]_2 (5.0)$	$\frac{K_2CO_3(1.5)}{1}$	$(CH_2Cl)_2$	rt	16	100	0	$\frac{0}{2}$

Conditions: 3-(benzoyloxy)-1,1-diisobutylurea **1A** (1.00 equiv), metal, base in solvent (0.3M) stir at r.t. ^aCascade reaction with 80% of SM converted. NMR yield are shown using 1,3,5-trimethoxybenzene as an internal standard.


Scheme S3. Preliminary scope of metal catalyzed C-H amination / mechanism for dimerization

Scheme S4. C-H amination using photocatalytic conditions (initial benzoate precursors)

Figure S1. Optimization of the O-acyl substituent

In contrast to recent work by Chang,¹ which clearly demonstrated the effectiveness of the 3,5-*bis*-trifluoromethyl group as an activating group for EnT induced triplet nitrene formation of amide and carbamate precursors. In our studies of carbamoyl nitrene precursors, we found this substrate to be completely ineffective. It would decompose rapidly, even under our milder reaction conditions. In contrast, we found that more electron rich precursors were more effective (**Figure S2**). This finding was also inconsistent with *N*-centered radical approaches which rely on an initial SET reduction to generate the radical.²

¹ Jung, H.; Keum, H.; Kweon, J.; Chang, S. J. Am. Chem. Soc. 2020. https://doi.org/10.1021/jacs.0c00868.

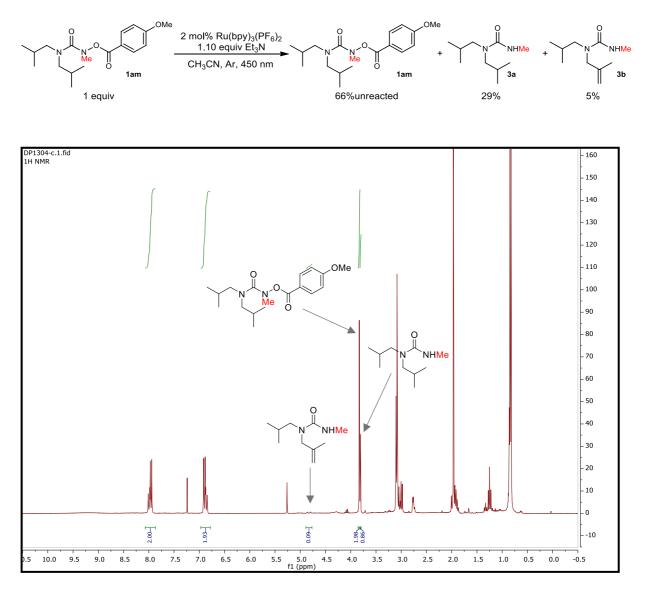
² Ren, X.; Guo, Q.; Chen, J.; Xie, H.; Xu, Q.; Lu, Z. Chem. Eur. J. 2016, 22, 18695–18699.

		OMe <u>conditions</u>	2p	
Entry	Photocatalyst	Base	Solvent	%2p
1	-	Et ₃ N	MeCN	0
2	$[Ru(bpy)_3](PF_6)_2$	-	MeCN	0
3	[Ru(bpy) ₃](PF ₆) ₂	Et ₃ N	MeCN	92
4	$[Ir(ppy)_2(dtbpy)](PF_6)$	Et ₃ N	MeCN	40
5	[Ir(dF-CF ₃ -ppy) ₂ (dtbpy)](PF ₆)	Et ₃ N	MeCN	33
6	[Ru(bpm) ₃]Cl ₂	Et ₃ N	MeCN	11
7	TPP	Et ₃ N	MeCN	0
8	Ir(dFppy) ₃	Et ₃ N	MeCN	0
9	$[Ru(bpy)_3](PF_6)_2$	Ph ₃ P	MeCN	17
10	$[Ru(bpy)_3](PF_6)_2$	Et ₃ N	PhCF ₃	0
11	$[Ru(bpy)_3](PF_6)_2$	Et ₃ N	DMSO	57
12	$[Ru(bpy)_3](PF_6)_2$	Et ₃ N	Dioxane	0
13	$[Ru(bpy)_3](PF_6)_2$	Et ₃ N	THF	9
14	$[Ru(bpy)_3](PF_6)_2$	Et ₃ N	$(CH_2Cl)_2$	78
15	$[Ru(bpy)_3](PF_6)_2$	Et ₃ N	CH_2Cl_2	77

Table S6. Optimization of photocatalytic C-H amination using 1p

Conditions: 3-(benzoyloxy)-1,1-dipropylurea **1p** (1.00 equiv), photocatalyst (2 mol%), additive (1.10 equiv) in solvent (0.3M) irradiated under inert atmosphere with 450 nm blue LED. ^aBDFE calculated using a reported method.³

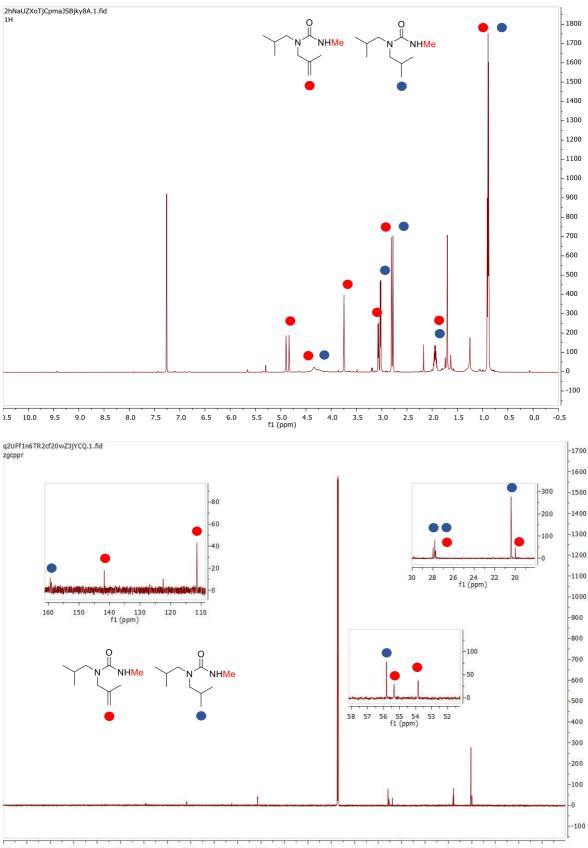
Table S7. Optimization of photocatalytic C-H amination using 1g


		2 mol% Ru(bpy) ₃ (PF ₆) ₂ , solvent, Ar, 450 nm	base HN NH	
Entry	Base (equiv)	Solvent	Temp °C	%Product
1	Et ₃ N (1.10 equiv)	MeCN	r.t.	0
2	Phosphate (5 mol%)	CH_2Cl_2	r.t.	18
3	Phosphate (5 mol%)	CH_2Cl_2	40	45
4	Phosphate (5 mol%)	CH_2Cl_2	60	50
5	Phopshate (5 mol%)	CH_2Cl_2	80	17

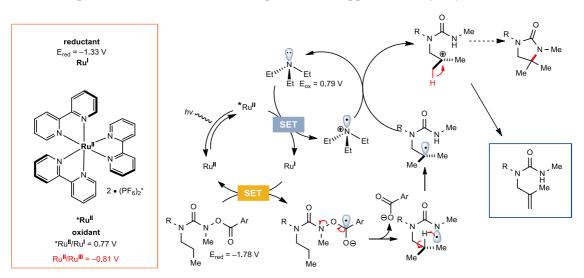
 $\frac{5 \quad \text{Phopshate (5 mol\%)} \quad \text{CH}_2\text{Cl}_2 \quad 80 \quad 17}{\text{Conditions: 1-isobutyl-3-((4-methoxybenzoyl)oxy)urea } \mathbf{1g} (1.00 \text{ equiv}), \text{ photocatalyst (2 mol\%)}, additive (1.10 equiv) in solvent (0.3M) irradiated under inert atmosphere with 450 nm blue LED.}$

³ Choi, G. J.; Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 9226–9229.

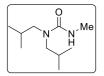
Mechanistic probes of the photocatalytic C-H amination


Figure S2. Mixture of urea (3a and 3b) obtained from photocatalytic reaction using 1ar

When the *N*-methylated derivative **1am** was subjected to the reaction, we noticed that there was no product formation in the crude NMR. Notably, the reaction was sluggish, even after 72 hours 66% of the starting material remained unreacted. This was accompanied by the observance and isolation of two ureas, **3a** and **3b**, which were obtainable from reduction of the precursor. This indicated to us that the *N*-H was crucial for effective C-H amination. This could be explained by invoking the EnT reaction recently introduced by Chang, which required deprotonation of the hydroxamate precursors for exothermic EnT. This is supported by our own DFT calculations (see below), which clearly demonstrate that EnT to the neutral species is exceptionally endergonic ($E_{\rm T}$ neutral = 74 kcal/mol) whereas EnT to the deprotonated precursor is thermodynamically accessible ($E_{\rm T}$ anionic = 53 kcal/mol). Moreover, the isolation of **3b** is crucial as it clearly showcases that an alternative mechanism involving 1,5-HAT and oxidation of the alkyl-radical followed by carbocation trapping ring-closure is likely not operating in this system (**Scheme S5**).


Supporting Information

NMR of isolated mixture of ureas (3a and 3b)



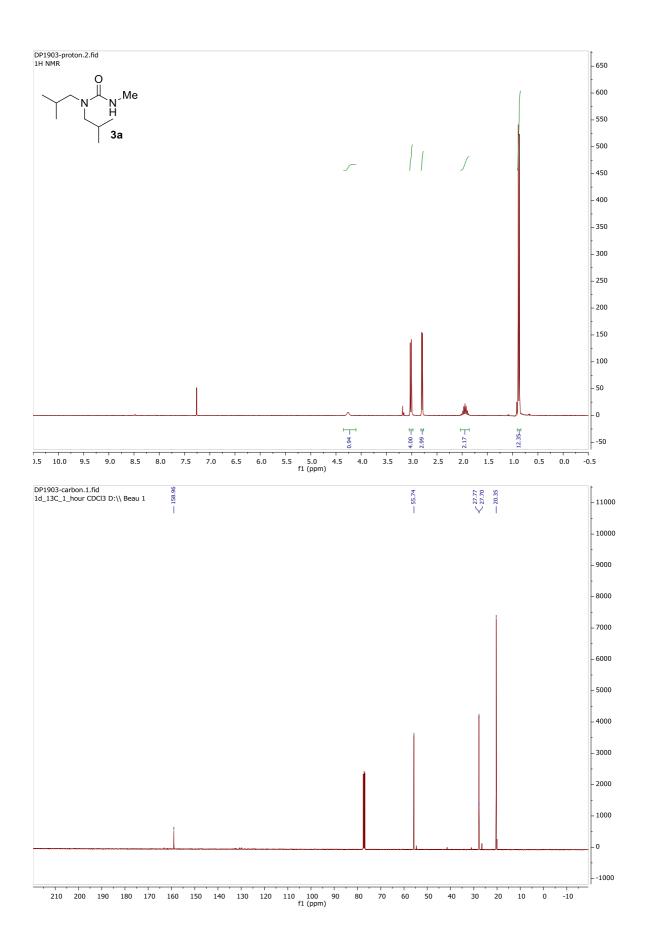
20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

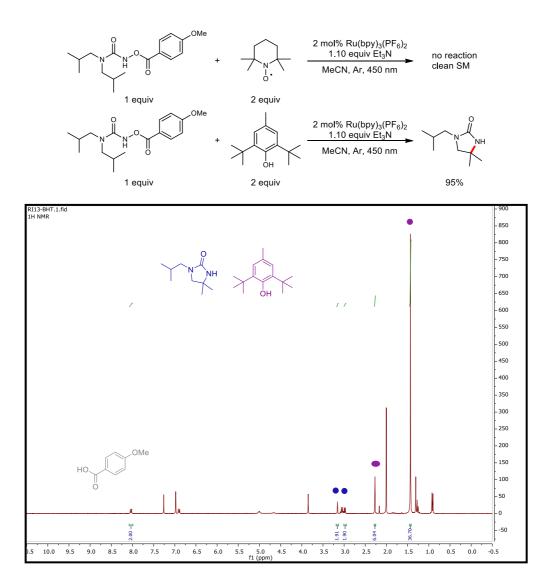
The two ureas were isolated as an inseparable mixture. A genuine sample of **3a** was synthesized to account for its peaks in the NMR mixture. *The peak at 122.5 ppm is an artifact from the NMR*.

Scheme S5. N-methylation probe casts doubt on above N-centered radical mechanism

1,1-diisobutyl-3-methylurea (3a): The title compound was synthesized according general procedure **D** using diisobutylamine (0.87 mL, 5.0 mmol), toluene (0.8 M), KOH pellets (0.280 g, 5.00 mmol), and water (2.9 M) at 0 °C. A dripping funnel was affixed on top of the roundbottom flask and this apparatus was purged with argon for 10 minutes. Phosgene (15% in toluene) (8.2 mL, 11.5 mmol) was added to the

dripping funnel under inert atmosphere, and was allowed to drip over 1 hour at 0 °C while stirring vigorously. The reaction was allowed to stir for an additional 30 minutes after complete addition of phosgene solution. Upon competition, the crude reaction mixture was bubbled with an argon balloon for 20 minutes in a well ventilated fumehood, to release any excess phosgene gas. The crude reaction mixture was then extracted to remove the aqueous layer, and then the organic phase was washed with brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude *N*-diisobutylcarbamoyl chloride which was used in the next step without further purification.

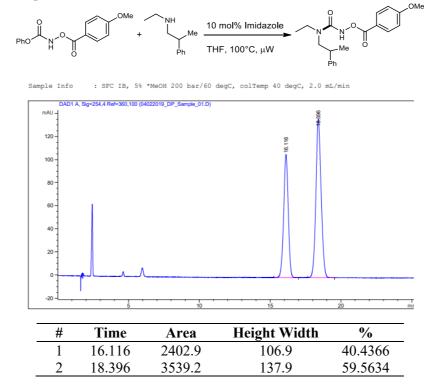

To the crude *N*-diisobutylcarbamoyl chloride was added CH₂Cl₂ (0.3 M) and cooled to 0 °C. To this was added methylamine hydrochloride (0.338 g, 5.00 mmol), and followed immediately by Et₃N (1.39 mL, 10.0 mmol). The reaction was allowed to warm to room temperature and stir overnight. Upon completion, the reaction was extracted with NaHCO₃ (5.0 mL x1), and then brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure which was purified by flash column chromatography (30% EtOAc/Hexanes \rightarrow 70% EtOAc/Hexanes) to yield a colourless oil (0.507 g, 54% over 2 steps).


¹**H NMR (400 MHz, CDCl₃):** δ 4.33-4.20 (br s, 1H), 3.2 (d, *J* = 7.5 Hz, 2H), 2.79 (d, *J* = 4.7 Hz, 4H), 2.08-1.78 (m, 2H), 0.88 (d, *J* = 6.6 Hz, 12H).

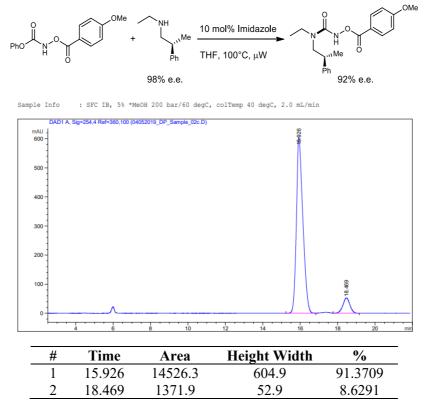
¹³C NMR (100 MHz, CDCl₃): δ 159.0 (C), 55.7 (CH₂), 27.7 (CH), 27.0 (CH), 20.4 (CH₃).

The title compound has been previously reported.⁴

⁴ Snyder, J. K.; Stock, L. M. J. Org. Chem. **1980**, 45, 886-891.


Figure S3. Radical trap experiments using BHT

BHT is known to perturb reactions involving 1,5- and 1,6-HAT pathways.⁵ Therefore, the fact that BHT had no effect on this reaction was inconsistent with an SET induced radical pathway. However, this finding would fit well within the framework of a triplet nitrene C-H amination. However, TEMPO led to starting material recover. It is possible that TEMPO engaged in redox reactions with the excited photocatalyst, diminishing its ability to engage in productive EnT with the nitrene precursors.


⁵ (a) Yuan, W.; Zhou, Z.; Gong, L.; Meggers, E. *Chem. Commun.* **2017**, *53*, 8964-8967. (b) Ma, Z.Y.; Guo, L.-N.; You, Y.; Yang, F.; Hu, M.; Duan, X.-H. *Org. Lett.* **2019**, *21*, 5500-5504. (c) Bao, X.; Wang, Q.; Zhu, J. *Nat. Commun.* **2019**, *10*, 769.

HPLC

Figure S4. HPLC spectrum of 1k

Figure S5. HPLC spectrum of enantioenriched 1an

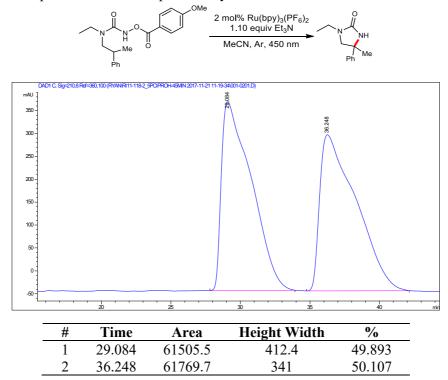
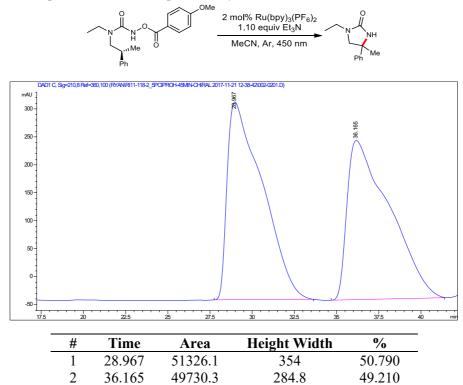
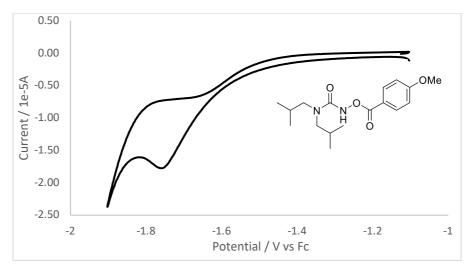
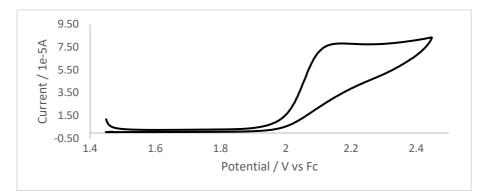



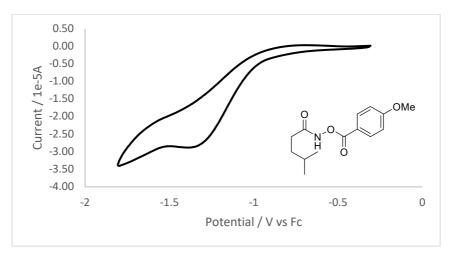
Figure S6. HPLC spectrum of 2k from photocatalytic C-H amination of 1k


Figure S7. HPLC spectrum of 2k from photocatalytic C-H amination of enantioenriched 1an

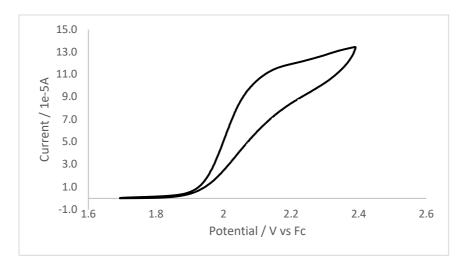

Cyclic voltammetry

Cyclic voltammetry was performed using a Princeton Applied Research Versastat 3 potentiostat employing a glass cell and platinum auxiliary wires for the counter and pseudo-reference electrodes, where a 1.6 mm platinum disk electrode was used for the working electrode. The measurements were carried out in CH₃CN solutions (dried by J. C. Meyer solvent system and stored over molecular sieves) containing 0.1 M tetrabutylammonium hexafluorophosphate (Sigma Aldrich) as supporting electrolyte with a scan rate of 100 mV/s. The experiments were referenced to the Fc/Fc^+ redox couple of ferrocene (Sigma Aldrich).

Figure S9. Cyclic voltammetry of 1a



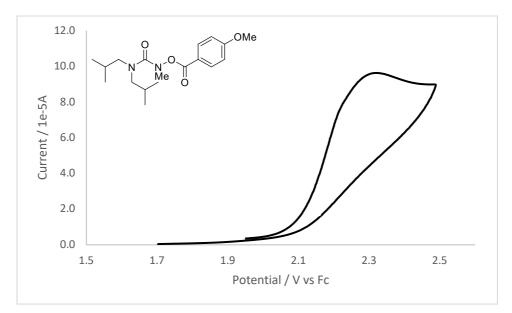
Irreversible reduction at -1.75V vs Fc^+/Fc .



Irreversible oxidation at +2.15V vs Fc⁺/Fc.

Figure S10. Cyclic voltammetry of 1h

Irreversible reduction at -1.36 vs Fc⁺/Fc



Irreversible oxidation at +2.13 vs Fc⁺/Fc

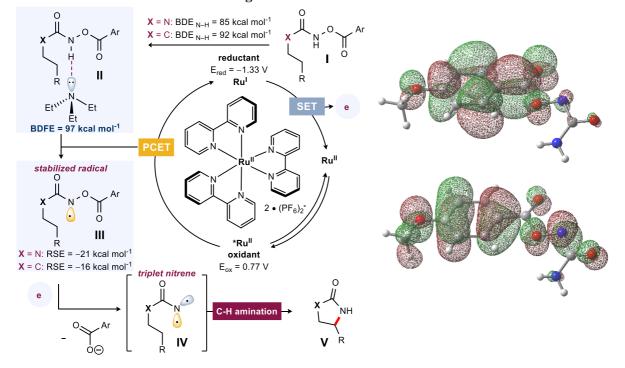

Supporting Information

Figure S11. Cyclic voltammetry of 1am

No reduction was observed at potential -2.3 V vs Fc^+/Fc .

Irreversible oxidation at +2.30 vs Fc⁺/Fc

Alternate mechanism considered: single electron α -elimination

Scheme S6. Alternative mechanism invoking sequential PCET oxidation / reduction

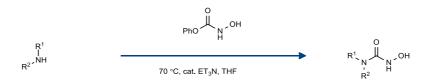
An alternative mechanism (Scheme S6) begins with I forming H-bonded complex II, which undergoes PCET with Ru^{II*} (BDFE = 97 kcal/mol)⁶ to produce stabilized radical III. A radical stabilization energy (RSE) of -21 kcal/mol was calculated for III by DFT using B3LYP 6-311+G(2d,p) indicating a substantial degree of stabilization (persistent radical DPPH = -27 kcal/mol). The PCET is therefore a highly exergonic process ($\Delta G = -12$ kcal/mol) and III can then undergo SET reduction by Ru^I (E_{red} = -1.33 V). Analysis of the putative N-centered radical III highlights that SET reduction should be significantly favoured over reduction of I ($E_{red(I)} = -1.8$ V). Visualization of the LUMO by DFT indicates that addition to the carbonyl electrophore would be preferred. Nocera recently calculated the rates of back-electron-transfer (BET)⁷ in photochemical PCET reactions of amides. In the proposed mechanism, rapid BET in the presence of a more suitable electrophore should lead to the desired reaction outcome. This not only provides a rationale for the increased rate of conversion observed with the N-H vs. N-methyl urea precursors, but also justifies the use of *p*-methoxy benzoate precursors to facilitate the careful orchestration of events required to access the triplet nitrene. Reductive N-O bond cleavage from III expels the carboxylate via 1-electron α -elimination to provide triplet nitrene IV and C-H amination then leads to the products V. While to our knowledge such a 1-electron α -elimination process has not been reported, each individual step is well-precedented: 1) PCET is an effective strategy to form amidyl radicals from mildly acidic N-H bonds by an oxidative pathway.⁸ 2) Reductive-quenching is efficient to form amidyl radicals by reductive SET-initiated N-O bond cleavage.⁹ In this system, the adjacent oxygen atom of the hydroxylamine derivative should facilitate PCET by: 1) lowering the pKa¹⁰ of the N-H bond, and 2) increasing the stability of the generated N-radical by a captodative effect.¹¹ In addition, precedent for 1-electron α -elimination emerged during the course of this study,

⁶ BDFE were calculated using the formula: Formal BDFE (kcal/mol) = 2.3RTpKa +23.06E + 54.9 (MeCN).

⁷ Ruccolo, S.; Qin, Y.; Schnedermann, C.; Nocera, D. G. J. Am. Chem. Soc. 2018, 140, 14926–14937.

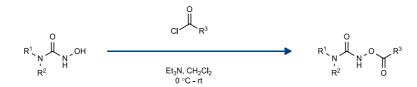
⁸ (a) Gentry, E. C.; Knowles, R. R. Acc. Chem. Res. **2016**, 49, 1546-1556. (b) Zheng, S.; Gutiérrez-Bonet, Á.; Molander, G. A. Chem **2019**, 5, 339–352.

⁹ Davies, J.; Svejstrup, T. D.; Fernandez Reina, D.; Sheikh, N. S.; Leonori, D. J. Am. Chem. Soc. 2016, 138, 8092-8095.

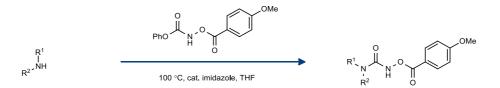

¹⁰ Bordwell, F. G.; Fried, H. E.; Hughes, D. L.; Lynch, T. Y.; Satish, A. V; Whang, Y. E. J. Org. Chem. **1990**, 55, 3330-3336.

¹¹ Hioe, J.; Šakić, D.; Vrček, V.; Zipse, H. Org. Biomol. Chem. 2015, 13, 157-169.

with a detailed study on the photogeneration of a Rh_2 nitrenoid from chloramine-T, although synthetic applications were not evaluated.¹²


General Procedures

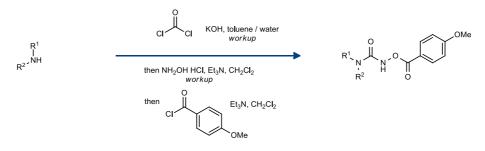
General Procedure A: Substitution of N-hydroxycarbamates¹³


To a 5.0 mL microwave vial charged with a stir bar was added the phenyl *N*-hydroxycarbamate (1.10 equiv.), then THF (0.30 M), to which was added triethylamine (0.20 equiv.) and the corresponding amine (1.00 equiv.). The vial was sealed with a microwave cap and heated for 16 h at 70 °C via conventional (oil bath) heating. Solvent was removed under reduced pressure and the products were then purified by silica gel chromatography to give the corresponding pure hydroxyureas.

General Procedure B: Synthesis of N-oxycarbamates¹³

To a roundbottom flask charged with a stir bar was added *N*-hydroxycarbamate (1.00 equiv.) then CH_2Cl_2 (0.30 M) and allowed to stir at 0 °C. *Hydroxycarbamates are insoluble and will not always dissolve completely before the next step of the reaction* Upon observing most of the hydroxycarbamate dissolve, Et_3N was added (1.00 equiv.) and finally the acyl chloride was added dropwise (1.00 equiv.). The reaction was allowed to warm gradually to room temperature. Upon completion, H_2O was added and the reaction mixture was extracted with CH_2Cl_2 . The organic layer was recollected and washed with a saturated NaHCO₃ solution, and then the organic phase was recollected and washed with brine. The organic phase was dried over Na₂SO₄ (stirring for 15 minutes). Solids were filtered and the filtrate was collected and concentrated under reduced pressure to give the corresponding pure acyloxycarbamates.

General Procedure C: Substitution of N-acyloxycarbamates¹³

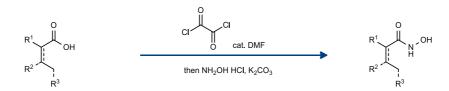

To a 5 mL microwave vial charged with a stir bar was added the phenyl *N*-acyloxycarbamate (1.00 equiv.), then THF (0.2 M), to which was added the corresponding amine (1.05 equiv.) and then imidazole (0.10 equiv.). The vial was sealed with a microwave cap and heated for 1-3 hours at 100 $^{\circ}$ C

¹² Das, A.; Maher, A. G.; Telser, J.; Powers, D. C. J. Am. Chem. Soc. 2018, 140, 10412-10415.

¹³ Allen, M. A.; Ivanovich, R. A.; Polat, D. E.; Beauchemin, A. M. Org. Lett. 2017, 19, 6574.

via microwave irradiation. The reaction mixture was diluted with EtOAc and transferred to a separatory funnel, then washed twice with 1 M NaOH and once with brine, dried over MgSO₄, filtered and concentrated under reduced pressure to give the corresponding pure acyloxyureas. In some cases, a higher degree of purity was needed after the extraction and the products could be recrystallized or purified by silica gel chromatography.

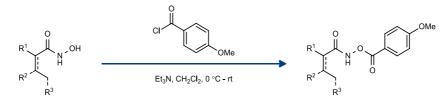
General Procedure D: Synthesis of N-oxyureas via carbamoyl chloride formation



To a clean 50 mL round bottom flask charged with a stir bar was added the amine (1.00 equiv.) then PhMe (0.8 M) to which was added KOH pellets (1.00 equiv.) and water (2.9 M). A dripping funnel was affixed on top of the roundbottom flask and this apparatus was purged with argon for 10 minutes at 0 °C. Phosgene (15% in toluene) (2.30 equiv.) was added to the dripping funnel under inert atmosphere, and was allowed to drip over 1 hour at 0 °C while stirring vigorously. The reaction was allowed to stir for an additional 30 minutes after complete addition of phosgene solution. Upon competition, the crude reaction mixture was bubbled with an argon balloon for 20 minutes in a well ventilated fumehood, to release any excess phosgene gas. The crude reaction mixture was then extracted to remove the aqueous layer, and then the organic phase was washed with brine (5 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude carbamoyl chloride which was used in the next step without further purification.

To the crude carbamoyl chloride was added CH_2Cl_2 (0.30 M) and cooled to 0 °C. To this was added hydroxylamine hydrochloride (1.00 equiv.), and followed immediately by Et_3N (2.00 equiv.). The reaction was allowed to warm to room temperature and stir overnight. Upon completion, the reaction was extracted with NaHCO₃ (5.0 mL x1), and then brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude *N*-hydroxyurea, which could be used in the next step without further purification.

To the crude *N*-hydroxyurea was added CH_2Cl_2 (0.30 M) and cooled to 0 °C. To this was added Et_3N (1.00 equiv.) followed immediately by addition of *p*-methoxybenzoylchloride (1.00 equiv.). The reaction was allowed to warm to room temperature and stirred overnight. Upon completion, the reaction was extracted with NaHCO₃ (5.0 mL x1), and then brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude *N*-oxyurea which was be recrystallized or purified by silica gel chromatography.


General Procedure E: Synthesis of hydroxamic acids¹⁴

To a clean 50 mL round bottom flask charged with a stir bar was added the carboxylic acid (1.00 equiv.), then CH_2Cl_2 (0.07 M) and cooled to 0 °C. To this was added oxalyl chloride (2.00 equiv.) and DMF (2 drops) and the reaction was allowed to stir for an additional 2.5 to 4 hours at room temperature. Upon completion, the crude reaction was evaporated under reduced pressure to provide the crude hydroxamic acid which was used in the next step without further purification.

To a clean 50 mL round bottom flask charged with a stir bar was added the hydroxylamine hydrochloride (1.20 equiv.), then a 2:1 mixture of EtOAc and H₂O (0.08 M) and cooled to 0 °C. To this was added K₂CO₃ (2.00 equiv.) and the crude hydroxamic acid was added dropwise. The reaction was allowed to stir for 12 hours at room temperature. Upon completion, the reaction was separated and extracted twice with EtOAc (20 mL x2). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude *N*-oxyurea which was be recrystallized or purified by silica gel chromatography.

General Procedure F: Synthesis of N-p-methoxybenzoylhydroxamic acid

To a clean 50 mL round bottom flask charged with a stir bar was added the pure hydroxamic acid (1.00 equiv.), then CH_2Cl_2 (0.30 M) and cooled to 0 °C. To this was added Et_3N (1.00 equiv.) followed immediately by portionwise addition of *p*-methoxybenzoylchloride (1.00 equiv.). The reaction was allowed to warm to room temperature and stirred overnight. Upon completion, the reaction was extracted with NaHCO₃ (5.0 mL x2), and then brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude *N*-*p*-methoxybenzoylhydroxamic acid which was be recrystallized or purified by silica gel chromatography.

General Procedure G: Photoinduced C-H amination of N-oxyureas.

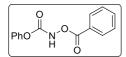
To a 8 mL Kimax glass vial charged with a stir bar was added the *N*-oxyurea (1.00 equiv.), then MeCN (0.2m), to which was added tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (2 mol%), and then

¹⁴ Hong, S.Y.; Park. Y.; Hwang, Y.; Kim. Y. B.; Baik, M.-H.; Chang, S. Science 2018, 359, 1016.

base triethylamine (1.10 equiv.) or tetrabutylammonium dibutylphosphate (5 mol%). The vial was closed with Teflon screw cap and was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH_2Cl_2 (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by silica gel chromatography.

Characterization Data

Synthesis of phenyl N-hydroxycarbamate

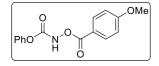

Phenyl *N***-hydroxycarbamate (4a):** The title compound was synthesized according to a literature procedure.¹³

¹**H NMR (300 MHz, DMSO-***d*₆): δ 10.43-10.15 (br s, 1 H), 9.11-9.03 (br s, 1H), 7.45-7.33 (m, 2H), 7.26-7.17 (m, 1H), 7.14-7.06 (m, 2H).

¹³C NMR (100 MHz, DMSO-*d*₆): 155.5 (C), 150.7 (C), 129.4 (CH), 125.1 (CH), 121.6 (CH).

The ¹H NMR and ¹³C NMR is in agreement with previous reports.

Synthesis of N-acyloxycarbamates

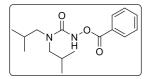


Phenyl *N***-benzoyloxycarbamate (4b):** The title compound was synthesized according to a literature procedure.¹³

¹**H NMR (300 MHz, CDCl₃):** δ 8.66 (br s, 1H), 8.11 (d, *J* = 7.9 Hz, 2H), 7.66-7.61 (m, 1H), 7.48 (t, *J* = 7.8 Hz, 2H), 7.39-7.34 (m, 2H), 7.25-7.16 (m, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 165.7 (C), 154.7 (C), 150.1 (C), 134.3 (CH), 129.9 (CH), 129.4 (CH), 128.7 (CH), 126.4 (C), 126.1 (CH), 121.2 (CH).

The ¹H NMR and ¹³C NMR is in agreement with previous reports.

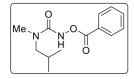

Phenyl (4-methoxybenzoyl)oxycarbamate (4c): The title compound was synthesized according to a literature procedure.¹³

¹**H NMR (300 MHz, CDCl₃):** δ 8.82 (br s, 1H), 8.10 (d, *J* = 8.9 Hz, 2H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.28-7.20 (m, 3H), 6.98 (d, *J* = 8.9 Hz, 2H), 3.89 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 165.5 (C), 164.6 (C), 154.9 (C), 150.3 (C), 132.3 (CH), 129.6 (CH), 126.2 (CH), 121.3 (CH), 118.6 (C), 114.2 (CH), 55.6 (CH₃).

The ¹H NMR and ¹³C NMR is in agreement with previous reports.

Synthesis of N-oxyureas



3-(Benzoyloxy)-1,1-diisobutylurea (1a): The title compound was synthesized according to a literature procedure.¹³

¹**H NMR (400 MHz, CDCl₃):** δ 8.56 (br s, 1H), 8.11 (dd, *J* = 8.4, 1.1 Hz, 2H), 7.62-7.58 (m, 1H), 7.46 (t, *J* = 7.8 Hz, 2H), 3.14 (d, *J* = 7.6 Hz, 4H), 2.16-1.97 (m, 2H), 0.95 (d, *J* = 6.7 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃): δ 167.3 (C), 158.1 (C), 134.1 (C), 130.0 (CH), 128.7 (CH), 127.3 (CH), 55.1 (CH₂), 27.3 (CH), 20.3 (CH₃).

The ¹H NMR and ¹³C NMR is in agreement with previous reports.

3-(Benzoyloxy)-1-isobutyl-1-methylurea (1b): The title compound was synthesized according to general procedure C using phenyl benzoyloxycarbamate (1.29 g, 5.00 mmol), and *N*-methylisobutylamine (0.60 mL, 5.0 mmol) and imidazole (0.034 g, 0.50 mmol) in THF (16.7 mL, 0.30 M). The reaction was heated under microwave irradiation for 2 h at 100 °C Solvent

was removed under reduced pressure and the crude product isolated using flash chromatography (30% $EtOAc/Et_2O$) to yield the title compound as a colourless oil (1.05 g, 84%).

TLC R_f: 0.30 in 20% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 8.54-8.43 (br s., 1H), 8.17-8.10 (m, 2H), 7.67-7.58 (m, 1H), 7.53-7.44 (m, 2H), 3.17 (d, *J* = 7.7 Hz, 2H), 3.02 (s, 3H), 2.04-1.97 (m, 1H), 0.96 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 167.0 (C), 157.9 (C), 134.0 (CH), 129.9 (CH), 128.6 (CH), 127.1 (C), 56.6 (CH₂), 34.6 (CH), 27.2 (CH), 20.0 (CH).

IR (FTIR): 3269, 2657, 1747, 167, 1489, 1243 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₃H₁₈N₂O₃Na [M+Na]⁺: 273.1317. Found: 273.1302.

1-Isobutyl-1-methyl-3-hydroxyurea (4d): The title compound was synthesized according to general procedure A using phenyl *N*-hydroxycarbamate (0.841 g, 5.50 mmol), and *N*-methylisobutylamine (0.436 g, 5.00 mmol) and Et₃N (0.14 mL, 1.0 mmol) in THF (16.6 mL, 0.30 M). The vial was sealed with a microwave cap and heated

for 16 h at 70 °C via an oil bath heating. The reaction mixture was concentrated under reduced pressure and isolated using flash chromatography (2% MeOH/CH₂Cl₂). The title compound was obtained as an amorphous white solid (0.530 g, 73%).


TLC Rf: 0.12 in 2% MeOH/CH₂Cl₂.

¹**H NMR (400 MHz, CDCl₃):** δ 7.07-6.95 (br s, 1H), 6.86-6.77 (br s, 1H), 3.09 (d, *J* = 7.6 Hz, 2H), 2.89 (s, 3H), 2.02-1.86 (m, 1H), 0.90 (d, *J* = 6.7 Hz, 3H).

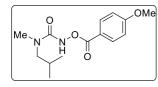
¹³C NMR (100 MHz, CDCl₃): δ 161.8 (C), 56.2 (CH₂), 34.1 (CH₃), 27.2 (CH), 19.9 (CH₃).

IR (FTIR): 3220, 2956, 1615, 1521, 1386, 1287, 1108 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for C₆H₁₄N₂O₂ [M]⁺: 146.1055. Found: 146.1040.

3-((3,5-Bistrifuoromethylbenzoyl)oxy)-1-isobutyl-1-methylurea (1c): The title compound was synthesized according to general procedure C using the pure 1-isobutyl-1-methyl-3-hydoxyurea (0.530 g, 3.60 mmol) was added CH_2Cl_2 (0.30 M) and cooled to 0 °C. To this was added Et_3N (0.50 mL, 3.60 mmol) followed immediately by dropwise addition of 3,5-bis(trifluoromethyl)benzoyl chloride (0.65 mL, 3.60 mmol). The reaction

was allowed to warm to room temperature and stirred overnight. Upon completion, the reaction was extracted with NaHCO₃ (5.0 mL x1), and then brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude which was purified by flash column chromatography (20% EtOAc/Hexanes). The title compound was obtained as an amorphous white solid (0.831 g, 60%).


TLC R_f: 0.94 in 2% MeOH/CH₂Cl₂.

¹**H NMR (400 MHz, CDCl₃):** δ 8.58-8.56 (br s, 2H), 8.43-8.41 (br s, 1H), 8.14-8.11 (br s, 1H), 3.17 (d, J = 7.4 Hz, 2H), 3.03 (s, 3H), 2.07-1.95 (m, 1H), 0.97 (d, J = 6.7 Hz, 6H).

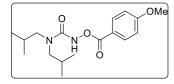
¹³C NMR (100 MHz, CDCl₃): δ 164.7 (C), 157.3 (C), 132.5 (C, q, *J* = 23 Hz), 130.0 (CH, m), 129.5 (C), 127.3 (CH, m), 122.6 (C, d, *J* = 203 Hz), 56.6 (CH₂), 34.6 (CH), 27.1 (CH), 19.9 (CH₃).

IR (FTIR): 2697, 1767, 1664, 1221, 1127, 697 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₅H₁₆N₂O₃F₆Na [M+Na]⁺: 409.0963. Found: 409.0983.

1-Isobutyl-3-((4-methoxybenzoyl)oxy)-1-methylurea (1d): The title compound was synthesized according to general procedure C using phenyl (4-methoxybenzoyl)oxycarbamate (0.862 g, 3.00 mmol), and *N*-methyl-isobutylamine (0.262 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (10.0 mL, 0.30 M). The reaction was heated under microwave

irradiation for 2 h at 100 °C. Solvent was removed under reduced pressure and the crude product isolated using flash chromatography (10% EtOAc/Hexanes \rightarrow 33% EtOAc/Hexanes) to yield the title compound as an amorphous white solid (0.800 g, 95%).


TLC R_f: 0.36 in 40% EtOAc/Hexanes.

¹H NMR (300 MHz, CDCl₃): δ 8.50-8.37 (br s, 1H), 8.12-7.99 (m, 2H), 7.04-6.86 (m, 2H), 3.85 (s, 3H), 3.14 (d, J = 10.7 Hz, 2H), 2.98 (s, 3H), 1.98 (dquintet, J = 13.8, 6.9 Hz, 1H), 0.93 (d, J = 6.7 Hz, 6H).

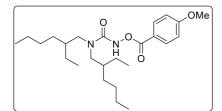
¹³C NMR (100 MHz, CDCl₃): δ 166.9 (C), 164.3 (C), 158.1 (C), 132.2 (CH), 119.5 (C), 114.1 (CH), 56.7 (CH₃) 55.6 (CH₃), 51.4 (CH₂), 34.9 (CH₂), 27.4 (CH), 20.1 (CH₃).

IR (FTIR): 3158, 3005, 2959, 1751, 1663, 1604, 1507, 1315, 1249, 1159 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₄H₂₀N₂O₄Na [M+Na]⁺: 303.1315. Found: 303.1325.

1-Diisobutyl-3-((4-methoxybenzoyl)oxy)urea (1a'): The title compound was synthesized according to general procedure C using phenyl (4-methoxybenzoyl)oxycarbamate (0.862 g, 3.00 mmol), and N,N-diisobutylamine (0.388 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (10.0 mL, 0.30 M). The reaction was heated under

microwave irradiation for 2 h at 100 °C. Solvent was removed under reduced pressure and the crude product isolated using flash chromatography (20% EtOAc/hexanes) to yield the title compound as an amorphous off-white solid (0.940 g, 97%).


TLC R_f: 0.28 in 20% EtOAc/Hexanes.

¹H NMR (400 MHz, CDCl₃): δ 8.51 (br s, 1H), 8.07-8.04 (m, 2H), 6.93-6.90 (m, 2H), 3.84 (s, 3H), 3.12 (d, J = 7.6 Hz, 4H), 2.04 (dquintet, J = 13.7, 6.9 Hz, 2H), 0.93 (d, J = 6.7 Hz, 12H).

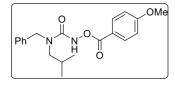
¹³C NMR (100 MHz, CDCl₃): δ 167.0 (C), 164.3 (C), 158.3 (C), 132.2 (CH), 119.5 (C), 114.1 (CH), 55.5 (CH₃), 55.0 (CH₂), 27.2 (CH), 20.2 (CH₃).

IR (FTIR): 3186, 2954, 2870, 1748, 1655, 1605, 1509, 1484, 1316, 1242 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₇H₂₆N₂O₄Na [M+Na]⁺: 345.1785. Found: 345.1799.

3-((4-Methoxybenzoyl)oxy)-1,1-bis(2-methylhexyl)urea (1b'): The title compound was synthesized according to a modified general procedure C using phenyl (4methoxybenzoyl)oxycarbamate (0.639 g, 3.00 mmol), and bis(2ethylhexyl)amine (0.640 g, 2.65 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (10.0 mL, 0.30 M). The reaction was heated

under microwave irradiation for 2 h at 100 °C. Solvent was removed under reduced pressure and the crude product isolated using flash chromatography (10% EtOAc/hexanes) to yield the title compound as an amorphous off-white solid (0.917 g, 85%).


TLC R_f: 0.40 in 10% EtOAc/Hexanes.

¹H NMR (300 MHz, DMSO-*d*₆): δ 10.21-10.18 (br s, 1H), 7.99-7.91 (m, 2H), 7.14-7.04 (m, 2H), 3.86 (s, 3H), 3.21-3.01 (m, 4H), 1.76-1.58 (m, 2H), 1.36-1.12 (m, 16H), 0.94-0.76 (m, 12H).

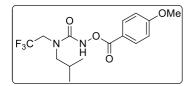
¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.5 (C), 163.4 (C), 158.4 (C), 131.9 (CH), 120.4 (C), 114.7 (CH), 56.1 (CH), 49.5 (CH₂), 49.5 (CH₂), 37.1 (CH), 30.2 (CH₂), 28.6 (CH₂), 23.6 (CH₂), 23.0 (CH₂), 14.4 (CH₃), 11.0 (CH₃).

IR (FTIR): 3177, 2959, 2925, 1756, 1658, 1509, 1241 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₂₅H₄₂N₂O₄Na [M+Na]⁺: 457.3043. Found: 457.3058.

1-Benzyl-1-isobutyl-3-((4-methoxybenzoyl)oxy)urea (1d'): The title compound was synthesized according to general procedure C using phenyl (4-methoxybenzoyl)oxycarbamate (0.862 g, 3.00 mmol), and benzyl-2-methylpropan-1-amine (0.490 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (10.0 mL, 0.30 M). The reaction was heated

under microwave irradiation for 2 h at 100 °C. Solvent was removed under reduced pressure and the crude product isolated using flash chromatography (20% EtOAc/hexanes) to yield the title compound as an amorphous off-white solid (0.930 g, 87%).


TLC R_f: 0.28 in 20% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 8.43 (br s, 1H), 8.06 (d, J = 9.0 Hz, 2H), 7.40-7.30 (m, 6H), 6.93 (d, J = 9.0 Hz, 2H), 4.59 (s, 2H), 3.86 (s, 3H), 3.17 (d, J = 7.5 Hz, 2H), 2.07 (dquintet, J = 13.7, 6.9 Hz, 1H), 0.97 (d, J = 6.7 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 166.7 (C), 164.2 (C), 158.5 (C), 136.5 (C), 132.1 (CH), 129.0 (CH), 127.8 (CH), 127.1, (CH), 119.4 (C), 113.9 (CH), 55.5 (CH₃), 54.6 (CH₂), 27.4 (CH), 20.2 (CH₃).

IR (FTIR): 3116, 2959, 2840, 1751, 1647, 1603, 1509, 1419, 1315, 1238 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₂₀H₂₄N₂O₄Na [M+Na]⁺: 379.1628. Found: 379.1634.

1-Isobutyl-3-((4-methoxybenzoyl)oxy)-1-(2,2,2-trifluoroethyl)urea (1e): The title compound was synthesized according to general procedure **D** using *N*-propylaniline (1.55 g, 10.0 mmol), toluene (0.8 M), KOH pellets (0.561 g, 10.0 mmol), and water (2.9 M) at 0 °C. A dripping funnel was affixed on top of the roundbottom flask and this

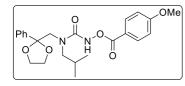
apparatus was purged with argon for 10 minutes. Phosgene (15% in toluene) (16.4 mL, 23 mmol) was added to the dripping funnel under inert atmosphere, and was allowed to drip over 1 hour at 0 °C while stirring vigorously. The reaction was allowed to stir for an additional 30 minutes after complete addition of phosgene solution. Upon competition, the crude reaction mixture was bubbled with an argon balloon for 20 minutes in a well ventilated fumehood, to release any excess phosgene gas. The crude reaction mixture was then extracted to remove the aqueous layer, and then the organic phase was washed with brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude isobutyl(2,2,2-trifluoroethyl)carbamic chloride which was used in the next step without further purification.

To the crude isobutyl(2,2,2-trifluoroethyl)carbamic chloride was added CH_2Cl_2 (0.30 M) and cooled to 0 °C. To this was added hydroxylamine hydrochloride (0.691 g, 10.0 mmol), and followed immediately by Et₃N (2.79 mL, 20.0 mmol). The reaction was allowed to warm to room temperature and stir overnight. Upon completion, the reaction was extracted with NaHCO₃ (5.0 mL x1), and then brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude N-propylanilinehydroxyurea, which could be used in the next step without further purification.

To the crude 3-hydroxy-1-isobutyl-1-(2,2,2-trifluoroethyl)urea was added CH_2Cl_2 (0.30 M) and cooled to 0 °C. To this was added Et_3N (1.39 mL, 10.0 mmol) followed immediately by addition of p-methoxybenzoylchloride (1.70 g, 10.0 mmol). The reaction was allowed to warm to room temperature and stirred overnight. Upon completion, the reaction was extracted with NaHCO₃ (5.0 mL x1), and

then brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude 1-isobutyl-3-((4-methoxybenzoyl)oxy)-1-(2,2,2-trifluoroethyl)urea which was purified by recrystallization with Et₂O to yield a white crystalline solid (2.43 g, 70% over 3 steps).

TLC R_f: 0.57 in 33% EtOAc/Hexanes.


M.p.: 105.8-106.2 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 8.66 (br s, 1H), 8.07 (d, J = 9.0 Hz, 2H), 6.95 (d, J = 9.0 Hz, 2H), 4.01 (q, J = 8.8 Hz, 2H), 3.87 (s, 3H), 3.26 (d, J = 7.7 Hz, 2H), 2.13 (dsept, J = 13.7, 6.9 Hz, 1H), 0.99 (d, J = 6.7 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 166.4 (C), 164.4 (C), 158.1 (C), 132.2 (CH), 124.5 (q, *J* = 278 Hz, C), 118.9 (C), 114.0 (CH), 55.5 (CH₃), 55.3 (CH₂), 48.1 (q, *J* = 34 Hz, CH₂), 27.1 (CH), 19.9 (CH₃).

IR (FTIR): 3144, 2971, 2889, 2360, 1749, 1660, 1606, 1249, 1160, 1143 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₅H₁₉F₃N₂O₄Na [M+Na]⁺: 371.1188. Found: 371.1195.

1-Isobutyl-1-(2-phenyl-1,3-dioxolan-2-yl)isobutyl-3-((4methoxybenzoyl)oxy)urea (1f): The title compound was synthesized according to general procedure С using phenyl (4methoxybenzoyl)oxycarbamate (0.574)2.00 mmol). and g. isobutylamine (0.470 g, 2.00 mmol) and imidazole (0.014 g, 0.20

mmol) in THF (6.6 mL, 0.20 M). The reaction was heated under microwave irradiation for 2 h at 100 °C. The reaction mixture was concentrated under reduced pressure and isolated using flash chromatography (10% EtOAc/Hexanes). The title compound was obtained as an amorphous pale orange solid (0.770 g, 90%).

TLC R_f: 0.24 in 20% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 10.28-10-21 (br s, 1H), 8.16-8.07 (m, 2H), 7.58-7.51 (m, 2H), 7.45-7.32 (m, 3H), 7.00-6.90 (m, 2H), 4.30-4.23 (m, 2H), 3.96-3.85 (m, 5H), 3.75-3.65 (br s, 2H), 3.33-3.21 (d, *J*= 6.9 Hz, 2H), 2.18-2.01 (m, 1H), 0.88 (d, *J*= 6.7 Hz, 6H).

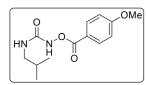
¹³C NMR (100 MHz, CDCl₃): δ 166.8 (C), 163.9 (C), 159.5 (C), 139.9 (C), 132.0 (CH), 128.8 (CH), 128.5 (CH), 125.7 (CH), 119.9 (C), 113.8 (CH), 110.6 (C), 65.4 (CH₂), 56.7 (CH₂), 55.4 (CH), 54.0 (CH₂), 26.8 (CH), 20.1 (CH₃).

IR (FTIR): 3221, 2941, 1740, 1691, 1468, 1257 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for $C_{23}H_{28}N_2O_6Na$ [M+Na]⁺: 451.1845. Found: 451.1825.

1-Isobutyl-3-hydroxyurea (4.5): The title compound was synthesized according to a modified general procedure A using phenyl *N*-hydroxycarbamate (0.765 g, 5.00 mmol), and *N*-isobutylamine (2.48 mL, 25.0 mmol) and Et_3N (0.14 mL, 1.0 mmol) in THF (16.6 mL, 0.30 M). The vial was sealed with a microwave cap and heated for 16 h at 70 °C via an oil bath heating. The reaction mixture was concentrated under reduced pressure and

isolated using flash chromatography (5% MeOH/CH₂Cl₂ then 7% MeOH/CH₂Cl₂). The title compound was obtained as an amorphous white solid (0.380 g, 58%).


TLC R_f: 0.28 in 10% MeOH/CH₂Cl₂.

¹**H NMR (300 MHz, DMSO-***d*₆): δ 8.52 (d, *J*= 1.2 Hz, 1H), 8.21 (br s, 1H), 6.61 (t, *J*= 6.2 Hz, 1H), 2.86 (t, *J*= 6.9 Hz, 2H), 1.78-1.65 (m, 1H), 0.82 (d, *J*= 6.7 Hz, 6H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 162.0 (C), 46.7 (CH₂), 28.9 (CH), 20.4 (CH₃).

IR (FTIR): 3389, 3123, 2955, 2871, 1617, 1549, 1424 cm⁻¹.

HRMS (EI) m/z: Despite multiple attempts to obtain an accurate mass using both ESI and EI, one could not be obtained for this compound. However, this product was a precursor to **1g**, for which all characterization was obtained, thereby clearly demonstrating this to be the desired product.

3-((4-Methoxybenzoyl)oxy)-1-isobutylurea (1g): The title compound was synthesized according to general procedure **B** using the pure 1-isobutyl-3-hydroxyurea (0.330 g, 2.50 mmol) was added CH_2Cl_2 (0.30 M) and cooled to 0 °C. To this was added Et_3N (0.35 mL, 0.40 mmol) mmol) followed

immediately by addition of p-methoxybenzoylchloride (0.427 g, 2.50 mmol). The reaction was allowed to warm to room temperature and stirred overnight. Upon completion, the reaction was extracted with NaHCO₃ (5.0 mL x1), and then brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a frit and rinsed with CH₂Cl₂ (5.0 mL). The filtrate was collected, concentrated vacuo and purified by recrystallization with Et₂O to yield a white crystalline solid (0.548 g, 82%).

TLC R_f: 0.21 in 2% MeOH/CH₂Cl₂.

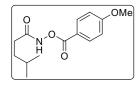
M.p.: 139.7-140.5 °C.

¹**H NMR (400 MHz, DMSO-***d*₆): δ 9.68-9.60 (br s, 1H), 7.98 (d, *J*= 8.9 Hz, 2H), 7.09 (d, *J*= 8.9 Hz, 2H), 7.04 (t, *J*= 6.0 Hz, 1H), 3.84 (s, 3H), 2.86 (t, *J*= 6.4 Hz, 2H), 1.80-1.63 (m, 1H), 0.81 (d, *J*= 6.7 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.5 (C), 164.1 (C), 159.3 (C), 132.2 (CH), 120.2 (C), 114.7 (CH), 56.1 (CH), 47.0 (CH₂), 28.8 (CH), 20.4 (CH₃).

IR (FTIR): 3304, 2959, 1748, 1663, 1571, 1510, 1249 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₃H₁₈N₂O₄Na [M+Na]⁺: 289.1165. Found: 289.1176.


N-Hydroxy-4-methylpentanamide (6a): The title compound was synthesized according to general procedure **E** using 4-methylpentanoyl chloride (1.35 g, 10.0 mmol) and hydroxylamine hydrochloride (0.694 g, 10.0 mmol) and NaHCO₃ (1.85 g, 22.0 mmol) in 2 : 1 CH₂Cl₂ : H₂O (0.30 M). Upon completion, the reaction mixture was concentrated in

vacuo and isolated using flash chromatography (50% EtOAc/ Hexanes) to yield the title compound as a white solid (1.13 g, 86% yield).

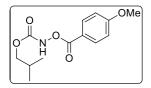
¹**H NMR (400 MHz, CDCl₃):** δ 8.28 (br s, 2H), 2.18-2.13 (m, 2H), 1.62-1.49 (m, 3H), 0.90 (d, *J* = 6.2 Hz, 6H).

¹³C NMR (75 MHz, CDCl₃): δ 172.1 (C), 34.2 (CH₂), 31.0 (CH₂), 27.7 (CH), 22.2 (CH₃).

The ¹H NMR and ¹³C NMR is in agreement with previous reports.¹⁵

N-((4-Methoxybenzoyl)oxy)-4-methylpentanamide (1h): The title compound was synthesized according to general procedure F using *N*-hydroxy-4-methylpentanamide (0.656 g, 5.00 mmol) and 4-methoxybenzoyl chloride (0.853 g, 5.00 mmol) and triethylamine (0.70 mL, 5.0 mmol) in CH_2Cl_2 (0.30 M). Upon completion the reaction mixture was extracted with saturated

NaHCO₃ three times (10 mL x 3) followed by a single brine wash (10 mL x 1). The organic phase was collected and dried over Na₂SO₄ (stirring for 15 min). The solids were filtered over a frit and rinsed with CH₂Cl₂ (20.0 mL). The filtrate was collected, and concentrated in vacuo and isolated using flash chromatography (50% EtOAc/Hexanes) to yield the title compound as a white solid (1.12 g, 82% yield).


TLC R_f: 0.71 in 50% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 9.11 (br s, 1H), 8.03 (d, *J*= 9.0 Hz, 2H), 6.93 (d, *J*= 9.0 Hz, 2H), 3.85 (s, 3H), 2.30 (t, *J*= 7.4 Hz, 2H), 1.67-1.57 (m, 4H), 0.90 (d, *J*= 6.4 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 171.7 (C), 164.8 (C), 164.4 (C), 132.2 (CH), 118.9 (C), 114.0 (CH), 55.5 (CH₃), 33.9 (CH₂), 31.2 (CH₂) 27.7 (CH), 22.2 (CH₃).

IR (FTIR): 3147, 2959, 1759, 1657, 1603, 1509, 1248, 1167, 1024 cm⁻¹.

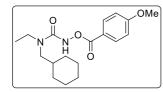
HRMS (ESI) m/z: Exact mass calcd for C₁₄H₁₉NO₄Na [M+Na]⁺: 288.1210. Found: 288.1212.

Isobutyl (4-methoxybenzoyl)oxycarbamate (1i): Isobutyl hydroxycarbamate was synthesized according to general procedure A using isobutyl chloroformate (1.30 mL, 10.0 mmol) and hydroxylamine hydrochloride (0.694 g, 10.0 mmol) and NaHCO₃ (1.85 mL, 22.0 mmol) in 2 : 1 CH₂Cl₂ : H₂O (0.30 M). Upon completion, the reaction mixture was

concentrated in vacuo to provide the crude isobutyl hydroxycarbamate which was used in the next step without further purification.

The title compound was synthesized according to general procedure **B** using the crude isobutyl hydroxycarbamate (0.666 g, 5.00 mmol) to this was added CH_2Cl_2 (0.30 M) and cooled to 0 °C. To this was added Et_3N (0.70 mL, 5.0 mmol) followed immediately by addition of *p*-methoxybenzoylchloride (0.853 g, 5.00 mmol). The reaction was allowed to warm to room temperature and stirred overnight. Upon completion the reaction mixture was extracted with saturated NaHCO₃ three times (10 mL x 3) followed by a single brine wash (10 mL x 1). The organic phase was collected and dried over Na₂SO₄ (stirring for 15 min). The solids were filtered over a frit and rinsed with CH_2Cl_2 (20.0 mL). The filtrate was collected, and concentrated in vacuo and isolated using flash chromatography (15% EtOAc/Hexanes) to yield the title compound as a clear oil (1.17 g, 88% yield).

TLC R_f: 0.70 in 33% EtOAc/Hexanes.


¹**H NMR (400 MHz, CDCl₃):** δ 8.24 (br s, 1H), 8.04 (d, J = 9.0 Hz, 2H), 6.94 (d, J = 9.0 Hz, 2H), 3.98 (d, J = 6.6 Hz, 2H), 3.86 (s, 3H), 1.96 (dquintet, J = 13.4, 6.7 Hz, 1H), 0.92 (d, J = 6.7 Hz, 6H).

¹⁵ Dube, P.; Nathel, N. F. F.; Vetelino, M.; Couturier, M.; Aboussafy, C. L.; Pichette, S.; Jorgensen, M. L.; Hardink, M. Org. Lett. **2009**, 11, 5622.

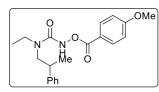
¹³C NMR (100 MHz, CDCl₃): δ 165.7 (C), 164.4 (C), 157.0 (C), 132.2 (CH), 118.9 (C), 114.1 (CH), 72.7 (CH₂), 55.6 (CH₃), 27.9 (CH), 18.9 (CH₃)

IR (FTIR): 3147, 2960, 1759, 1656, 1603, 1509, 1459, 1248, 1167 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₃H₁₇NO₅Na [M+Na]⁺: 290.1005. Found: 290.1004.

3-((4-Methoxybenzoyl)oxy)-1-cyclohexylmethyl-1-ethylurea (1j): The title compound was synthesized according to general procedure C using phenyl (4-methoxybenzoyl)oxycarbamate (0.861 g, 3.00 mmol), and *N*-(cyclohexylmethyl)-*N*-ethylamine (0.555 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (15.0 mL, 0.20 M). The reaction was heated

under microwave irradiation for 2 h at 100 °C. Upon completion, the reaction mixture was diluted with EtOAc (20 mL) and washed three times using 1 M NaOH (2.0 mL x 3), followed by a single brine wash (10 mL x 1). The organic phase was collected and dried over Na₂SO₄ (stirring for 15 min). The solids were filtered over a frit and rinsed with CH₂Cl₂ (5.0 mL). The filtrate was collected, concentrated vacuo and isolated using silica plug (15% EtOAc/Hexanes \rightarrow 50% EtOAc/Hexanes) to yield the title compound as a colourless oil (0.653 g, 54%).


TLC R_f: 0.30 in 20% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 10.21-10.14 (br s, 1H), 8.00-7.91 (m, 2H), 7.14-7.05 (m, 2H), 3.85 (s, 3H), 3.25 (q, *J*= 7.0 Hz, 2H), 3.05 (d, *J*= 6.9 Hz, 2H), 1.74-1.45 (m, 6H), 1.27-1.12 (m, 3H), 1.08 (t, *J*= 7.0 Hz, 3H), 0.98-0.80 (m, 2H).

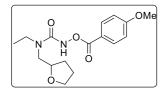
¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.2 (C), 163.6 (C), 157.2 (C), 131.4 (CH), 119.8 (C), 114.3 (CH), 55.6 (CH), 51.4 (CH₂), 41.2 (CH₂), 36.2 (CH), 30.2 (CH₂), 26.1 (CH₂), 25.4 (CH₂), 13.0 (CH₃).

IR (FTIR): 3251, 2923, 2850, 1741, 1660, 1604, 1248, 1164 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₂₁H₃₄N₂O₄Na [M+Na]⁺: 401.2417. Found: 401.2423.

1-Ethyl-3-((4-methoxybenzoyl)oxy)-1-(2-phenylpropyl)urea (1k): The title compound was synthesized according to general procedure **C** using phenyl (4-methoxybenzoyl)oxycarbamate (0.862 g, 3.00 mmol), and *N*-ethyl-2-phenylpropan-1-amine (0.490 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (15.0 mL, 0.20 M). The reaction was heated under

microwave irradiation for 2 h at 100 °C. Upon completion, the reaction mixture was diluted with EtOAc (20 mL) and washed three times using 1 M NaOH (2.0 mL x 3), followed by a single brine wash (10 mL x 1). The organic phase was collected and dried over Na₂SO₄ (stirring for 15 min). The solids were filtered over a frit and rinsed with CH₂Cl₂ (5.0 mL). The filtrate was collected, concentrated vacuo and isolated using silica plug (20% EtOAc/Hexanes \rightarrow 40% EtOAc/Hexanes) to yield the title compound as a colourless oil (0.919 g, 86%).


TLC R_f: 0.19 in 20% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 8.26 (br s, 1H), 8.11-7.99 (m, 2H), 7.35-7.27 (m, 2H), 7.27-7.17 (m, 3H), 6.98-6.86 (m, 2H), 3.85 (s, 3H), 3.58 (dd, *J* = 6.4, 13.6 Hz, 1H), 3.27-3.11 (m, 3H), 2.96 (qd, *J* = 7.2, 14.6 Hz, 1H), 1.35-1.27 (m, 3H), 1.18-1.03 (m, 3H).

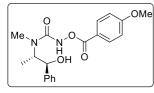
¹³C NMR (100 MHz, CDCl₃): δ 166.4 (C), 164.2 (C), 157.7 (C), 144.0 (C), 132.1 (CH), 128.8 (CH), 127.3 (CH), 126.8 (CH), 119.4 (C), 113.9 (CH), 55.5 (CH₃), 54.6 (CH₂), 42.6 (CH₂), 38.8 (CH), 18.6 (CH₃), 12.9 (CH₃).

IR (FTIR): 3216, 2966, 1747, 1668, 1604, 1509, 1454, 1245, 1167 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₂₀H₂₄N₂O₄Na [M+Na]⁺: 379.1628. Found: 379.1634.

1-Ethyl-3-((4-methoxybenzoyl)oxy)-1-((tetrahydrofuran-2yl)methyl)urea (11): The title compound was synthesized according to general procedure C using phenyl (4-methoxybenzoyl)oxycarbamate (0.862 g, 3.00 mmol), and *N*-((tetrahydrofuran-2-yl)methyl)ethanamine (0.388 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (10.0 mL,

0.30 M). The reaction was heated under microwave irradiation for 2 h at 100 °C. Solvent was removed under reduced pressure and the crude product isolated using flash chromatography (20% EtOAc/Hexanes) to yield the title compound as a clear oil (0.580 g, 59%).


TLC R_f: 0.34 in 50% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 10.08 (br s, 1H), 8.05 (d, J = 9.0 Hz, 2H), 6.90 (d, J = 9.0 Hz, 2H), 4.10-4.02 (m, 2H), 3.86-3.81 (m, 4H), 3.50-3.26 (m, 4H), 2.02-1.90 (m, 3H), 1.63-1.58 (m, 1H), 1.15 (t, J = 7.1 Hz, 3H).

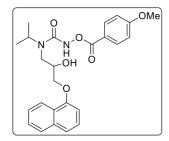
¹³C NMR (100 MHz, CDCl₃): δ 166.2 (C), 164.0 (C), 156.0 (C), 132.1 (CH), 120.1 (C), 113.9 (CH), 79.5 (CH), 68.6 (CH₂), 55.5 (CH₃), 54.6 (CH₂), 43.8 (CH₂), 28.8 (CH₂), 26.1 (CH₂), 13.0 (CH₃).

IR (FTIR): 3192, 2962, 1685, 1604, 1566, 1245, 1067 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₆H₂₂N₂O₅Na [M+Na]⁺: 345.1421. Found: 345.1426.

1-(2-Hydroxy-2-phenylethyl)-3-((4-methoxybenzoyl)oxy)-1methylurea (1m): The title compound was synthesized according to general procedure C using phenyl (4-methoxybenzoyl)oxycarbamate (0.861 g, 3.00 mmol), and (–)-(1R,2S)-ephedrine (0.495 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (15.0 mL, 0.20 M). The reaction

was heated under microwave irradiation for 2 h at 100 °C. Upon completion, the reaction mixture was diluted with EtOAc (20 mL) and washed three times using 1 M NaOH (2.0 mL x 3), followed by a single brine wash (10 mL x 1). The organic phase was collected and dried over Na₂SO₄ (stirring for 15 min). The solids were filtered over a frit and rinsed with CH₂Cl₂ (5.0 mL). The filtrate was collected, concentrated vacuo and isolated using flash chromatography (20% EtOAc/Hexanes \rightarrow 50% EtOAc/Hexanes) to yield the title compound as a colourless oil (1.16 g, 97%).


TLC R_f: 0.30 in 20% EtOAc/Hexanes.

¹**H NMR (600 MHz, CDCl₃):** δ 9.53-8.83 (br s, 1H), 8.10-8.01 (m, 2H), 7.43-7.25 (m, 5H), 6.98-6.89 (m, 2H), 4.84 (d, J = 3.2 Hz, 1H), 4.36 (qd, J = 6.8, 3.0 Hz, 1H), 3.86 (s, 3H), 3.62-3.01 (br s, 1H), 2.51 (s, 3H), 1.20 (d, J = 7.2 Hz, 3H).

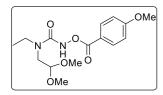
¹³C NMR (100 MHz, CDCl₃): δ 166.6 (C), 164.2 (C), 159.5 (C), 132.2 (CH), 128.5 (CH), 128.2 (CH), 128.1 (CH), 126.6 (CH), 119.6 (CH), 119.8 (C), 114.3 (CH), 77.7 (CH), 57.5 (CH), 55.6 (CH), 30.7 (CH), 13.4 (CH₃).

IR (FTIR): 3251, 2923, 2850, 1741, 1660, 1604, 1248, 1164 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₂₁H₃₄N₂O₄Na [M+Na]⁺: 401.2417. Found: 401.2423.

1-(2-Hydroxy-3-(naphthalen-1-yloxy)propyl)-1-isopropyl-3-((4methoxybenzoyl)oxy)urea (1n): The title compound was synthesized according to general procedure C using phenyl (4methoxybenzoyl)oxycarbamate (0.861 g, 3.00 mmol), and propranolol (0.778 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (12.0 mL, 0.25 M). The reaction was heated under microwave irradiation for 2 h at 100 °C. Upon completion, the reaction mixture was concentrated in vacuo and isolated using flash chromatography (40% Et₂O/Toluene) to

yield the title compound as a white solid (0.855 g, 60%).


TLC R_f: 0.22 in 20% Et₂O/Toluene.

¹**H NMR (300 MHz, CDCl₃):** δ 9.85-9.73 (br s, 1H), 8.26-8.16 (m, 2H), 8.12-8.03 (m, 2H), 7.87-7.78 (m, 1H), 7.56-7.44 (m, 3H), 7.42-7.34 (m, 1H), 6.97-6.90 (m, 2H), 6.86-6.80 (m, 1H), 4.57-4.36 (m, 2H), 4.17 (qd, J = 9.5, 6.0 Hz, 2H), 3.86 (s, 3H), 3.68 (dd, J = 15.8, 9.0 Hz, 1H), 3.52 (dd, J = 15.7, 2.2 Hz, 1H), 1.28 (app dd, J = 24.1, 6.7 Hz, 6H).

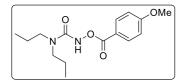
¹³C NMR (100 MHz, CDCl₃): δ 166.7 (C), 164.1 (C), 159.7 (C), 153.8 (C), 134.6 (C), 132.2 (CH), 127.8 (CH), 126.7 (CH), 125.9 (CH), 125.6 (CH), 125.5 (C), 121.6 (CH), 121.2 (CH), 119.7 (C), 114.0 (CH), 105.7 (CH), 72.4 (CH), 69.9 (CH₂), 55.6 (CH₃), 47.8 (CH), 45.6 (CH₂), 21.2 (CH), 20.0 (CH₃).

IR (FTIR): 3205, 2973, 1742, 1633, 1604, 1509, 1249 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₂₅H₂₈N₂O₆Na [M+Na]⁺: 475.1845. Found: 475.1823.

1-(2,2-Dimethoxyethyl)-1-ethyl-3-((4-methoxybenzoyl)oxy)urea (10): The title compound was synthesized according to general procedure C using phenyl (4-methoxybenzoyl)oxycarbamate (0.862 g, 3.00 mmol), and *N*-ethyl-2,2-dimethoxyethanamine (0.399 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (10.0 mL, 0.30 M). The reaction was heated

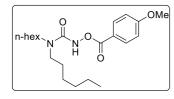
under microwave irradiation for 2 h at 100 °C. Solvent was removed under reduced pressure and the crude product isolated using flash chromatography (30% EtOAc/Hexanes \rightarrow 40% EtOAc/Hexanes) to yield the title compound as a clear oil (0.979 g, 99%).


TLC R_f: 0.40 in 40% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 9.63 (s, 1H), 8.05 (d, *J* = 8.6 Hz, 2H), 6.93-6.90 (m, 2H), 4.46 (t, *J* = 5.3 Hz, 1H), 3.84 (s, 3H), 3.50 (s, 6H), 3.36-3.45 (m, 4H), 1.16 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 166.3 (C), 163.9 (C), 158.6 (C), 132.0 (CH), 119.8 (C), 113.9 (CH), 104.4 (CH), 55.6 (CH₃), 55.5 (CH₃), 49.4 (CH₂), 43.3 (CH₂), 13.4 (CH₃).

IR (FTIR): 3216, 2943, 1740, 1686, 1466, 1247, 1169, 1068 cm⁻¹.


HRMS (ESI) m/z: Exact mass calcd for C₁₅H₂₂N₂O₆Na [M+Na]⁺: 349.1370. Found: 349.1376.

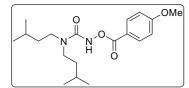
¹**H NMR (400 MHz, CDCl₃):** δ 8.49 (s, 1H), 8.07-8.04 (m, 2H), 6.93-6.91 (m, 2H), 3.23 (t, *J* = 7.6 Hz, 4H), 1.64 (ap sext, 7.5 Hz, 4H), 0.92 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 167.0 (C), 164.3 (C), 157.8 (C), 132.2 (CH), 119.5 (C), 114.1 (CH), 55.6 (CH₃), 49.1 (CH₂), 21.6 (CH₂), 11.4 (CH₃).

The ¹H NMR and ¹³C NMR is in agreement with previous reports.

1,1-Dihexyl-3-((4-methoxybenzoyl)oxy)urea (1q): The title compound was synthesized according to general procedure C using phenyl (4-methoxybenzoyl)oxycarbamate (0.862 g, 3.00 mmol), and *N,N*-dihexylamine (0.555 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (10.0 mL, 0.30 M). The reaction was heated under microwave irradiation for 2 h at 100 °C. Upon completion, the reaction mixture was

diluted with EtOAc (20 mL) and washed three times using 1 M NaOH (2.0 mL x 3), followed by a single brine wash (10 mL x 1). The organic phase was collected and dried over Na₂SO₄ (stirring for 15 min). The solids were filtered over a frit and rinsed with CH₂Cl₂ (5.0 mL). The filtrate was collected, concentrated in vacuo and isolated using silica column chromatography (10% EtOAc/Hexanes \rightarrow 20% EtOAc/Hexanes) to yield the title compound as a colourless oil (0.840 g, 74%).


TLC R_f: 0.24 in 20% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 8.47 (br s, 1H), 8.06 (d, *J* = 9.0 Hz, 2H), 6.92 (d, *J* = 9.0 Hz, 2H), 3.85 (s, 3H), 3.24 (t, *J* = 7.7 Hz, 4H), 1.62-1.58 (m, 4H), 1.32-1.27 (m, 12H), 0.87 (t, *J* = 6.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 167.0 (C), 164.3 (C), 157.7 (C), 132.2 (CH), 119.5 (C), 114.0 (CH), 55.6 (CH₃), 47.5 (CH₂), 31.7 (CH₂), 28.3 (CH₂), 26.7 (CH₂), 22.7 (CH₂), 14.2 (CH₃).

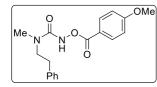
IR (FTIR): 3156, 2955, 2930, 2856, 1753, 1652, 1509, 1486, 1264 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for $C_{21}H_{34}N_2O_4Na [M+Na]^+: 401.2411$. Found: 401.2416.

1,1-Diisopentyl-3-((4-methoxybenzoyl)oxy)urea (1r): The title compound was synthesized according to general procedure C using phenyl (4-methoxybenzoyl)oxycarbamate (0.862 g, 3.00 mmol), and N,N-diisopentylamine (0.472 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (10.0 mL, 0.30 M). The reaction was heated under

microwave irradiation for 2 h at 100 °C. Upon completion, the reaction mixture was diluted with EtOAc (20 mL) and washed three times using 1 M NaOH (2.0 mL x 3), followed by a single brine wash (10 mL x 1). The organic phase was collected and dried over Na_2SO_4 (stirring for 15 min). The solids were filtered over a frit and rinsed with CH₂Cl₂ (5.0 mL). The filtrate was collected, concentrated in vacuo

and isolated using silica column chromatography (15% EtOAc/Hexanes \rightarrow 30% EtOAc/Hexanes) to yield the title compound as a colourless oil (0.800 g, 79%).


TLC R_f: 0.38 in 33% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 8.46 (br s, 1H), 8.06 (d, *J* = 9.0 Hz, 2H), 6.92 (d, *J* = 9.0 Hz, 2H), 3.85 (s, 3H), 3.26 (t, *J* = 7.9 Hz, 4H), 1.63-1.54 (m, 2H), 1.54-1.47 (m, 4H), 0.93 (d, *J* = 6.5 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃): δ 167.0 (C), 164.3 (C), 157.5 (C), 132.2 (CH), 119.5 (C), 114.1 (CH), 55.6 (CH₃), 45.8 (CH₂), 37.1 (CH₂), 26.2 (CH), 22.6 (CH₃).

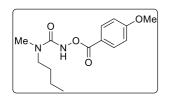
IR (FTIR): 3263, 2953, 2868, 1745, 1655, 1604, 1510, 1249, 1166 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₉H₃₀N₂O₄Na [M+Na]⁺: 373.2098. Found: 373.2103.

3-((4-Methoxybenzoyl)oxy)-1-methyl-1-phenethylurea (1s): The title compound was synthesized according to general procedure C using phenyl (4-methoxybenzoyl)oxycarbamate (0.862 g, 3.00 mmol), and *N*-methyl-2-phenylethanamine (0.406 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (10.0 mL, 0.30 M). The reaction was heated under

microwave irradiation for 2 h at 100 °C. Solvent was removed under reduced pressure and the crude product isolated using flash chromatography (30% EtOAc/Hexanes \rightarrow 40% EtOAc/Hexanes) to yield the title compound as an amorphous off-white solid (0.896 g, 91%).

TLC R_f: 0.22 in 33% EtOAc/Hexanes.


¹**H NMR (400 MHz, CDCl₃):** δ 8.30 (br s, 1H), 8.07 (d, J = 9.0 Hz, 2H), 7.34-7.21 (m, 5H), 6.94 (d, J = 9.0 Hz, 2H), 3.87 (s, 3H), 3.56 (t, J = 7.4 Hz, 2H), 2.93-2.89 (m, 5H).

¹³C NMR (100 MHz, CDCl₃): δ 166.6 (C), 164.3 (C), 157.9 (C), 138.7 (C), 132.2 (CH), 129.0 (CH), 128.9 (CH), 126.7 (CH), 119.4 (C), 114.0 (CH), 55.6 (CH₃), 51.4 (CH₂), 34.9 (CH₃), 34.3 (CH₂).

IR (FTIR): 3302, 3065, 2972, 2934, 1737, 1702, 1602, 1508, 1456 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₈H₂₀N₂O₄Na [M+Na]⁺: 351.1315. Found: 351.1321.

3-((4-Methoxybenzoyl)oxy)-1-butyl-1-methylurea (1t): The title compound was synthesized

general according procedure С using phenyl to (4methoxybenzoyl)oxycarbamate (0.861 3.00 mmol), and Ng, methylbutylamine (0.262 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (15.0 mL, 0.20 M). The reaction was heated under microwave irradiation for 2 h at 100 °C. Upon completion, the reaction mixture was diluted with EtOAc (20 mL) and washed three times using 1

M NaOH (2.0 mL x 3), followed by a single brine wash (10 mL x 1). The organic phase was collected and dried over Na₂SO₄ (stirring for 15 min). The solids were filtered over a frit and rinsed with CH₂Cl₂ (5.0 mL). The filtrate was collected, concentrated in vacuo and isolated using flash chromatography (25% EtOAc/Hexanes) to yield the title compound as a yellow oil (0.466 g, 55%).

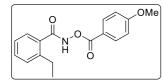
TLC R_f: 0.16 in 20% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 8.45-8.42 (br s, 1H), 8.12-8.06 (m, 2H), 6.98-6.92 (m, 2H), 3.88 (s, 3H), 3.37-3.30 (m, 2H), 3.00 (s, 3H), 1.66-1.54 (m, 2H), 1.43-1.30 (m, 2H), 0.93 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 166.6 (C), 164.1 (C), 157.8 (C), 132.0 (CH), 119.3 (C), 113.9 (CH), 55.4 (CH), 48.8 (CH₂), 33.9 (CH₃), 29.7 (CH₂), 19.9 (CH₂), 13.8 (CH₃).

IR (FTIR): 3213, 2956, 2870, 1752, 1649, 1503, 1244, 1074 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₄H₂₀N₂O₄Na [M+Na]⁺: 303.1321. Found: 303.1298.



2-Ethyl-*N***-hydroxybenzamide (6b):** The title compound was synthesized according to a literature procedure.¹⁴

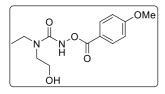
¹H NMR (300 MHz, CDCl₃): δ 8.87-8.09 (br s, 2H), 7.47-7.38 (m, 1H), 7.38-7.29 (m, 2H), 7.26-7.19 (m, 1H), 2.81 (q, *J*= 7.4 Hz, 2H), 1.24 (t, *J*= 7.5 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 168.8 (C), 143.3 (C), 131.3 (C), 131.0 (CH), 129.6 (CH), 127.3 (CH), 125.8 (CH), 26.2 (CH₂), 15.7 (CH₃).

The ¹H NMR and ¹³C NMR is in agreement with previous reports.

2-Ethyl-*N***-((4-methoxybenzoyl)oxy)benzamide** (1u): The title compound was synthesized according to the general procedure F using 2-ethyl-*N*-hydroxybenzamide (0.520 g, 3.15 mmol), CH_2Cl_2 (0.30 M) at 0 °C. To this was added Et₃N (0.42 mL, 3.0 mmol) followed immediately by portionwise addition of *p*-methoxybenzoylchloride (0.516 g, 3.00 mmol).

The reaction was allowed to warm to room temperature and stirred overnight. Upon completion, the reaction was extracted with NaHCO₃ (5.0 mL x2), and then brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure and the crude product isolated using flash column chromatography (20 % EtOAc/Hexanes) to yield the title compound as an amorphous white solid (0.592 g, 67%).


TLC R_f: 0.21 in 20% EtOAc/Hexanes.

¹**H NMR (300 MHz, CDCl₃):** δ 9.36-9.27 (br s, 1H), 8.15-8.07 (m, 2H), 7.55 (dd, *J*= 7.6, 1.2 Hz, 1H), 7.48-7.42 (m, 1H), 7.36-7.30 (m, 1H), 7.29-7.22 (m, 1H), 7.00-6.94 (m, 2H), 3.90 (s, 3H), 2.87 (q, *J*= 7.5 Hz, 2H), 1.28 (t, *J*= 7.5 Hz, 3H).

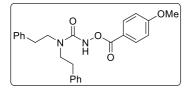
¹³C NMR (100 MHz, CDCl₃): δ 164.9 (C), 164.5 (C), 143.9 (C), 132.3 (CH), 131.4 (CH), 131.3 (C), 127.7 (CH), 125.8 (CH), 118.6 (CH), 114.1 (CH), 55.6 (CH), 26.3 (CH₂), 16.0 (CH₃).

IR (FTIR): 3138, 2957, 1751, 1653, 1505, 1252 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₇H₁₇NO₄Na [M+Na]⁺: 322.1056. Found: 322.1056.

1-Ethyl-1-(2-hydroxyethyl)-3-((4-methoxybenzoyl)oxy)urea (1v): The title compound was synthesized according to general procedure C using phenyl (4-methoxybenzoyl)oxycarbamate (0.862 g, 3.00 mmol), and 2-(ethylamino)ethanol (0.267 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (10.0 mL, 0.30 M). The reaction was heated under

microwave irradiation for 2 h at 100 °C. Upon completion, the reaction mixture was concentrated in vacuo and isolated using silica column chromatography (50% EtOAc/Hexanes \rightarrow 40% EtOAc/DCM) to yield the title compound as a white solid (0.788 g, 93%).


TLC R_f: 0.20 in 40% EtOAc/DCM.

¹**H** NMR (400 MHz, CDCl₃): δ 9.55 (br s, 1H), 8.04 (d, J = 9.0 Hz, 2H), 6.91 (d, J = 9.0 Hz, 2H), 3.84 (s, 3H), 3.81 (t, J = 4.8 Hz, 2H), 3.45 (t, J = 4.8 Hz, 2H), 3.37 (q, J = 7.1 Hz, 2H), 3.14 (br s, 1H), 1.16 (t, J = 7.1 Hz, 3H).

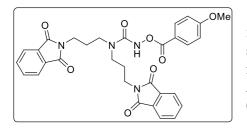
¹³C NMR (100 MHz, CDCl₃): δ 166.7 (C), 164.1 (C), 159.1 (C), 132.1 (CH), 119.6 (C), 113.9 (CH), 62.2 (CH₂), 55.6 (CH₃), 48.8 (CH₂), 42.7 (CH₂), 13.2 (CH₃).

IR (FTIR): 3404, 3181, 2864, 1720, 1678, 1600, 1514, 1475, 1325, 1262, 1246, 1172 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₃H₁₈N₂O₅Na [M+Na]⁺: 305.1108. Found: 305.1113.

3-((4-Methoxybenzoyl)oxy)-1,1-diphenethylurea (1w): The title compound was synthesized according to general procedure C using phenyl (4-methoxybenzoyl)oxycarbamate (0.862 g, 3.00 mmol), and N,N-diphenethylamine (0.676 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (10.0 mL, 0.30 M). The reaction was heated under

microwave irradiation for 2 h at 100 °C. Upon completion, the reaction mixture was concentrated in vacuo and isolated using silica column chromatography (20% EtOAc/Hexanes) to yield the title compound as a white solid (0.880 g, 70%).


TLC R_f: 0.31 in 20% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 8.21 (br s, 1H), 8.09-8.06 (m, 2H), 7.35-7.19 (m, 10H), 6.96-6.93 (m, 2H), 3.87 (s, 3H), 3.43 (t, *J* = 7.5 Hz, 4H), 2.89 (t, *J* = 7.4 Hz, 4H).

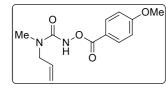
¹³C NMR (100 MHz, CDCl₃): δ 166.5 (C), 164.3 (C), 157.7 (C), 138.7 (C), 132.2 (CH), 128.93 (CH), 128.90 (CH), 126.8 (CH), 119.4 (C), 114.1 (CH), 55.6 (CH₃), 50.1 (CH₂), 34.7 (CH₂).

IR (FTIR): 3209, 2931, 1744, 1673, 1604, 1475, 1247, 1166 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₂₅H₂₆N₂O₄Na[M+Na]⁺: 441.1785. Found: 441.1790.

1,1-Bis(3-(1,3-dioxoisoindolin-2-yl)propyl)-3-((4-methoxybenzoyl)oxy)urea (1x): The title compound was synthesized according to general procedure C using phenyl (4-methoxybenzoyl)oxycarbamate (0.862 g, 3.00 mmol), and *N,N*-diphenethylamine (1.17 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (10.0 mL, 0.30 M). The reaction

was heated under microwave irradiation for 2 h at 100 °C. Upon completion, the reaction mixture was concentrated in vacuo and isolated using silica column chromatography (gradient: 50% EtOAc/Hexanes \rightarrow 100% EtOAc) to yield the title compound as a white foam (1.45 g, 83%).


TLC R_f: 0.75 in 100% EtOAc.

¹**H NMR (400 MHz, CDCl₃):** δ 8.95 (br s, 1H), 8.04 (d, *J* = 9.0 Hz, 2H), 7.84-7.78 (m, 4H), 7.73-7.67 (m, 4H), 6.92 (d, *J* = 9.0 Hz, 2H), 3.85 (s, 3H), 3.76 (t, *J* = 6.8 Hz, 4H), 3.42 (t, *J* = 7.3 Hz, 4H), 2.02 (quintet, *J* = 7.1 Hz, 4H).

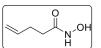
¹³C NMR (100 MHz, CDCl₃): δ 168.4 (C), 166.5 (C), 164.1 (C), 157.9 (C), 134.0 (CH), 132.0 (CH), 123.3 (CH), 119.3 (C), 113.9 (CH), 55.5 (CH), 44.8 (CH₂), 35.5 (CH₂), 27.4 (CH₂).

IR (FTIR): 2939, 1694, 1604, 1389, 1244, 1167, 1025 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₃₁H₂₈N₄O₈Na [M+Na]⁺: 607.1805. Found: 607.1791.

1-Allyl-3-((4-methoxybenzoyl)oxy)-1-methylurea (1y): The title compound was synthesized according to general procedure C using phenyl (4-methoxybenzoyl)oxycarbamate (0.511 g, 1.78 mmol), and *N*-methylallylamine (0.17 mL, 1.78 mmol) and imidazole (0.012 g, 0.18 mmol) in THF (9.0 mL, 0.20 M). The reaction was heated under

microwave irradiation for 2 h at 100 °C. Upon completion, the reaction mixture was diluted with EtOAc (20 mL) and washed three times using 1 M NaOH (2.0 mL x 3), followed by a single brine wash (10 mL x 1). The organic phase was collected and dried over Na₂SO₄ (stirring for 15 min). The solids were filtered over a frit and rinsed with CH₂Cl₂ (5.0 mL). The filtrate was collected, concentrated in vacuo and isolated using silica plug (20% EtOAc/Hexanes) to yield the title compound as a colourless oil (0.376 g, 80%).

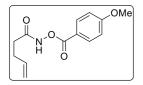

TLC R_f: 0.11 in 20% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 8.46-8.43 (br s, 1H), 8.11-8.05 (m, 2H), 6.99-6.93 (m, 2H), 5.93-5.78 (m, 1H), 5.35-5.26 (m, 2H), 3.97 (dt, *J*= 5.3, 1.6 Hz, 2H), 3.88 (s, 3H), 3.01 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 166.6 (C), 164.2 (C), 157.0 (C), 132.3 (CH), 132.1 (CH), 119.3 (C), 117.5 (CH₂), 114.0 (CH), 55.5 (CH), 51.3 (CH₂), 34.2 (CH).

IR (FTIR): 3184, 3010, 1744, 1651, 1506, 1238 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₃H₁₆N₂O₄Na [M+Na]⁺: 287.1008. Found: 287.1014.



N-Hydroxypent-4-enamide (6c): The title compound was synthesized according to a literature procedure. ¹⁶

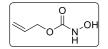
¹**H NMR (300 MHz, DMSO-***d*₆): δ 10.46-10.25 (br s, 1H), 878-8.57 (br s, 1H), 5.78 (ddt, *J*= 17.0, 10.4, 6.4 Hz, 1H), 5.08-4.91 (m, 2H), 2.29-.217 (m, 2H), 2.08-1.97 (m, 2H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 168.4 (C), 137.5 (CH), 115.2 (CH₂), 31.5 (CH₂), 29.0 (CH₂).

¹⁶ Hong, S. Y.; Chang, S. J. Am. Chem. Soc. 2019, 141, 10399.

N-((4-Methoxybenzoyl)oxy)pent-4-enamide (1z): The title compound was synthesized according to general procedure C using *N*-hydroxypent-4-enamide (1.15 g, 10.0 mmol), and *p*-methoxybenzoyl chloride (1.71 g, 10.0 mmol), and Et₃N (1.39 mL, 10.0 mmol) in CH₂Cl₂ (0.30 M) at 0 °C to rt. Upon completion the reaction was extracted three times using sat. NaHCO₃ (10.0 mL x 3),

followed by a single brine wash (10 mL x 1). The organic phase was collected and dried over Na_2SO_4 (stirring for 15 min). The solids were filtered over a frit and rinsed with CH_2Cl_2 (50.0 mL). The filtrate was collected, concentrated in vacuo to yield the title compound as a white solid (2.49 g, 99%).


TLC R_f: 0.27 in 33% EtOAc/Hexanes.

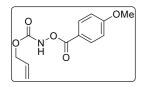
¹**H NMR (400 MHz, CDCl₃):** δ 8.04 (d, *J* = 9.0 Hz, 2H), 6.93 (d, *J* = 8.9 Hz, 2H), 5.85 (ddt, *J* = 17.0, 10.4, 6.5 Hz, 1H), 5.13-5.03 (m, 2H), 3.87 (s, 3H), 2.48-2.41 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 164.7 (C), 164.4 (C), 136.4 (CH), 132.2 (CH), 131.7 (CH), 118.7 (C), 116.1 (CH₂), 114.1 (C), 55.6 (CH₃), 32.4 (CH₂), 28.9 (CH₂).

IR (FTIR): 3186, 2971, 2840, 1759, 1663, 1604, 1506, 1419, 1248, 1168 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₃H₁₅NO₄Na [M+Na]⁺: 272.0897. Found: 272.0899.

Allylhydroxycarbamate (6d): The title compound was synthesized according to a literature procedure.¹⁷


TLC R_f: 0.27 in 2% MeOH/CH₂Cl₂.

¹**H NMR (300 MHz, DMSO-***d*₆): δ 9.69-9.57 (br s, 1H), 8.73-8.70 (br s, 1H), 5.95-5.85 (m, 1H), 5.31-5.16 (m, 2H), 4.50 (dt, *J*= 5.3, 1.5 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 157.5 (C), 133.5 (CH), 117.2 (CH₂), 64.4 (CH₂).

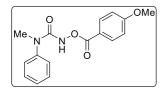
IR (FTIR): 3272, 2947, 1699, 1456, 1260, 1110 cm⁻¹.

HRMS (ESI) m/z: Despite multiple attempts to obtain an accurate mass using both ESI and EI, one could not be obtained for this compound. However, this product was a precursor to **1ae**, for which all characterization was obtained, thereby clearly demonstrating this to be the desired product.

Allyl (4-methoxybenzoyl)oxycarbamate (1aa): The title compound was synthesized according to general procedure C using allyl hydroxycarbamate (1.17 g, 10.0 mmol), and *p*-methoxybenzoyl chloride (1.71 g, 10.0 mmol), and Et₃N (1.39 mL, 10.0 mmol) in CH₂Cl₂ (0.30 M) at 0 °C to rt. Upon completion the reaction was extracted three times using sat. NaHCO₃ (10.0 mL x 3),

followed by a single brine wash (10 mL x 1). The organic phase was collected and dried over Na_2SO_4 (stirring for 15 min). The solids were filtered over a frit and rinsed with CH_2Cl_2 (50.0 mL). The filtrate was collected, concentrated in vacuo and isolated using silica gel column chromatography (solvent system) to yield the title compound as a white solid (2.20 g, 88%).

TLC R_f: 0.54 in 33% EtOAc/Hexanes.


¹⁷ Donohoe, T. J.; Chughtai, M. J.; Klauber, D. J.; Griffin, D.; Campbell, A. D. J. Am. Chem. Soc. **2006**, *128*, 2514.

¹**H NMR (400 MHz, CDCl₃):** δ 8.36 (s, 1H), 8.06-7.98 (m, *J* = 9.0 Hz, 2H), 6.97-6.88 (m, *J* = 9.0 Hz, 2H), 5.97-5.85 (m, 1H), 5.37-5.19 (m, 2H), 4.68 (td, *J* = 1.4, 5.7 Hz, 2H), 3.85 (s, 3H).

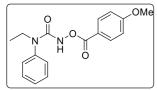
¹³C NMR (100 MHz, CDCl₃): δ 165.5 (C), 164.4 (C), 156.4 (C), 132.1 (CH), 131.4 (CH), 118.9 (CH₂), 118.8 (C), 114.0 (CH), 67.1 (CH₂), 55.5 (CH).

IR (FTIR): 3199, 2953, 2844, 1754, 1718, 1602, 1492, 1238 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₂H₁₃NO₅Na [M+Na]⁺: 274.0696. Found: 274.0691.

3-((4-Methoxybenzoyl)oxy)-1-methyl-1-phenylurea (1ab): The title compound was synthesized according to general procedure C using phenyl (4-methoxybenzoyl)oxycarbamate (0.862 g, 3.00 mmol), and *N*-methyl aniline (0.325 mL, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (10.0 mL, 0.30 M). The reaction was heated under microwave irradiation

for 2 h at 100 °C. Solvent was removed under reduced pressure and the crude product isolated using flash chromatography (30% EtOAc/hexanes) to yield the title compound as an amorphous off-white solid (0.896 g, 91%).


TLC R_f: 0.22 in 33% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 8.07 (br s, 1H), 8.03-7.99 (m, 2H), 7.49-7.36 (m, 5H), 6.92 (d, *J* = 9.0 Hz, 2H), 3.85 (s, 3H), 3.32 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 166.6 (C), 164.3 (C), 157.2 (C), 141.5 (C), 132.2 (CH), 130.4 (CH), 128.5 (CH), 127.2, (CH), 119.4 (C), 114.0 (CH), 55.6 (CH₃), 38.0 (CH₃).

IR (FTIR): 3307, 2936, 1693, 1596, 1453, 1249 cm⁻¹.

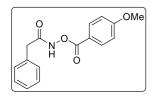
HRMS (ESI) m/z: Exact mass calcd for C₁₆H₁₆N₂O₄Na [M+Na]⁺ 323.1011. Found: 323.1108.

3-((4-Methoxybenzoyl)oxy)-1-ethyl-1-phenylurea (1ac): The title compound was synthesized according general procedure **D** using *N*-ethylaniline (1.26 mL, 10.0 mmol), toluene (0.8 M), KOH pellets (0.561 g, 10.0 mmol), and water (2.9 M) at 0 °C. A dripping funnel was affixed on top of the roundbottom flask and this apparatus was purged with argon for

10 minutes. Phosgene (15% in toluene) (16.4 mL, 23.0 mmol) was added to the dripping funnel under inert atmosphere, and was allowed to drip over 1 hour at 0 °C while stirring vigorously. The reaction was allowed to stir for an additional 30 minutes after complete addition of phosgene solution. Upon competition, the crude reaction mixture was bubbled with an argon balloon for 20 minutes in a well ventilated fumehood, to release any excess phosgene gas. The crude reaction mixture was then extracted to remove the aqueous layer, and then the organic phase was washed with brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude *N*-ethylanilinecarbamoyl chloride which was used in the next step without further purification.

To the crude *N*-ethylanilinecarbamoyl chloride was added CH_2Cl_2 (0.30 M) and cooled to 0 °C. To this was added hydroxylamine hydrochloride (0.695 g, 10.0 mmol), and followed immediately by Et₃N (2.79 mL, 20.0 mmol). The reaction was allowed to warm to room temperature and stir overnight. Upon completion, the reaction was extracted with NaHCO₃ (10 mL x1), and then brine (10 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude *N*-ethylanilinehydroxyurea, which could be used in the next step without further purification.

To the crude *N*-ethylanilinehydroxyurea (1.53 g, 8.53 mmol) was added CH_2Cl_2 (0.30 M) and cooled to 0 °C. To this was added Et₃N (1.19 mL, 8.53 mmol) followed immediately by dropwise addition of *p*-methoxybenzoylchloride (1.45 g, 8.53 mmol). The reaction was allowed to warm to room temperature and stirred overnight. Upon completion, the reaction was extracted with NaHCO₃ (10 mL x1), and then brine (10 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude 3-((4-methoxybenzoyl)oxy)-1-ethyl-1-phenylurea which was purified by flash column chromatography (10 % Et₂O/Toluene) to yield a colourless oil (1.93 g, 62% over 3 steps).


TLC R_f: 0.23 in 20% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 8.05-8.00 (m, 2H), 7.97-7.95 (br s, 1H), 7.53-7.46 (m, 2H), 7.44-7.37 (m, 3H), 6.96-6.90 (m, 2H), 3.86 (s, 3H), 3.77 (q, *J*= 7.2 Hz, 2H), 1.17 (t, *J*= 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 166.4 (C), 164.1 (C), 156.6 (C), 138.5 (C), 132.0 (CH), 130.2 (CH), 128.4 (CH), 119.2 (C), 113.9 (CH), 55.5 (CH), 45.0 (CH₂), 13.3 (CH₃).

IR (FTIR): 3302, 2972, 1737, 1701, 1602, 1508, 1646, 1168 cm⁻¹.

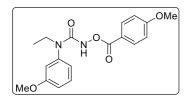
HRMS (ESI) m/z: Exact mass calcd for C₁₇H₁₈N₂O₄Na [M+Na]⁺: 337.1165. Found: 337.1194.

N-((4-Methoxybenzoyl)oxy)-2-phenylacetamide (1ad): *N*-hydroxy-2-phenylacetamide was synthesized according to general procedure **A** using phenylacetyl chloride (1.55 g, 10.0 mmol) and hydroxylamine hydrochloride (0.695 g, 10.0 mmol) and NaHCO₃ (1.85 g, 22.0 mmol) in $2 : 1 \text{ CH}_2\text{Cl}_2 : \text{H}_2\text{O}$ (0.30 M). The reaction allowed to stir at room temperature overnight; the

following day a substantial amount of white solid had precipitated out of solution. The white solid was collected over a fritted funnel and used directly in the subsequent step without further purification.

The title compound was synthesized using the general procedure **B** using the crude hydroxamic acid was dissolved in $CH_2Cl_2(0.30 \text{ M}, \text{sparingly soluble})$. To the crude solution of phenylacetyl hydroxamic acid was added 4-methoxybenzoyl chloride (1.71 g, 10.0 mmol) and triethylamine (1.39 mL, 10.0 mmol). Upon completion the reaction mixture was extracted with saturated NaHCO₃ three times (10 mL x 3) followed by a single brine wash (10 mL x 1). The organic phase was collected and dried over Na₂SO₄ (stirring for 15 min). The solids were filtered over a frit and rinsed with CH_2Cl_2 (20 mL). The filtrate was collected, and concentrated in vacuo and isolated using flash chromatography (50% EtOAc/Hexanes) to yield the title compound as a white solid (2.51 g, 88% yield over two steps).

TLC R_f: 0.57 in 50% EtOAc/Hexanes.


¹**H NMR (400 MHz, CDCl₃):** δ 8.94 (br s, 1H), 8.04-8.01 (m, 2H), 7.41-7.31 (m, 5H), 6.94 (d, *J* = 9.0 Hz, 2H), 3.87 (s, 3H), 3.73 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 168.7 (C), 164.7 (C), 164.6 (C), 133.2 (C), 132.3 (CH), 129.5 (CH), 129.2 (CH), 127.8 (CH), 118.7 (C), 114.2 (CH), 55.7 (CH), 41.9 (CH₂)

IR (FTIR): 3162, 2963, 1753, 1669, 1600, 1501, 12050, 1025 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₆H₁₅NO₄Na [M+Na]⁺: 308.0899. Found: 308.0897.

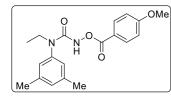
1-Ethyl-3-((4-methoxybenzoyl)oxy)-1-(3-methoxyphenyl)urea (1ae): The title compound was synthesized according general procedure **D** using *N*-ethyl-3-methoxyaniline (1.51 g, 10.0 mmol),

toluene (0.8 M), KOH pellets (0.561 g, 10.0 mmol), and water (2.9 M) at 0 °C. A dripping funnel was affixed on top of the roundbottom flask and this apparatus was purged with argon for 10 minutes. Phosgene (15% in toluene) (16.4 mL, 23.0 mmol) was added to the dripping funnel under inert atmosphere, and was allowed to drip over 1 hour at 0 °C while stirring vigorously. The reaction was allowed to stir for an

additional 30 minutes after complete addition of phosgene solution. Upon competition, the crude reaction mixture was bubbled with an argon balloon for 20 minutes in a well ventilated fumehood, to release any excess phosgene gas. The crude reaction mixture was then extracted to remove the aqueous layer, and then the organic phase was washed with brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude *N*-ethyl(3-methoxyphenyl)carbamic chloride which was used in the next step without further purification.

To the crude ethyl(3-methoxyphenyl)carbamic chloride was added CH_2Cl_2 (0.30 M) and cooled to 0 °C. To this was added hydroxylamine hydrochloride (0.695 g, 10.0 mmol), and followed immediately by Et₃N (2.79 mL, 20.0 mmol). The reaction was allowed to warm to room temperature and stir overnight. Upon completion, the reaction was extracted with NaHCO₃ (10 mL x1), and then brine (10 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude 1-ethyl-3-hydroxy-1-(3-methoxyphenyl)urea, which could be used in the next step without further purification.

To the crude 1-ethyl-3-hydroxy-1-(3-methoxyphenyl)urea was added CH_2Cl_2 (0.30 M) and cooled to 0 °C. To this was added Et_3N (1.39 mL, 10.0 mmol) followed immediately by addition of *p*-methoxybenzoylchloride (1.70 g, 10.0 mmol). The reaction was allowed to warm to room temperature and stirred overnight. Upon completion, the reaction was extracted with NaHCO₃ (10 mL x1), and then brine (10 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude 1-ethyl-3-((4-methoxybenzoyl)oxy)-1-(3-methoxyphenyl)urea which was purified by flash column chromatography (20 % EtOAc/Hexanes) to yield a light pink solid (2.60 g, 76% over 3 steps).


TLC R_f: 0.15 in 20% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 8.03 (br s, 1H), 8.00 (d, *J* = 8.6 Hz, 2H), 7.36 (t, *J* = 8.0 Hz, 1H), 6.97-6.89 (m, 5H), 3.84 (s, 3H), 3.82 (s, 3H), 3.73 (q, *J* = 7.1 Hz, 2H), 1.15 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 166.6 (C), 164.3 (C), 161.0 (C), 156.8 (C), 140.8 (C), 132.2 (CH), 131.0 (CH), 120.5 (CH), 119.4 (C), 114.5 (CH), 114.04 (CH), 113.94 (CH), 55.6 (CH₃), 45.2 (CH₂), 13.5 (CH₃).

IR (FTIR): 3294, 2940, 2842, 2360, 1748, 1701, 1601, 1446, 1286, 1246, 1209, 1172 cm⁻¹.

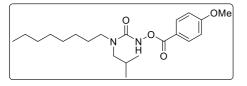
HRMS (ESI) m/z: Exact mass calcd for C₁₈H₂₀N₂O₅Na [M+Na]⁺: 367.1291. Found: 367.1270.

1-(3,5-Dimethylphenyl)-1-ethyl-3-((4-methoxybenzoyl)oxy)urea (1af): The title compound was synthesized according to general procedure **D** using *N*-ethyl-3,5-dimethylaniline (1.49 g, 10.0 mmol), toluene (0.8 M), KOH pellets (0.561 g, 10.0 mmol), and water (2.9 M) at 0 °C. A dripping funnel was affixed on top of the roundbottom flask and

this apparatus was purged with argon for 10 minutes. Phosgene (15% in toluene) (16.4 mL, 23.0 mmol) was added to the dripping funnel under inert atmosphere, and was allowed to drip over 1 hour at 0 °C while stirring vigorously. The reaction was allowed to stir for an additional 30 minutes after complete addition of phosgene solution. Upon competition, the crude reaction mixture was bubbled with an argon balloon for 20 minutes in a well ventilated fumehood, to release any excess phosgene gas. The crude reaction mixture was then extracted to remove the aqueous layer, and then the organic phase was washed with brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude (3,5-dimethylphenyl)(ethyl)carbamic chloride which was used in the next step without further purification.

To the crude (3,5-dimethylphenyl)(ethyl)carbamic chloride was added CH₂Cl₂ (0.30 M) and cooled to 0 °C. To this was added hydroxylamine hydrochloride (0.695 g, 10.0 mmol), and followed immediately by Et₃N (2.79 mL, 20.0 mmol). The reaction was allowed to warm to room temperature and stir overnight. Upon completion, the reaction was extracted with NaHCO₃ (10 mL x1), and then brine (10 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude 1-(3,5-dimethylphenyl)-1-ethyl-3-hydroxyurea, which could be used in the next step without further purification.

To the crude 1-(3,5-dimethylphenyl)-1-ethyl-3-hydroxyurea was added CH_2Cl_2 (0.30 M) and cooled to 0 °C. To this was added Et₃N (1.39 mL, 10.0 mmol) followed immediately by dropwise addition of *p*-methoxybenzoylchloride (1.70 g, 10.0 mmol). The reaction was allowed to warm to room temperature and stirred overnight. Upon completion, the reaction was extracted with NaHCO₃ (10 mL x1), and then brine (10 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude 1-(3,5-dimethylphenyl)-1-ethyl-3-((4-methoxybenzoyl)oxy)urea which was purified by flash column chromatography (20% EtOAc/Hexanes \rightarrow 40% EtOAc/Hexanes) to yield a colourless oil (2.74 g, 80% over 3 steps).


TLC R_f: 0.21 in 20% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 8.02-7.98 (m, 2H), 7.97 (br s, 1H), 7.00 (d, J = 0.6 Hz, 1H), 6.96 (d, J = 0.5 Hz, 2H), 6.91-6.88 (m, 2H), 3.83 (d, J = 3.6 Hz, 3H), 3.70 (q, J = 7.1 Hz, 2H), 2.33 (s, 6H), 1.13 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 166.5 (C), 164.1 (C), 156.7 (C), 140.0 (C), 139.3 (C), 132.1 (CH), 130.3 (CH), 125.8 (CH), 119.3 (C), 113.9 (CH), 55.5 (CH₃), 45.0 (CH₂), 21.2 (CH₃), 13.4 (CH₃).

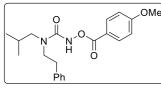
IR (FTIR): 2970, 1744, 1695, 1602, 1510, 1454, 1310, 1245, 1167, 1062 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₉H₂₂N₂O₄Na [M+Na]⁺: 365.1458. Found: 365.1477.

3-((4-Methoxybenzoyl)oxy)-1-isobutyl-1-octylurea (1ag): The title compound was synthesized according to general procedure C using phenyl (4-methoxybenzoyl)oxycarbamate (0.861 g, 3.00 mmol), and *N*-isobutyloctylamine (0.555 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (15.0

mL, 0.20 M). The reaction was heated under microwave irradiation for 2 h at 100 °C. Upon completion, the reaction mixture was diluted with EtOAc (20 mL) and washed three times using 1 M NaOH (2.0 mL x 3), followed by a single brine wash (10 mL x 1). The organic phase was collected and dried over

 Na_2SO_4 (stirring for 15 min). The solids were filtered over a frit and rinsed with CH_2Cl_2 (5.0 mL). The filtrate was collected, concentrated in vacuo and isolated using silica plug (20% EtOAc/Hexanes) to yield the title compound as a colourless oil (0.957 g, 84%).


TLC R_f: 0.54 in 20% EtOAc/Hexanes.

¹**H NMR (300 MHz, DMSO-***d*₆): δ 10.21-10.13 (br s, 1H), 8.01-7.91 (m, 2H) 7.15-7.03 (m, 2H), 3.85 (s, 3H), 3.23-3.14 (m, 2H), 3.03 (d, *J*= 7.4 Hz, 2H), 2.01-1.84 (m, 1H), 1.57-1.45 (m, 2H), 1.32-1.18 (m, 10H), 0.89-0.81 (m, 9H).

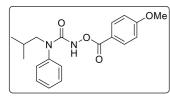
¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.2 (C), 163.5 (C), 157.4 (C), 131.4 (CH), 119.8 (C), 114.3 (CH), 55.6 (CH), 53.0 (CH₂), 46.4 (CH₂), 31.2 (CH₂), 28.8 (CH₂), 28.7 (CH₂), 27.4 (CH₂), 26.7 (CH), 26.2 (CH₂), 22.1 (CH₂), 19.8 (CH), 13.9 (CH₃).

IR (FTIR): 3230, 2924, 2854, 1750, 1669, 1605, 1510, 1248 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₂₁H₃₄N₂O₄Na [M+Na]⁺: 401.2417. Found: 401.2423.

1-Isobutyl-3-((4-methoxybenzoyl)oxy)-1-phenethylurea (1ah): The title compound was synthesized according to general procedure C using phenyl (4-methoxybenzoyl)oxycarbamate (0.862 g, 3.00 mmol), and 2-(ethylamino)ethanol (0.532 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (10.0 mL, 0.30 M). The reaction was heated under

microwave irradiation for 2 h at 100 °C. Upon completion, the reaction mixture was concentrated in vacuo and isolated using silica column chromatography (10% EtOAc/Hexanes \rightarrow 30% EtOAc/Hexanes) to yield the title compound as a white solid (1.06 g, 95%).


TLC R_f: 0.80 in 40% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 8.45 (br s, 1H), 8.06 (d, J = 9.0 Hz, 2H), 7.38-7.15 (m, 5H), 6.92 (d, J = 9.0 Hz, 2H), 3.84 (s, 3H), 3.50 (t, J = 7.7 Hz, 2H), 3.00 (d, J = 7.6 Hz, 2H), 2.92 (t, J = 7.7 Hz, 2H), 1.99 (dsextet, J = 13.7, 6.9 Hz, 1H), 0.92 (d, J = 6.7 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 166.7 (C), 164.2 (C), 157.8 (C), 138.7 (C), 132.1 (CH), 128.8 (CH), 128.7 (CH), 126.6 (CH), 119.3 (C), 113.9 (CH), 55.5 (CH), 55.1 (CH₂), 50.0 (CH₂), 34.2 (CH₂), 27.6 (CH), 20.1 (CH₃).

IR (FTIR): 3181, 2957, 1744, 1649, 1603, 1509, 1244, 1168 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₂₁H₂₆N₂O₄Na [M+Na]⁺: 393.1784. Found: 393.1790.

3-((4-Methoxybenzoyl)oxy)-1-isobutyl-1-phenylurea (1ai): The title compound was synthesized according to general procedure **D** using *N*-isobutylaniline (1.07 g, 7.20 mmol), toluene (0.8 M), KOH pellets (0.389 g, 7.20 mmol), and water (2.9 M) at 0 °C. A dripping funnel was affixed on top of the roundbottom flask and this apparatus was purged with argon

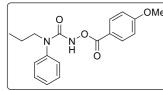
for 10 minutes. Phosgene (15% in toluene) (11.8 mL, 23.0 mmol) was added to the dripping funnel under inert atmosphere, and was allowed to drip over 1 hour at 0 °C while stirring vigorously. The reaction was allowed to stir for an additional 30 minutes after complete addition of phosgene solution. Upon competition, the crude reaction mixture was bubbled with an argon balloon for 20 minutes in a well ventilated fumehood, to release any excess phosgene gas. The crude reaction mixture was then

extracted to remove the aqueous layer, and then the organic phase was washed with brine (5.0 mL x1). The organic phase was collected and dried with Na_2SO_4 . The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude *N*-isobutylanilinecarbamoyl chloride which was used in the next step without further purification.

To the crude *N*-isobutylanilinecarbamoyl chloride was added CH_2Cl_2 (0.30 M) and cooled to 0 °C. To this was added hydroxylamine hydrochloride (0.500 g, 7.20 mmol), and followed immediately by Et₃N (1.00 mL, 14.4 mmol). The reaction was allowed to warm to room temperature and stir overnight. Upon completion, the reaction was extracted with NaHCO₃ (10 mL x1), and then brine (10 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude *N*-isobutylanilinehydroxyurea, which could be used in the next step without further purification.

To the crude *N*-isobutylanilinehydroxyurea (1.38 g, 6.63 mmol) was added CH_2Cl_2 (0.30 M) and cooled to 0 °C. To this was added Et₃N (0.92 mL, 6.63 mmol) followed immediately by dropwise addition of *p*-methoxybenzoylchloride (1.13 g, 6.63 mmol). The reaction was allowed to warm to room temperature and stirred overnight. Upon completion, the reaction was extracted with NaHCO₃ (5.0 mL x1), and then brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude 3-((4-methoxybenzoyl)oxy)-1-isobutyl-1-phenylurea which was purified by recrystallization with Et₂O to yield a white crystalline solid (1.23 g, 36% over 3 steps).

TLC R_f: 0.34 in 20% EtOAc/Hexanes.


M.p.: 137.0-137.7°C.

¹**H NMR (400 MHz, CDCl₃):** δ 8.06-8.00 (m, 2H), 7.98-7.96 (br s, 1H), 7.53-7.46 (m, 2H), 7.45-7.37 (m, 3H), 6.96-6.90 (m, 2H), 3.87 (s, 3H), 3.57 (d, *J*= 7.4 Hz, 2H), 1.87-1.75 (m, 1H), 0.95 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 166.5 (C), 164.1 (C), 157.3 (C), 140.0 (C), 132.1 (CH), 130.2 (CH), 128.5 (CH), 128.2 (CH), 119.2 (C), 113.9 (CH), 57.2 (CH₂), 55.5 (CH), 26.9 (CH), 19.9 (CH).

IR (FTIR): 2960, 1741, 1709, 1604, 1490, 1246, 1173, 1053 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₉H₂₂N₂O₄Na [M+Na]⁺: 365.1478. Found: 365.1501.

3-((4-Methoxybenzoyl)oxy)-1-phenyl-1-propylurea (1aj): The title compound was synthesized according to general procedure **D** using *N*-propylaniline (0.812 g, 6.00 mmol), toluene (0.8 M), KOH pellets (0.336 g, 6.00 mmol), and water (2.9 M) at 0 °C. A dripping funnel was affixed on top of the roundbottom flask and this apparatus was purged with argon

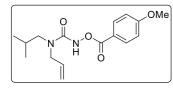
for 10 minutes. Phosgene (15% in toluene) (9.8 mL, 14 mmol) was added to the dripping funnel under inert atmosphere, and was allowed to drip over 1 hour at 0 °C while stirring vigorously. The reaction was allowed to stir for an additional 30 minutes after complete addition of phosgene solution. Upon competition, the crude reaction mixture was bubbled with an argon balloon for 20 minutes in a well ventilated fumehood, to release any excess phosgene gas. The crude reaction mixture was then extracted to remove the aqueous layer, and then the organic phase was washed with brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude *N*-propylanilinecarbamoyl chloride which was used in the next step without further purification.

To the crude *N*-propylanilinecarbamoyl chloride was added CH_2Cl_2 (0.30 M) and cooled to 0 °C. To this was added hydroxylamine hydrochloride (0.417 g, 6.00 mmol), and followed immediately by Et_3N (1.67 mL, 12.0 mmol). The reaction was allowed to warm to room temperature and stir overnight. Upon

completion, the reaction was extracted with NaHCO₃ (5.0 mL x1), and then brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude *N*-propylanilinehydroxyurea, which could be used in the next step without further purification.

To the crude *N*-propylanilinehydroxyurea (0.927 g, 5.45 mmol) was added CH_2Cl_2 (0.30 M) and cooled to 0 °C. To this was added Et_3N (0.76 mL, 5.45 mmol) followed immediately by dropwise addition of *p*-methoxybenzoylchloride (1.06 g, 5.45 mmol). The reaction was allowed to warm to room temperature and stirred overnight. Upon completion, the reaction was extracted with NaHCO₃ (5.0 mL x1), and then brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude 3-((4-methoxybenzoyl)oxy)-1-phenyl-1-propylurea which was purified by recrystallization with Et_2O to yield a white crystalline solid (0.935 g, 48% over 3 steps).

TLC R_f: 0.40 in 20% EtOAc/Hexanes.


M.p.: 118.3-119.4°C.

¹**H NMR (400 MHz, CDCl₃):** δ 8.06-7.99 (m, 2H), 7.98-7.95 (br s, 1H), 7.54-7.46 (m, 2H), 7.45-7.37 (m, 3H), 6.97-6.89 (m, 2H), 3.87 (s, 3H), 3.71-3.66 (m, 2H), 1.59 (dq, *J*= 14.9, 7.5 Hz, 2H), 0.93 (t, *J*= 7.4 Hz, 3H).

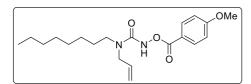
¹³C NMR (100 MHz, CDCl₃): δ 166.5 (C), 164.2 (C), 156.9 (C), 139.7 (C), 132.1 (CH), 130.2 (CH), 128.6 (CH), 128.3 (CH), 119.2 (C), 113.9 (CH), 55.5 (CH), 51.7 (CH₂), 21.2 (CH₂), 11.0 (CH₃).

IR (FTIR): 3291, 2913, 1748, 1716, 1605, 1490, 1247, 1175 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₈H₂₀N₂O₄Na [M+Na]⁺: 351.1321. Found: 351.1347.

1-Allyl-1-isobutyl-3-((4-methoxybenzoyl)oxy)urea (1ak): The title compound was synthesized according to general procedure C using phenyl (4-methoxybenzoyl)oxycarbamate (0.862 g, 3.00 mmol), and *N*-isobutylprop-2-en-1-amine (0.340 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (10.0 mL, 0.30 M). The reaction was heated under

microwave irradiation for 2 h at 100 °C. Upon completion, the reaction mixture was concentrated in vacuo and isolated using silica column chromatography (10% EtOAc/Hexanes \rightarrow 20% EtOAc/Hexanes) to yield the title compound as a white solid (0.919 g, 95%).


TLC R_f: 0.22 in 20% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 8.53 (br s, 1H), 8.08-8.05 (m, 2H), 6.95-6.92 (m, 2H), 5.92-5.81 (m, 1H), 5.37-5.30 (m, 2H), 3.95 (td, J = 3.4, 1.7 Hz, 2H), 3.86 (d, J = 5.3 Hz, 3H), 3.16 (d, J = 7.5 Hz, 2H), 1.98 (dsextet, J = 13.7, 6.8 Hz, 1H), 0.95 (d, J = 6.7 Hz, 6H).

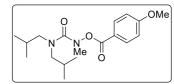
¹³C NMR (100 MHz, CDCl₃): δ 166.7 (C), 164.2 (C), 158.2 (C), 132.7 (CH), 132.1 (CH), 119.3 (C), 117.5 (CH₂), 113.9 (CH), 55.5 (CH₃), 55.1 (CH₂), 49.9 (CH₂), 27.5 (CH), 20.1 (CH₃).

IR (FTIR): 3277, 2953, 1739, 1685, 1463, 1253, 1024 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₆H₂₂N₂O₄Na [M+Na]⁺: 329.1491. Found: 329.1477.

1-Allyl-3-((4-methoxybenzoyl)oxy)-1-octylurea (1al): The title compound was synthesized according to general procedure **C** using phenyl (4-methoxybenzoyl)oxycarbamate (0.862 g, 3.00 mmol), and *N*-allyloctan-1-amine (0.508 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (10.0

mL, 0.30 M). The reaction was heated under microwave irradiation for 2 h at 100 °C. Upon completion, the reaction mixture was concentrated in vacuo and isolated using silica column chromatography (10% EtOAc/Hexanes \rightarrow 20% EtOAc/Hexanes) to yield the title compound as a white solid (0.870 g, 80%).


TLC R_f: 0.28 in 20% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):**) δ 8.47 (s, 1H), 8.05 (d, J = 9.0 Hz, 2H), 6.91 (d, J = 9.0 Hz, 2H), 5.85 (ddt, J = 17.3, 10.3, 5.2 Hz, 1H), 5.35-5.27 (m, 2H), 3.92 (dt, J = 5.2, 1.6 Hz, 2H), 3.84 (s, 3H), 3.30 (t, J = 7.6 Hz, 2H), 1.60 (s, 3H), 1.28-1.25 (m, 11H), 0.85 (t, J = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 166.7 (C), 164.2 (C), 157.8 (C), 132.9 (CH), 132.1 (CH), 119.3 (C), 117.4 (CH₂), 113.9 (CH), 55.5 (CH₃), 49.5 (CH₂), 47.8 (CH₂), 31.8 (CH₂), 29.34 (CH₂), 29.22 (CH₂), 28.2 (CH₂), 26.9 (CH₂), 22.6 (CH₂), 14.1 (CH₃).

IR (FTIR): 3270, 2922, 2854, 1737, 1692, 1601, 163, 1251 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₂₀H₃₀N₂O₄Na [M+Na]⁺: 385.2099. Found: 385.2103.

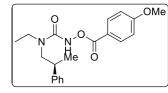
3-((4-Methoxybenzoyl)oxy)-1,1-diisobutyl-3-methylurea (1am): The title compound was synthesized according to general procedure **D** using N,N-diisobutylamine (1.75 mL, 10.0 mmol), toluene (0.8 M), NaOH pellets (0.400 g, 10.0 mmol), and water (2.9 M) at 0 °C. A dripping funnel was affixed on top of the roundbottom flask and this apparatus was

purged with argon for 10 minutes. Phosgene (15% in toluene) (16.4 mL, 23.0 mmol) was added to the dripping funnel under inert atmosphere, and was allowed to drip over 1 hour at 0 °C while stirring vigorously. The reaction was allowed to stir for an additional 30 minutes after complete addition of phosgene solution. Upon competition, the crude reaction mixture was bubbled with an argon balloon for 20 minutes in a well ventilated fumehood, to release any excess phosgene gas. The crude reaction mixture was then extracted to remove the aqueous layer, and then the organic phase was washed with brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude *N*,*N*-diisobutylaminecarbamoyl chloride which was used in the next step without further purification.

To the crude N,N-diisobutylaminecarbamoyl chloride was added CH₂Cl₂ (0.30 M) and cooled to 0 °C. To this was added hydroxylamine hydrochloride (0.835 g, 10.0 mmol), and followed immediately by Et₃N (2.79 mL, 20.0 mmol). The reaction was allowed to warm to room temperature and stir overnight. Upon completion, the reaction was extracted with NaHCO₃ (10 mL x1), and then brine (10 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and evaporated under reduced the filtrate was pressure to provide the crude N, Ndiisobutylaminehydroxyurea, which could be used in the next step without further purification. To the crude N,N-diisobutylaminehydroxyurea (1.77 g, 8.80 mmol) was added CH₂Cl₂ (0.30 M) and cooled to 0 °C. To this was added Et₃N (1.23 mL, 8.80 mmol) followed immediately by dropwise addition of p-methoxybenzoylchloride (1.19 mL, 8.80 mmol). The reaction was allowed to warm to

room temperature and stirred overnight. Upon completion, the reaction was extracted with $NaHCO_3$ (5.0 mL x1), and then brine (5.0 mL x1). The organic phase was collected and dried with Na_2SO_4 . The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide

the crude 3-((4-methoxybenzoyl)oxy)-1,1-diisobutyl-3-methylurea which was purified by flash column chromatography (10 % EtOAc/Hexanes) to yield a colourless oil (0.760 g, 23% over 3 steps).


TLC R_f: 0.65 in 20% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 8.04-7.97 (m, 2H), 6.98-6.90 (m, 2H), 3.88 (s, 3H), 3.17-3.09 (m, 7H), 1.98 (dt, *J*= 13.8, 7 Hz, 2H), 0.88 (d, *J*= 6.9 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃): δ 164.0 (C), 163.9 (C), 163.3 (C), 131.7 (CH), 120.3 (C), 113.9 (CH), 55.5 (CH), 54.6 (CH₂), 40.1 (CH), 26.4 (CH), 20.0 (CH₃).

IR (FTIR): 2655, 1692, 1622, 1534, 1332, 1261 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₈H₂₈N₂O₄Na [M+Na]⁺: 359.1947. Found: 359.1957.

1-Ethyl-3-((4-methoxybenzoyl)oxy)-1-(2-phenylpropyl)urea (1an): The title compound was synthesized according to general procedure C using phenyl (4-methoxybenzoyl)oxycarbamate (0.862 g, 3.00 mmol), and (S)-*N*-ethyl-2-phenylpropan-1-amine (0.490 g, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (15.0 mL, 0.20 M). The reaction

was heated under microwave irradiation for 2 h at 100 °C. Upon completion, the reaction mixture was diluted with EtOAc (20 mL) and washed three times using 1 M NaOH (2.0 mL x 3), followed by a single brine wash (10 mL x 1). The organic phase was collected and dried over Na₂SO₄ (stirring for 15 min). The solids were filtered over a frit and rinsed with CH₂Cl₂ (5.0 mL). The filtrate was collected, concentrated vacuo and isolated using silica plug (20% EtOAc/Hexanes \rightarrow 40% EtOAc/Hexanes) to yield the title compound as a (0.950 g, 89%).

TLC R_f: 0.19 in 20% EtOAc/Hexanes.

 $[\alpha]_{D}^{26^{\circ}C}$: +45.5 (C= 0.1 M in CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃):** δ 8.26 (br s, 1H), 8.11-7.99 (m, 2H), 7.35-7.27 (m, 2H), 7.27-7.17 (m, 3H), 6.98-6.86 (m, 2H), 3.85 (s, 3H), 3.58 (dd, *J* = 6.4, 13.6 Hz, 1H), 3.27-3.11 (m, 3H), 2.96 (qd, *J* = 7.2, 14.6 Hz, 1H), 1.35-1.27 (m, 3H), 1.18-1.03 (m, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 166.4 (C), 164.2 (C), 157.7 (C), 144.0 (C), 132.1 (CH), 128.8 (CH), 127.3 (CH), 126.8 (CH), 119.4 (C), 113.9 (CH), 55.5 (CH₃), 54.6 (CH₂), 42.6 (CH₂), 38.8 (CH), 18.6 (CH₃), 12.9 (CH₃).

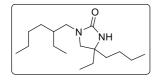
IR (FTIR): 3216, 2966, 1747, 1668, 1604, 1509, 1454, 1245, 1167 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₂₀H₂₄N₂O₄Na [M+Na]⁺: 379.1628. Found: 379.1634.

Synthesis of imidazolidin-2-one via photoinduced C-H amination

1-Isobutyl-4,4-dimethylimidazolidin-2-one (2a): The title compound was synthesized according to general procedure **G** using 1,1-diisobutyl-3-((4-methoxybenzoyl)oxy)urea (0.161 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), triethylamine (0.056 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The

vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH_2Cl_2 (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (50% EtOAc/CH₂Cl₂) to yield an amorphous white solid (0.080 g, 95%).


TLC R_f: 0.30 in 50% EtOAc/CH₂Cl₂.

¹**H NMR (400 MHz, CDCl₃):** δ 4.34 (br. s, 1H), 3.14 (s, 2H), 2.96 (d, *J* = 7.5 Hz, 2H), 1.89-1.76 (m, 1H), 1.29 (s, 6H), 0.90 (d, *J* = 6.7 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 161.4 (C), 58.7 (CH₂), 52.1 (C), 50.9 (CH₂), 28.6 (CH₃), 27.1 (CH), 20.1 (CH₃).

IR (FTIR): 3208, 3074, 2955, 2871, 1683, 1488, 1448, 1295, 1240 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for C₉H₁₈N₂O [M]⁺: 170.1419. Found: 170.1407.

4-Butyl-4-methyl-1-(2-ethylhexyl)imidazolidin-2-one1-isobutyl-4,4dimethylimidazolidin-2-one (2b): The title compound was synthesized according to general procedure G using 3-((4-methoxybenzoyl)oxy)-1,1bis(2-ethylhexyl)urea (0.196 g, 0.450 mmol), tris(2,2'bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%),

triethylamine (0.056 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH_2Cl_2 (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (60% EtOAc/CH₂Cl₂) to yield an amorphous white solid (0.095 g, 75% as a 1:1 diastereoisomers mixt).

TLC Rf: 0.21 in 2% MeOH/CH₂Cl₂.

¹**H NMR (300 MHz, DMSO-***d*₆): δ 6.37-6.34 (br s, 1H), 3.02-2.99 (m, 2H), 2.91-2.86 (m, 2H), 1.51-1.33 (m, 5H), 1.32-1.11 (m, 14H), 0.91-0.75 (m, 14H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 160.6 (C), 56.0 (C), 56.0 (C), 54.0 (CH₂), 53.9 (CH₂), 46.2 (CH₂), 38.7 (CH₂), 38.7 (CH₂), 37.0 (CH₂), 36.9 (CH), 31.8 (CH₂), 31.8 (CH₂), 30.1 (CH₂), 28.2 (CH₂), 28.1 (CH₂), 25.3 (CH₂), 23.5 (CH₂), 23.5 (CH₂), 22.7 (CH₂), 22.6 (CH₂), 22.6 (CH₂), 22.5 (CH₂), 14.0 (CH), 13.9 (CH), 10.5 (CH₃), 10.5 (CH₃), 7.7 (CH₃), 7.7 (CH₃).

IR (FTIR): 3196, 3069, 2967, 2893, 1685, 1441, 1118 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for C₁₅H₃₀N₂O [M]⁺: 282.2671. Found: 282.2655.

1,4,4-Trimethylimidazolidin-2-one (2c): The title compound was synthesized according to general procedure **G** using 1-isobutyl-3-((4-methoxybenzoyl)oxy)-1-methylurea (0.140 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), triethylamine (0.056 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL Kimax glass vial

with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH_2Cl_2 (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (50% EtOAc/CH₂Cl₂) to yield an amorphous white solid (0.060 g, 93%).

TLC R_f: 0.16 in 50% EtOAc/CH₂Cl₂.

¹H NMR (300 MHz, CDCl₃): δ 4.57 (br. s, 1H), 3.13 (s, 2H), 2.77 (s, 3H), 1.28 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 161.5 (C), 60.7 (CH₂), 51.9 (C), 30.6 (CH₃), 28.6 (CH₃).

IR (FTIR): 3540, 3475, 3224, 2955, 2927, 2846, 1673, 1502, 1446, 1405, 1305 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for C₆H₁₂N₂O [M]⁺: 128.0950. Found: 128.0945.

1-Benzyl-4,4-dimethylimidazolidin-2-one (2d): The title compound was synthesized according to general procedure **G** using 1-benzyl-1-isobutyl-3-((4-methoxybenzoyl)oxy)urea (0.190 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), triethylamine (0.056 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The

vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH_2Cl_2 (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (50% EtOAc/CH₂Cl₂) to yield an amorphous white solid (0.051 g, 50%).

TLC R_f: 0.35 in 50% EtOAc/CH₂Cl₂.

¹**H NMR (400 MHz, CDCl₃):** δ 7.33-7.23 (m, 5H), 4.50 (br s, 1H), 4.35 (s, 2H), 3.00 (s, 2H), 1.24 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 160.9 (C), 137.2 (C), 128.6 (CH), 128.0 (CH), 127.4 (CH), 57.4 (CH₂), 52.0 (C), 47.4 (CH₂), 28.5 (CH₃).

IR (FTIR): 3201, 3069, 2962, 2861, 1688, 1492, 1437, 1363, 1299 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for C₁₂H₁₆N₂ [M]⁺: 204.1263. Found: 204.1252.

4,4-Dimethyl-1-(2,2,2-trifluoroethyl)imidazolidin-2-one (2e): The title compound was synthesized according to general procedure **G** using 1-isobutyl-3-((4-methoxybenzoyl)oxy)-1-(2,2,2-trifluoroethyl)urea (0.174 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), triethylamine

(0.056 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH₂Cl₂ (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na_2SO_4 , filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (30% EtOAc/CH₂Cl₂) to yield an amorphous white solid (0.092 g, 94%).

TLC R_f: 0.45 in 50% EtOAc/CH₂Cl₂.

¹**H NMR (400 MHz, CDCl₃):** δ 4.87 (br s, 1H), 3.78 (q, *J* = 9.1 Hz, 2H), 3.30 (s, 2H), 1.32 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 160.3 (C), 124.7 (q, *J* = 278 Hz, C), 59.0 (CH₂), 52.5 (C), 45.4 (q, *J* = 34 Hz, CH₂), 28.4 (CH₃).

IR (FTIR): 3223, 3082, 2976, 1697, 1446, 1416, 1313, 1265, 1221, 1149 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for C₇H₁₁N₂OF₃ [M]⁺: 196.0823. Found: 196.0807.

4,4-Dimethyl-1-((2-phenyl-1,3-dioxolan-2-yl)methyl)imidazolidin-2-one (2f): The title compound was synthesized according to general procedure **G** using 1-isobutyl-1-(2-phenyl-1,3-dioxolan-2-yl)isobutyl-3-((4-methoxybenzoyl)oxy)urea (0.214 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%),

triethylamine (0.056 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH_2Cl_2 (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (50% EtOAc/CH₂Cl₂) to yield an amorphous white solid (0.118 g, 86%).

TLC R_f: 0.13 in 2% MeOH/CH₂Cl_{2.}

¹**H NMR (400 MHz, CDCl₃):** δ 7.56-7.46 (m, 2H), 7.41-7.30 (m, 3H), 4.19-4.10 (br s, 1H), 4.09-4.00 (m, 2H), 3.91-3.79 (m, 2H), 3.58 (s, 2H), 3.23 (s, 2H), 1.20 (s, 6H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 160.8 (C), 140.3 (C), 128.3 (CH), 128. (CH), 109.7 (C), 64.7 (CH₂), 59.6 (CH₂), 51.8 (C), 50.5 (CH₂), 28.3 (CH₃).

IR (FTIR): 3197, 3070, 2967, 2893, 1685, 1442, 1243, 1023 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₅H₂₀N₂O₃Na [M+Na]⁺: 299.1372. Found: 299.1394.

4,4-Dimethylimidazolidin-2-one (2g): The title compound was synthesized according to a modified general procedure **G** using 1-isobutyl-3-((4-methoxybenzoyl)oxy)urea (0.133 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), tetrabutylammonium dibutyl phosphate (0.026 g, 5 mol%) in CH_2Cl_2 (5.0 mL, 0.2 M) in a 8

mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and heated in a water bath at 60 °C overnight. Upon completion, the reaction was diluted in CH_2Cl_2 (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (5% MeOH/CH₂Cl₂ + 1% Et₃N) to yield a clear oil (0.013 g, 22%).

¹H NMR (400 MHz, CDCl₃): δ 4.94-4.62 (br s, 2H), 3.23 (s, 2H), 1.31 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 162.9 (C), 55.3 (C), 54.0 (CH₂), 28.4 (CH₃).

The ¹H NMR and ¹³C NMR is in agreement with previous reports.¹⁸

5,5-Dimethylpyrrolidin-2-one (2h): The title compound was synthesized according to general procedure G using N-((4-methoxybenzoyl)oxy)-4-methylpentanamide (0.265 g, 1.00 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.017 g, 2 mol%), triethylamine (0.026 g, 5 mol%) in CH₂Cl₂ (5.0 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was diluted in CH₂Cl₂ (5.0 mL) and

extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (50% EtOAc/CH₂Cl₂ \rightarrow 100% EtOAc) to yield a clear oil (0.088 g, 78%).

¹**H NMR (400 MHz, CDCl₃):** δ 6.09 (s, 1H), 2.41 (dd, J = 8.4, 7.6 Hz, 2H), 1.93 (t, J = 8.0 Hz, 2H), 1.28 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 177.1 (C), 56.7 (C), 35.5 (CH₂), 30.8 (CH₂), 29.3 (CH₃).

The ¹H NMR and ¹³C NMR is in agreement with previous reports.¹⁴

4,4-Dimethyloxazolidin-2-one (2i): The title compound was synthesized according to general procedure G using isobutyl ((4-methoxybenzoyl)oxy)carbamate (0.134 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), tetrabutylammonium dibutyl phosphate (0.011 g, 5 mol%) in CH₂Cl₂ (2.5 mL, 0.2 M) in a 8

mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was diluted in CH₂Cl₂ (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (20% EtOAc/CH₂Cl₂ \rightarrow 100% EtOAc) to yield a clear oil (0.014 g, 24%).

¹H NMR (300 MHz, CDCl₃): δ 5.21-5.00 (br s, 1H), 4.09 (s, 2H), 1.37 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 159.3 (C), 77.1 (C), 55.4 (CH₂), 27.7 (CH₃).

The ¹H NMR and ¹³C NMR is in agreement with previous reports.¹⁴

3-Ethyl-1,3-diazaspiro[4.5]decan-2-one (2j): The title compound was synthesized according to general procedure G using 3-((4-Methoxybenzoyl)oxy)-1tris(2,2'cyclohexylmethyl-1-ethylurea (0.167)0.500 mmol), g, bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), triethylamine (0.056 g, 0.22 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL Kimax glass vial with a

Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir

¹⁸ Leung, M.-K.; Lai, J.-L.; Lau, K.-H.; Yu, H.-H.; Hsiao, H.-J. J. Org. Chem. 1996, 61, 4175.

overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH₂Cl₂ (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (40% EtOAc/Hexanes) to yield an amorphous white solid (0.080 g, 88%).

TLC R_f: 0.39 in 2% MeOH/CH₂Cl₂.

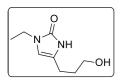
¹H NMR (400 MHz, DMSO-*d*₆): δ 6.65-6.60 (br s, 1H), 3.08-3.01 (m, 4H), 1.62-1.21 (m, 10H), 0.97 (t, *J*= 7.2 Hz, 3H).

¹³C NMR (100 MHz, DMSO-d₆): δ 159.9 (C), 54.5 (CH₂), 53.6 (C), 37.3 (CH₂), 37.1 (CH₂), 24.9 (CH₂), 22.1 (CH₂), 12.6 (CH₃).

IR (FTIR): 3202, 2926, 2853, 1677, 1489, 1330, 1258, 1198 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for $C_{10}H_{18}N_2O[M]^+$: 182.1419. Found: 182.1413.

1-Ethyl-4-methyl-4-phenylimidazolidin-2-one (2k): The title compound was synthesized according to general procedure G using 1-ethyl-3-((4methoxybenzoyl)oxy)-1-(2-phenylpropyl)urea (0.163 g, 0.500 mmol), tris(2,2'bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), triethylamine (0.056 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH₂Cl₂ (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (50% EtOAc/CH₂Cl₂) to yield an amorphous white solid (0.079 g, 77%).


TLC Rf: 0.42 in 30% EtOAc/CH₂Cl₂

¹H NMR (400 MHz, CDCl₃): δ 7.42-7.27 (m, 5H), 4.69-4.68 (m, 1H), 3.45 (q, *J* = 10.0 Hz, 2H), 3.39-3.17 (m, 2H), 1.68 (s, 3H), 1.10 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 160.8 (C), 145.9 (C), 128.8 (CH), 127.4 (CH), 124.9 (CH), 58.9 (CH₂), 57.2 (C), 37.9 (CH₂), 28.6 (CH₃), 12.8 (CH₃).

IR (FTIR): 3194, 3069, 2969, 2925, 2854, 1679, 1493, 1444, 1299, 1283, 1089 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for $C_{12}H_{16}N_2O[M]^+$: 204.1263. Found: 204.1237.

1-Ethyl-4-(3-hydroxypropyl)-1H-imidazol-2(3H)-one (2l): The title compound was synthesized according to general procedure G using 1-ethyl-3-((4methoxybenzoyl)oxy)-1-((tetrahydrofuran-2-yl)methyl)urea (0.161 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), triethylamine (0.056 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL Kimax

glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH₂Cl₂ (5.0 mL) and extracted three times with sodium bicarbonate

(3 x 2 mL) to remove the benzoic acid. The majority of the product was found to dissolve in the aqueous phase, and so the aqueous phase was collected, and concentrated under reduced pressure. The combined organic and aqueous phases were purified by column chromatography (50% EtOAc/CH₂Cl₂ \rightarrow 5% MeOH/CH₂Cl₂) to yield an amorphous white solid (0.079 g, 93%).

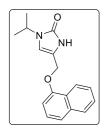
TLC R_f: 0.06 in 50% EtOAc/CH₂Cl₂; 0.53 in 10% MeOH/CH₂Cl₂.

¹H NMR (400 MHz, CDCl₃): δ 10.63 (s, 1H), 5.91 (br. s, 1H), 3.74 (s, 1H), 3.68-3.56 (m, 4H), 2.50 (t, J = 6.9 Hz, 2H), 1.81-1.72 (m, 2H), 1.27-1.20 (m, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 154.2 (C), 122.6 (C), 106.3 (CH), 60.9 (CH₂), 37.8 (CH₂), 31.8 (CH₂), 21.7 (CH₂), 14.9 (CH₃).

IR (FTIR): 3271, 2962, 1683, 1428, 1351, 1242, 1047 cm⁻¹.

HRMS (EI) m/z: Despite multiple attempts to obtain an accurate mass using both ESI and EI, one could not be obtained for this compound. However, C¹³ peaks at 122.6 and 106.3 ppm align with known structures and provides solid evidence for structural assignment. Moreover, this product is formed in analogy to 2m, 2n and 2x.


1,5-Dimethyl-4-phenyl-1H-imidazol-2(3H)-one (2m): The title compound was synthesized according to general procedure G using 1-(2-hydroxy-2-phenylethyl)-3-((4methoxybenzoyl)oxy)-1-methylurea 0.500 mmol), (0.167)g, tris(2,2'bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), triethylamine (0.056 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir

bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the product precipitated from solution and was collected by filtration to yield an amorphous white solid (0.047 g, 50%) the filtrate was evaporated to reveal product in solution which could be purified by silica column chromatography (50% EtOAc/CH₂Cl₂ \rightarrow 5% CH₃OH/ CH₂Cl₂) (0.020 g, 18%). The combined isolated yield is therefore 0.067 g, 71%.

¹H NMR (400 MHz, CDCl₃): δ 9.71 (s, 1H), 7.32 (d, J = 39.5 Hz, 6H), 3.24 (s, 3H), 2.22 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 154.4 (C), 131.0 (C), 129.1 (CH), 127.0 (CH), 126.5 (CH), 117.7 (C), 116.4 (C), 27.2 (CH₃), 9.8 (CH₃)

The ¹H NMR and ¹³C NMR is in agreement with previous reports.¹⁹

1-Ethyl-4-((naphthalen-1-yloxy)methyl)-1H-imidazol-2(3H)-one (2n): The title compound was synthesized according to general procedure G using 1-(2-hydroxy-3-(naphthalen-1-yloxy)propyl)-1-isopropyl-3-((4-methoxybenzoyl)oxy)urea (0.158 g, 0.350 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.006 g, 2 mol%), triethylamine (0.039 g, 0.385 mmol) in MeCN (1.75 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm

form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the product precipitated from solution and was collected by filtration to yield an amorphous white solid (0.035 g, 35%).

¹⁹ Holzmann, G.; Krieg, B.; Lautenschläger, H.; Konieczny, P. J. Heterocycl. Chem. 1979, 16, 983-985.

TLC Rf: 0.07 in 50% EtOAc/CH2Cl2; 0.45 in 5% MeOH/CH2Cl2.

¹H NMR (600 MHz, DMSO- d_6): δ 10.36-10.35 (m, 1H), 8.17-8.15 (m, 1H), 7.88-7.86 (m, 1H), 7.54-7.43 (m, 5H), 7.09-7.08 (m, 1H), 6.78-6.78 (m, 1H), 4.92 (d, J = 5.4 Hz, 2H), 4.19 (dt, J = 0.8, 0.4 Hz, 1H), 1.25-1.21 (m, 6H).

¹³C NMR (151 MHz, DMSO-*d*₆): δ 154.0 (C), 153.4 (C), 134.5 (C), 127.9 (CH), 127.0 (CH), 126.6 (CH), 125.7 (CH), 125.5 (C), 122.3 (CH), 120.7 (CH), 116.7 (C), 108.8 (CH), 106.2 (CH), 62.1 (CH₂), 43.7 (CH), 22.3 (CH₃).

IR (FTIR): 3292, 3227, 2952, 2878, 1681, 1577, 1491, 1453, 1394 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for C₁₇H₁₈N₂O₂ [M]⁺: 282.1368. Found: 282.1378.

1-Ethylimidazolidine-2,4-dione (20): The title compound was synthesized according to general procedure **G** using 1-(2,2-dimethoxyethyl)-1-ethyl-3-((4-methoxybenzoyl)oxy)urea (0.148 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), triethylamine (0.056 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The

vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure and then purified by column chromatography (50% EtOAc/CH₂Cl₂ \rightarrow 5% CH₃OH/ CH₂Cl₂) to yield an amorphous white solid (0.055 g, 86%).

¹**H NMR (400 MHz, CDCl₃):** δ 8.46 (s, 1H), 3.91 (s, 2H), 3.43 (q, *J* = 7.3 Hz, 2H), 1.19 (t, *J* = 7.3 Hz, 3H).

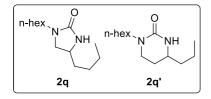
¹³C NMR (100 MHz, CDCl₃): δ 170.4 (C), 156.0 (C), 50.2 (CH₂), 37.2 (CH₂), 12.9 (CH₃).

The ¹H NMR and ¹³C NMR is in agreement with previous reports.²⁰

4-Methyl-1-propylimidazolidin-2-one (2p): The title compound was synthesized according to general procedure **G** using 3-((4-methoxybenzoyl)oxy)-1,1-dipropylurea (0.147 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), triethylamine (0.059 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL

Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH_2Cl_2 (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (50% EtOAc/CH₂Cl₂) to yield an amorphous white solid (0.065 g, 92%).

TLC R_f: 0.15 in 2% MeOH/CH₂Cl₂.


¹**H NMR (400 MHz, CDCl₃):** δ 5.13-4.23 (br s, 1H), 3.84-3.68 (m, 1H), 3.50 (t, *J*= 8.5 Hz, 1H), 3.25 – 3.01 (m, 2H), 2.94 (dd, *J*=8.5, 6.3 Hz, 1H), 1.50 (h, *J*=7.4 Hz, 1H), 1.22 (d, *J*= 6.1 Hz, 3H), 0.89 (t, *J*= 7.4 Hz, 3H).

²⁰ Sigachev, A. S.; Kravchenko, A. N.; Belyakov, P. A.; Lebedev, O. V.; Makhova N. N. *Russ. Chem. Bull.* **2006**, *55*, 865-872.

¹³C NMR (100 MHz, CDCl₃): δ 162.2 (C), 52.3 (CH), 45.6 (CH₂), 45.0 (CH₂), 21.6 (CH₂), 20.9 (CH₃), 11.3 (CH₃).

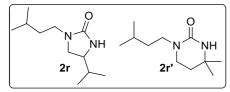
IR (FTIR): 3327, 2973, 2866, 1666, 1381, 1045 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for C₇H₁₄N₂ [M]⁺: 142.1106. Found: 142.1124.

1-Hexyl-4-butyl-imidazol-2-one (2q) and 1-hexyl-4propyltetrahydropyrimidin-2(1H)-one (2q'): The title compound was synthesized according to general procedure **G** using 3-((4methoxybenzoyl)oxy)-1,1-dihexylurea (0.189 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), triethylamine (0.059 g, 0.55 mmol) in MeCN (2.5 mL, 0.2

M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH_2Cl_2 (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compounds were purified by column chromatography (97:2:1 CH₂Cl₂/iPrOH/AcOH) to yield an inseparable mixture as a colourless oil (0.051 g, 72%).

TLC R_f: 0.18 in 2% MeOH/CH₂Cl₂.


¹**H NMR (400 MHz, CDCl₃):** δ 6.50-6.40 (br s, 1H), 6.08-5.99 (br s, 1H), 3.53-3.26 (m, 3H), 3.21-2.90 (m, 3H), 2.89-2.83 (m, 1H), 1.47-1.14 (m, 1H), 0.90-0.81 (m, 8H).

Compound **2q**: ¹³C **NMR (100 MHz, DMSO-***d*₆): δ 161.3 (C), 49.9 (CH2), 49.1 (CH), 42.5 (CH₂), 35.3 (CH₂), 30.9 (CH₂), 27.0 (CH₂), 25.9 (CH₂), 22.1 (CH₂), 22.0 (CH₂), 22.0 (CH₂), 13.9 (CH₃), 13.9 (CH₃).

Compound **2q'**: ¹³C **NMR (100 MHz, DMSO-***d*₆**)**: δ 155.1 (C), 49.8 (CH), 46.2 (CH₂), 43.3 (CH₂), 37.8 (CH₂), 31.1 (CH₂), 28.1 (CH₂), 27.3 (CH₂), 27.1 (CH₂), 26.0 (CH₂), 18.0 (CH₂), 14.0 (CH₃). (one carbon is missing due to overlap with compound A).

IR (FTIR): 3213, 2956, 2923, 2856, 1687, 1449, 1261 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for C₁₃H₂₆N₂O [M]⁺: 226.2045. Found: 226.2030.

1-Isopentyl-4-isopropylimidazolidin-2-one (2r) and 1isopentyl-4-isopropylimidazolidin-2-one (2r'): The title compound was synthesized according to general procedure G using 1,1-diisopentyl-3-((4-methoxybenzoyl)oxy)urea (0.175 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II)

hexafluorophosphate (0.009 g, 2 mol%), triethylamine (0.056 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH_2Cl_2 (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with

 Na_2SO_4 , filtered, and concentrated under reduced pressure. The title compounds were purified by column chromatography (96:3:1 CH₂Cl₂/iPrOH/AcOH) to yield an inseparable mixture as a colourless oil (0.078 g, 79%).

TLC Rf: 0.51 in 50% EtOAc/CH2Cl₂.

¹**H NMR (300 MHz, DMSO-***d*₆): δ 6.55-6.50 (br s, 1H), 6.08-6.02 (br s, 1H), 3.29-2.88 (m, 10H), 1.66-1.58 (m, 2H), .56-1.41 (m, 4H), 1.38-1.22 (m, 6H), 1.09 (s, 6H), 0.91-0.77 (m, 27H).

¹³C (100 MHz, DMSO-*d*₆): δ 161.4 (C), 154.7 (C), 54.9 (CH), 49.3 (C), 47.8 (CH2), 44.4 (CH2), 41.5 (CH2), 40.8 (CH2), 36.0 (CH2), 35.9 (CH2), 34.3 (CH2), 32.7 (CH), 29.0 (CH), 25.4 (CH), 25.2 (CH), 22.5 (CH), 22.4 (CH), 22.3 (CH), 18.2 (CH₃), 17.7 (CH₃).

IR (FTIR): 3210, 2956, 2870, 1685, 1644, 1459, 1261 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for C₁₁H₂₂N₂O [M]⁺: 198.1732. Found: 198.1716.

1-Methyl-4-phenylimidazolidin-2-one (2s): The title compound was synthesized 0 Me according to general procedure G using 3-((4-methoxybenzoyl)oxy)-1-methyl-1phenethylurea (0.164)0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) g, hexafluorophosphate (0.009 g, 2 mol%), triethylamine (0.056 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH₂Cl₂ (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (40% EtOAc/Hexanes \rightarrow 100% EtOAc) to yield a white solid (0.067 g, 75%).

TLC R_f: 0.29 in 50% EtOAc/CH₂Cl₂.

¹**H NMR (400 MHz, CDCl₃):** δ 7.38-7.27 (m, 5H), 4.77 (br. s, 1H), 4.72 (ddd, *J* = 8.8, 7.4, 1.5 Hz, 1H), 3.76 (t, *J* = 8.8 Hz, 1H), 3.20 (dd, *J* = 8.8, 7.4 Hz, 1H), 2.79 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 162.3 (C), 141.7 (C), 129.0 (CH), 128.3 (CH), 126.2 (CH), 56.2 (CH₂), 53.8 (CH), 30.7 (CH₃).

IR (FTIR): 3198, 3083, 2919, 2852, 1681, 1500, 1440, 1403, 1252 cm⁻¹.

HRMS (EI) m/z:Exact mass calcd for $C_{10}H_{12}N_2O[M]^+$: 176.0950. Found: 176.0974.

1-Methyl-4-ethyl-imidazol-2-one (2t): The title compound was synthesized according to general procedure **G** using 3-((4-methoxybenzoyl)oxy)-1-butyl-1-methylurea (0.140 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), triethylamine (0.056 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with

Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH_2Cl_2 (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered,

and concentrated under reduced pressure. The title compound was purified by column chromatography (96:3:1 $CH_2Cl_2/iPrOH/AcOH$) to yield an amorphous white solid (0.032 g, 50%).

TLC R_f: 0.36 in 2% MeOH/CH₂Cl₂.

¹**H NMR (400 MHz, CDCl₃):** δ 4.64-4.28 (br s, 1H), 3.64-3.46 (m, 2H), 3.03 (dd, *J* = 8, 6.1 Hz, 1H), 2.78 (s, 3H), 1.61-1.56 (m, 2H), 0.93 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 162.2 (C), 52.9 (CH₂), 51.1 (CH), 30.5 (CH), 28.6 (CH₂), 9.6 (CH₃).

IR (FTIR): 3203, 2960, 1683, 1507, 1311, 161, 1231 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for C₆H₁₂N₂O [M]⁺: 128.0950. Found: 128.0946.

3-Methylisoindolin-1-one (2u): The title compound was synthesized according to general procedure **G** using 2-ethyl-N-((4-methoxybenzoyl)oxy)benzamide (0.150 g, 0.50 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), tetrabutylammonium dibutyl phosphate (0.011 g, 5 mol%) in CH_2Cl_2 (2.5 mL, 0.2 M) in

a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was diluted in CH_2Cl_2 (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (50% EtOAc/CH₂Cl₂) to yield an amorphous white solid (0.048 g, 65%).

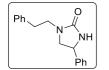
¹**H NMR (300 MHz, CDCl₃):** δ 7.85 (dt, J = 7.5, 1.0 Hz, 1H), 7.58 (td, J = 7.5, 1.2 Hz, 1H), 7.52 – 7.40 (m, 2H), 6.73-6.57 (br s, 1H), 4.70 (q, J = 6.7 Hz, 1H), 1.51 (d, J = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 170.7 (C), 149.0 (C), 132.1 (CH), 131.6 (C), 128.3 (CH), 124.0 (CH), 122.3 (CH), 52.6 (CH), 20.5 (CH₃).

The ¹H NMR and ¹³C NMR is in agreement with previous reports.¹⁴

1-Ethyl-1*H***-imidazol-2(3***H***)-one (2v): The title compound was synthesized according to general procedure G** using 1-ethyl-1-(2-hydroxyethyl)-3-((4-methoxybenzoyl)oxy)urea (0.141 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), triethylamine (0.056 g, 0.55 mmol) in MeCN

(2.5 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH₂Cl₂ (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (50% EtOAc/CH₂Cl₂ \rightarrow 5% MeOH/CH₂Cl₂) to yield a white solid (0.028 g, 50%).


TLC R_f: 0.07 in 50% EtOAc/CH₂Cl₂; 0.45 in 5% MeOH/CH₂Cl₂.

¹H NMR (400 MHz, CDCl₃): δ 9.89 (s, 1H), 6.29 (t, J = 2.6 Hz, 1H), 6.20 (t, J = 2.5 Hz, 1H), 3.67 (q, J = 7.3 Hz, 2H), 1.30 (t, J = 7.3 Hz, 4H).

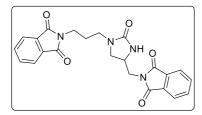
¹³C NMR (100 MHz, CDCl₃): δ 154.3 (C), 110.8 (CH), 108.0 (CH), 37.9 (CH₂), 14.8 (CH₃).

IR (FTIR): 3200, 2929, 1663, 1455, 1258, 1088 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for C₅H₈N₂O [M]⁺: 112.0637. Found: 112.0618.

Phenethyl-4-phenylimidazolidin-2-one (2w): The title compound was synthesized according to general procedure **G** using 3-((4-methoxybenzoyl)oxy)-1,1-diphenethylurea (0.209 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), triethylamine (0.056 g, 0.55 mmol) in MeCN

(2.5 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH_2Cl_2 (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (40% EtOAc/Hexanes) to yield a white solid (0.100 g, 75%).


TLC Rf: 0.50 in 50% EtOAc/CH₂Cl₂.

¹**H NMR (400 MHz, CDCl₃):** δ 7.37-7.19 (m, 10H), 4.73 (br. s, 1H), 4.68 (ddd, *J* = 8.8, 7.1, 1.4 Hz, 1H), 3.68 (t, J = 8.8 Hz, 1H), 3.56-3.43 (m, 2H), 3.14 (dd, *J* = 8.8, 7.1 Hz, 1H), 2.85 (t, *J* = 7.1 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 161.7 (C), 141.7 (C), 139.0 (C), 129.0 (CH), 128.9 (C), 128.6 (CH), 128.3 (CH), 126.5 (CH), 126.2 (CH), 54.2 (CH₂), 53.9 (CH), 44.9 (CH₂), 34.5 (CH₂).

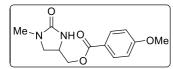
IR (FTIR): 3216, 3083, 3028, 2917, 2854, 1680, 1490, 1452, 1360, 1318, 1255 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for C₁₇H₁₈N₂O [M]⁺: 266.1419. Found: 233.1431.

2-(3-(4-((1,3-Dioxoisoindolin-2-yl)methyl)-2-oxoimidazolidin-1-yl)propyl)isoindoline-1,3-dione (2x): The title compound was synthesized according to general procedure G using 1,1-bis(3-(1,3-dioxoisoindolin-2-yl)propyl)-3-((4-methoxybenzoyl)oxy)urea (0.292 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), triethylamine (0.056 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL Kimax glass vial with a

Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH₂Cl₂ (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (50% EtOAc/CH₂Cl₂ \rightarrow 100% EtOAc) to yield a white solid (0.078 g, 36%).

TLC R_f: 0.16 in 50% EtOAc/CH₂Cl₂.


¹**H NMR (400 MHz, CDCl₃):** δ 7.82 (ddd, *J* = 13.4, 5.5, 3.0 Hz, 4H), 7.70 (ddd, *J* = 14.6, 5.5, 3.0 Hz, 4H), 4.74 (s, 1H), 3.98 (dq, *J* = 9.0, 4.8 Hz, 1H), 3.90 (dd, *J* = 14.0, 5.8 Hz, 1H), 3.78 (dd, *J* = 14.0, 4.7 Hz, 1H), 3.68 (td, *J* = 7.3, 3.2 Hz, 2H), 3.56 (t, *J* = 8.8 Hz, 1H), 3.34 (dd, *J* = 9.0, 5.6 Hz, 1H), 3.25-3.12 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 168.5 (C), 138.2 (C), 161.1 (C), 134.3 (CH), 133.9 (CH), 131.1 (C), 131.7 (C), 123.6 (CH), 123.2 (CH), 49.3 (CH), 48.6 (CH₂), 41.1 (CH₂), 40.9 (CH₂), 35.4 (CH2), 26.6 (CH₂).

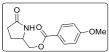
IR (FTIR): 3200, 2864, 1693, 1387, 1258, 1027 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₂₃H₂₀N₄O₅Na [M+Na]⁺: 455.1325. Found: 455.1331.

Aziridination

(1-Methyl-2-oxoimidazolidin-4-yl)methyl 4-methoxybenzoate (2y): The title compound was synthesized according to general procedure G using 1-allyl-3-((4-methoxybenzoyl)oxy)-1-methylurea (0.132 g, 0.50 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g,

2 mol%), triethylamine (0.057 g, 0.55 mmol) in CH₂Cl₂ (5.0 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH₂Cl₂ (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL). The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (50% EtOAc/CH₂Cl₂ \rightarrow 30% $EtOAc/CH_2Cl_2$) to yield a white solid (0.089 g, 66%).


TLC Rf: 0.51 in 2% MeOH/CH₂Cl₂

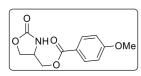
¹H NMR (400 MHz, CDCl₃): δ 8.01-7.94 (m, 2H), 6.97-6.91 (m, 2H), 4.68-4.58 (br s, 1H), 4.41-4.35 (dd, J = 11.1, 4.8 Hz, 1H), 4.26-4.20 (dd, J = 11.2, 7.1 Hz, 1H), 4.09-4.00 (m, 1H), 3.88 (s, 3H), 3.62(t, J = 9.0 Hz, 3H), 3.26 (dd, J = 9.0, 5.5 Hz, 1H), 2.79 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 165.9 (C), 163.7 (C), 161.5 (C), 131.7 (CH), 121.8 (C), 113.8 (CH), 66.2 (CH₂), 55.5 (CH), 49.8 (CH₂), 48.4 (CH), 30.5 (CH₃).

IR (FTIR): 3200, 2942, 2866, 1699, 1600, 1444, 1252 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for $C_{11}H_{14}N_2O_2Na [M+Na]^+$: 287.1008. Found: 287.1003.

(5-Oxopyrrolidin-2-yl)methyl 4-methoxybenzoate (2z): The title compound was synthesized according to general procedure G using *N*-((4methoxybenzoyl)oxy)pent-4-enamide (0.249 g, 1.00 mmol), tris(2.2'bipyridine)ruthenium(II) hexafluorophosphate (0.017 g, 2 mol%), tetrabutylammonium dibutyl phosphate (0.022 g, 5 mol%) in CH₂Cl₂ (5.0 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH₂Cl₂ (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL). The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (50% EtOAc/CH₂Cl₂ \rightarrow 100% EtOAc) to yield a white solid (0.169 g, 68%).


TLC R_f: 0.12 in 50% EtOAc/CH₂Cl₂.

¹**H NMR (400 MHz, CDCl₃):** δ 7.95 (d, *J* = 9.0 Hz, 2H), 6.90 (d, *J* = 9.0 Hz, 2H), 6.12 (br s, 1H), 4.40 (dd, *J* = 11.2, 3.7 Hz, 1H), 4.11 (dd, *J* = 11.2, 7.2 Hz, 1H), 4.04-3.98 (m, 1H), 3.84 (s, 3H), 2.45-2.26 (m, 3H), 1.95-1.86 (m, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 177.9 (C), 166.0 (C), 163.7 (C), 131.7 (CH), 121.8 (C), 113.8 (CH), 67.2 (CH₂), 55.5 (CH₃), 53.0 (CH), 29.5 (CH₂), 23.4 (CH₂).

IR (FTIR): 3168, 3079, 2965, 2841, 1680, 1605, 1511, 1461, 1383, 1252 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₃H₁₅NO₄Na [M+Na]⁺: 272.0899. Found: 272.0904.

(2-Oxooxazolidin-4-yl)methyl 4-methoxybenzoate The title (2aa): compound was synthesized according to general procedure G using allyl (4methoxybenzoyl)oxycarbamate (0.126)g, 0.500 mmol), tris(2,2'bipyridine)ruthenium(II) hexafluorophosphate (0.009)g. 2 mol%).

triethylamine (0.057 g, 0.55 mmol) in CH₂Cl₂ (5.0 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH₂Cl₂ (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL). The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (50% EtOAc/CH₂Cl₂ \rightarrow 100% EtOAc) to yield a white solid (0.065 g, 52%).

TLC R_f: 0.32 in 50% EtOAc/CH₂Cl₂.

¹**H NMR (400 MHz, CDCl₃):** δ 7.98 (d, *J* = 9.0 Hz, 2H), 6.93 (d, *J* = 8.7 Hz, 2H), 5.79 (br s, 1H), 4.59-4.55 (m, 1H), 4.44-4.41 (m, 1H), 4.31-4.22 (m, 3H), 3.87 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 166.1 (C), 164.0 (C), 159.4 (C), 132.0 (CH), 121.5 (C), 114.0 (CH), 67.2 (CH₂), 65.3 (CH₂), 55.6 (CH₃), 51.5 (CH).

IR (FTIR): 3277, 2941, 2840, 1750, 1706, 1603, 1580, 1511, 1417, 1281, 1251 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for C₁₂H₁₃NO₅ [M]⁺: 251.0794. Found: 251.0799.

1-Methyl-1H-benzo[d]imidazol-2(3H)-one (2ab): The title compound was synthesized following general procedure G using 3-((4-methoxybenzoyl)oxy)-1-methyl-1-phenylurea (0.240 g, 0.800 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.014 g, 2 mol%), triethylamine (0.089 g, 0.88 mmol) in MeCN (4.0 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The

vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH₂Cl₂ (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (10% EtOAc/Hexanes \rightarrow 50% EtOAc/Hexanes) to yield a white solid (0.085 g, 72%).

¹H NMR (400 MHz, CDCl₃): δ 9.94 (s, 1H), 7.11-7.05 (m, 3H), 6.98-6.95 (m, 1H), 3.42 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 156.0 (C), 131.1 (C), 128.0 (C), 121.8 (CH), 121.5 (CH), 109.7 (CH), 107.8 (CH), 27.0 (CH₃).

The ¹H NMR and ¹³C NMR is in agreement with previous reports.²¹

1-Ethyl-1,3-dihydro-benzoimidazol-2-one (2ac): The title compound was synthesized according to general procedure **G** using 3-((4-methoxybenzoyl)oxy)-1-ethyl-1-phenylurea (0.157 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), triethylamine (0.056 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The

vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH_2Cl_2 (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (50% EtOAc/CH₂Cl₂) to yield an amorphous white solid (0.039 g, 48%).

¹**H NMR (400 MHz, CDCl₃):** δ 10.49-10.20 (br s, 1H), 7.19-6.96 (m, 4H), 3.98 (q, *J*= 7.2 Hz, 2H), 1.38 (t, *J*= 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 155.5 (C), 130.0 (C), 128.1 (C), 121.4 (CH), 121.2 (CH), 109.7 (CH), 107.7 (CH), 35.6 (CH₂), 13.6 (CH₃).

The ¹H NMR and ¹³C NMR is in agreement with previous reports.²²

1-Ethyl-5-methoxy-1H-benzo[d]imidazol-2(3H)-one (2af): The title compound was synthesized according to general procedure **G** using 1-ethyl-3-((4-methoxybenzoyl)oxy)-1-(3-methoxybenyl)urea (0.276 g, 0.800 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.014 g, 2 mol%), triethylamine (0.089 g, 0.88 mmol) in MeCN (4.0 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon

screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH_2Cl_2 (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO4, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (40% EtOAc/CH₂Cl₂) to yield a white solid (0.143 g, 93%).

TLC R_f: 0.33 in 50% EtOAc/CH₂Cl₂.

¹**H NMR (400 MHz, CDCl₃):** δ 9.57 (d, *J* = 0.3 Hz, 1H), 6.97 (d, *J* = 8.4 Hz, 1H), 6.61 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.58 (d, *J* = 2.4 Hz, 1H), 3.90 (q, *J* = 7.2 Hz, 2H), 3.81 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 155.9 (C), 155.5 (C), 131.1 (C), 122.2 (C), 109.9 (CH), 106.7 (CH), 95.3 (CH), 56.1 (CH₃), 35.8 (CH₂), 13.7 (CH₃).

IR (FTIR): 2978, 2934, 1681, 1629, 1609, 1493, 1447, 1396, 1223, 1081 cm⁻¹.

²¹ Ando,K.; Kobayashi, T.; Uchida, N. Org. Lett. 2015, 17, 2554–2557.

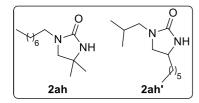
²² Peng, L.; Zhiming, W.; Xianming, H. Eur. J. Org. Chem. 2012, 10, 1994 – 2000.

HRMS (EI) m/z: Exact mass calcd for C₁₀H₁₂N₂O₂ [M]⁺: 192.0899. Found: 192.0876.

1-Ethyl-4,6-dimethyl-1H-benzo[d]imidazol-2(3H)-one (2ag): The title compound was synthesized according to general procedure **G** using 1-(3,5-dimethylphenyl)-1-ethyl-3-((4-methoxybenzoyl)oxy)urea (0.273 g, 0.80 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.014 g, 2 mol%), triethylamine (0.089 g, 0.88 mmol) in MeCN (4.0 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for

10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the product precipitated out of solution and was collected over a fritted funnel (0.128 g, 84%).

TLC R_f: 0.42 in 50% EtOAc/CH₂Cl₂.


¹**H NMR (400 MHz, CDCl₃):** δ 10.04 (br s, 1H), 6.68 (s, 1H), 6.65 (s, 1H), 3.90 (q, *J* = 7.2 Hz, 2H), 2.36 (s, 3H), 2.35 (s, 3H), 1.33 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 155.7 (C), 130.8 (C), 129.8 (C), 125.0 (C), 123.3 (CH), 119.1 (C), 105.9 (CH), 35.6 (CH₂), 21.5 (CH₃), 16.2 (CH₃), 13.7 (CH₃).

IR (FTIR): 2978, 1687, 1459, 1396, 1280 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for $C_{11}H_{14}N_2O [M]^+$: 190.1106. Found: 190.1120.

Site competition experiments

1-Octyl-4,4-dimethylimidazolidin-2-one (2ah) and 4-hexyl-1isobutylimidazolidin-2-one (2ah'): The title compound was synthesized according to general procedure **G** using 3-((4methoxybenzoyl)oxy)-1-isobutyl-1-octylurea (0.189 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), triethylamine (0.057 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M)

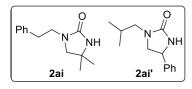
in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH_2Cl_2 (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (30% EtOAc/Hexanes) to yield a colourless oil (0.077 g, 68%).

TLC R_f: 0.48 in 50% EtOAc/CH₂Cl₂.

1-Octyl-4,4-dimethylimidazolidin-2-one (2ah):

¹**H NMR (400 MHz, DMSO-***d*₆): δ 6.36-6.33 (br s, 1H), 3.03-2.97 (m, 4H), 1.42-1.35 (m, 3H, 2aj and 2aj'), 1.30-1.18 (m, 13H, 2aj and 2aj'), 1.15 (s, 6H), 0.85 (app t, *J*= 6.9 Hz, 4H, 2aj and 2aj'), 0.81 (app dd, *J*= 6.6, 2.4 Hz, 2H, 2aj and 2aj').

¹³C NMR (100 MHz, DMSO-*d*₆): δ 160.3 (C), 57.1 (CH₂), 51.1 (C), 42.2 (CH₂), 31.2 (CH₂), 28.6 (CH₂), 28.6 (CH), 28.0 (CH), 27.0 (CH₂), 26.1 (CH₂), 22.1 (CH₂), 13.9 (CH₃).


4-Hexyl-1-isobutylimidazolidin-2-one (2ah'):

¹**H NMR (400 MHz, DMSO**-*d*₆): δ 6.46-6.44 (br s, 1H), 3.52-3.46 (m, 1H), 3.43-3.38 (m, 2H), 2.89-2.85 (m, 1H), 2.83-2.74 (m, 2H), 1.81-1.71 (m, 1H), 1.42-1.35 (m, 3H, , 2aj and 2aj'), 1.30-1.18 (m, 13H, , 2aj and 2aj'), 0.85 (app t, *J*= 6.9 Hz, 4H, , 2aj and 2aj'), 0.81 (app dd, *J*= 6.6, 2.4 Hz, 2H, , 2aj and 2aj').

¹³C NMR (100 MHz, DMSO-*d*₆): δ 161.4, 50.6, 50.3, 49.1, 35.7, 26.4, 24.7, 22.0, 20.0, 19.9, 13.9 (one carbon is missing due to overlap).

IR (FTIR): 3202, 2917, 2852, 1686, 1457, 1303, 1240 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for C₁₃H₂₆N₂O [M]⁺: 226.2045. Found: 226.2020.

4,4-Dimethyl-1-phenethylimidazolidin-2-one (2ai) and 1-Isobutyl-4-phenylimidazolidin-2-one (2ai'): The title compound was synthesized according to general procedure **G** using 1-isobutyl-3-((4-methoxybenzoyl)oxy)-1-phenethylurea (0.185 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2

mol%), triethylamine (0.056 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH₂Cl₂ (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compound was purified by column chromatography (gradient 20% EtOAc/Hexanes) to yield a white solid (0.037 g, 37%).

4,4-Dimethyl-1-phenethylimidazolidin-2-one (2ai): as an amorphous white solid (0.037 g, 37%).

TLC R_f: 0.13 in 30% EtOAc/Hexanes.

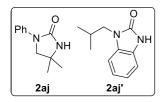
¹H NMR (400 MHz, CDCl₃): δ 7.31-7.19 (m, 5H), 4.31 (s, 1H), 3.44 (dd, J = 7.9, 6.8 Hz, 2H), 3.02 (s, 2H), 2.83 (t, J = 7.4 Hz, 2H), 1.21 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 160.9 (C), 139.3 (C), 128.9 (CH), 128.6 (CH), 126.5 (CH), 58.6 (CH₂), 52.1 (C), 44.8 (CH₂), 34.6 (CH₂), 28.5 (CH₃).

IR (FTIR): 3202, 3069, 2967, 2956, 2857, 1683, 1489, 1452, 1365, 1302 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for C₁₃H₁₈N₂O [M]⁺: 218.1419. Found: 218.1396.

1-Isobutyl-4-phenylimidazolidin-2-one (2ai'): as amorphous white solid (0.059 g, 50%).


TLC R_f: 0.28 in 30% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 7.40-7.29 (m, 5H), 4.77-4.73 (m, 2H), 3.79 (t, *J* = 9.0 Hz, 1H), 3.22 (dd, *J* = 8.8, 7.3 Hz, 1H), 3.09-2.95 (m, 2H), 1.82 (dquintet, *J* = 13.7, 6.9 Hz, 1H), 0.91 (dd, *J* = 6.7, 4.4 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 162.2 (C), 141.9 (C), 129.1 (CH), 128.3 (CH), 126.2 (CH), 54.4 (CH₂), 54.0 (CH), 51.2 (CH₂), 27.1 (CH), 20.16 (CH₃).

IR (FTIR): 3200, 3082, 2953, 1682, 1491, 1449, 1255 cm⁻¹.

HRMS (EI) m/z: Exact mass calcd for C₁₃H₁₈N₂O [M]⁺: 218.1419. Found: 218.1404.

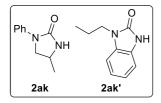
4,4-Dimethyl-1-phenylimidazolidin-2-one (2aj) and 1-isobutyl-1,3dihydro-2H-benzo[d]imidazol-2-one (2aj'): The title compound was synthesized according to general procedure **G** using 3-((4methoxybenzoyl)oxy)-1-isobutyl-1-phenylurea (0.171 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%), triethylamine (0.057 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL

Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH_2Cl_2 (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compounds were purified by column chromatography (10% EtOAc/CH₂Cl₂ \rightarrow 20% EtOAc/CH₂Cl₂).

4,4-Dimethyl-1-phenyl-2-imidazolidinone (2aj): as a white solid (0.039 g, 41%).

¹**H NMR (300 MHz, CDCl₃):** δ 7.58-7.51 (m, 2H), 7.39-7.30 (m, 2H), 7.10-7.02 (m, 1H), 4.61-5.43 (br s, 1H), 3.66 (s, 2H), 1.41 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 158.2 (C), 140.2 (C), 128.8 (CH), 122.5 (CH), 117.7 (CH), 58.2 (CH₂), 51.3 (C), 28.6 (CH₃).


The ¹H NMR and ¹³C NMR is in agreement with previous reports.²³

1-Isobutyl-1,3-dihydro-benzoimidazol-2-one (2aj'): as a pink solid (0.033 g, 35%).

¹**H NMR (300 MHz, CDCl₃):** δ 8.92-8.83 (br s, 1H), 7.13-7.05 (m, 3H), 7.02-6.97 (m, 1H), 3.70 (d, *J* = 7.5 Hz, 2H), 2.33-2.17 (m, 1H), 1.00 (d, *J* = 6.7 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 155.8 (C), 130.8 (C), 127.9 (C), 121.3 (CH), 121.1 (CH), 109.5 (CH), 108.1 (CH), 48.3 (CH₂), 27.9 (CH), 20.1 (CH₃).

The ¹H NMR and ¹³C NMR is in agreement with previous reports. ²⁴

4-Methyl-1-phenylimidazolidin-2-one (2ak) and 1-propyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (2ak'): The title compound was synthesized according to general procedure **G** using 3-((4-methoxybenzoyl)oxy)-1-phenyl-1-propylurea (0.164 g, 0.500 mmol), tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (0.009 g, 2 mol%),

²³ Kim, T. H.; Lee, G.-J. J. Org. Chem. **1999**, 64, 2941-2943.

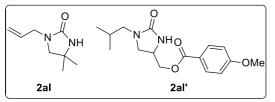
²⁴ Vernin, G.; Domlog, H.; Siv, C.; Metzger, J., El-Shafei, A. K. J. Heterocycl. Chem. 1981, 18, 85-89.

triethylamine (0.057 g, 0.55 mmol) in MeCN (2.5 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH₂Cl₂ (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compounds were purified by column chromatography (10% EtOAc/CH₂Cl₂).

4-Methyl-1-phenylimidazolidin-2-one (2ak): as a yellow solid (0.009 g, 10%).

¹**H NMR (300 MHz, CDCl₃):** δ 7.58-7.51 (m, 2H), 7.39-7.31 (m, 2H), 7.10-7.02 (m, 1H), 4.87-4.79 (br s, 1H), 4.08-3.90 (m, 2H), 3.50 (dd, *J* = 8.3, 7.7 Hz, 1H), 1.36 (d, *J* = 5.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 158.8 (C), 140.1 (C), 128.8 (CH), 122.7 (CH), 117.8 (CH), 52.5 (CH₂), 44.8 (CH), 21.7 (CH₃).


The ¹H NMR and ¹³C NMR is in agreement with previous reports. ²⁵

1-Propyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (2ak'): as a yellow solid (0.056 g, 63%).

¹**H NMR (300 MHz, CDCl₃):** δ 10.69-10.36 (br s, 1H), 7.20-6.97 (m, 4H), 3.93-3.84 (m, 2H), 1.83 (apt sxt, *J* = 7.4 Hz, 2H), 1.01 (t, *J* = 7.4 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 155.8 (C), 130.4 (C), 128.0 (C), 121.3 (CH), 121.1 (CH), 109.7 (CH), 107.9 (CH), 42.4 (CH₂), 21.7 (CH₂), 11.3 (CH).

The ¹H NMR and ¹³C NMR is in agreement with previous reports.²⁶

 1-Allyl-4,4-dimethylimidazolidin-2-one (2al) and (1isobutyl-2-oxoimidazolidin-4-yl)methyl
4methoxybenzoate (2al'): The title compound was synthesized according to general procedure G using 1allyl-1-isobutyl-3-((4-methoxybenzoyl)oxy)urea
(0.306 g, 1.00 mmol), tris(2,2'-bipyridine)ruthenium(II)

hexafluorophosphate (0.017 g, 2 mol%), triethylamine (0.111 g, 0.55 mmol) in MeCN (5.0 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH₂Cl₂ (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compounds were isolated as a mixture by column chromatography (20% EtOAc/CH₂Cl₂ \rightarrow 40% EtOAc/CH₂Cl₂), white solid (59%, 1 : 2 (2al : 2al')).

²⁵ Kim, T. H.; Lee, G.-J. J. Org. Chem. 1999, 64, 2941-2943.

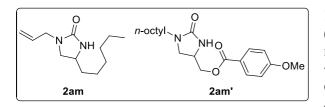
²⁶ Tapia, I.; Alonso-Cires, L.; López-Tudanca, P. L.; Mosquera, R.; Labeaga, L.; Innerárity, A.; Orjales, A. J. Med. Chem. **1999**, 42, 2870-2880.

TLC Rf: 0.30 in 50% EtOAc/CH₂Cl₂.

1-Allyl-4,4-dimethylimidazolidin-2-one (2al):

¹**H NMR (400 MHz, CDCl₃):** δ 5.73 (ddt, *J* = 17.1, 10.2, 6.0 Hz, 1H), 5.19-5.12 (m, 2H), 4.50 (br s, 1H), 3.76 (dt, *J* = 6.0, 1.4 Hz, 2H), 3.09 (s, 2H), 1.27 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 160.7 (C), 133.5 (CH), 117.4 (CH₂), 57.7 (CH₂), 52.0 (C), 46.1 (CH₂), 28.5 (CH₃).


The ¹H NMR and ¹³C NMR is in agreement with previous reports. ²⁷

1-Isobutyl-2-oxoimidazolidin-4-yl)methyl 4-methoxybenzoate (2al'):

¹**H NMR (400 MHz, CDCl₃):** δ 7.96 (d, J = 9.0 Hz, 2H), 6.89 (d, J = 9.0 Hz, 2H), 5.07 (br s, 1H), 4.33 (dd, J = 11.1, 4.9 Hz, 1H), 4.19 (dd, J = 11.1, 7.0 Hz, 1H), 4.05-3.98 (m, 1H), 3.84 (s, 3H), 3.57 (t, J = 9.1 Hz, 1H), 3.22 (dd, J = 9.2, 5.3 Hz, 1H), 2.97 (qd, J = 12.5, 7.5 Hz, 2H), 1.84 (tt, J = 13.8, 6.9 Hz, 1H), 0.88 (dd, J = 6.7, 3.2 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 166.0 (C), 163.7 (C), 161.7 (C), 131.8 (CH), 121.9 (C), 113.8 (CH), 66.4 (CH₂), 55.5 (CH₃), 51.0 (CH₂), 48.6 (CH), 48.0 (CH₂), 26.9 (CH), 20.0 (CH₃).

IR (FTIR): 3210, 2950, 1681, 1604, 1450, 1254, 1113 cm⁻¹.

1-Allyl-4-hexylimidazolidin-2-one (2am) and (1-octyl-2-oxoimidazolidin-4-yl)methyl 4methoxybenzoate (2am'): The title compounds were synthesized according to general procedure G using 1-allyl-3-((4-methoxybenzoyl)oxy)-1octylurea (0.362 g, 1.00 mmol), tris(2,2'-

bipyridine)ruthenium(II) hexafluorophosphate (0.017 g, 2 mol%), triethylamine (0.111 g, 0.55 mmol) in MeCN (5.0 mL, 0.2 M) in a 8 mL Kimax glass vial with a Teflon screw cap and a stir bar. The vial was placed in an ice bath and purged with Argon for 10 min. The vial was positioned between 2 and 4 cm form the light source (blue LED strips) and allowed to stir overnight at ambient temperature. Upon completion, the reaction was concentrated under reduced pressure, diluted in CH_2Cl_2 (5.0 mL) and extracted three times with sodium bicarbonate (3 x 2 mL) to remove the benzoic acid. The organic phase was collected, dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The title compounds co-eluted upon flash column chromatography (20% EtOAc/CH₂Cl₂ \rightarrow 40% EtOAc/CH₂Cl₂), (0.175 g, 48% yield) white solid (10 : 1 (**2am : 2am'**)).

TLC $R_f = 0.41$ in 100% EtOAc.

1-Allyl-4-hexylimidazolidin-2-one (2am):

¹**H NMR (400 MHz, CDCl₃):** (300 MHz, CDCl₃) δ 5.74 (ddt, *J* = 17.1, 10.1, 6.0 Hz, 1H), 5.20-5.13 (m, 2H), 4.45 (br s, 1H), 3.82-3.69 (m, 2H), 3.63-3.61 (m, 1H), 3.01-2.94 (m, 1H), 1.53-1.44 (m, 10H), 0.90-0.88 (m, 3H).

²⁷ Kim, T. H.; Lee, G.-J. J. Org. Chem. 1999, 64, 2941-2943.

¹³C NMR (100 MHz, CDCl₃): δ 160.3 (C), 133.4 (CH), 117.5 (CH₂), 50.5 (CH₂), 50.1 (CH), 46.2 (CH₂), 36.0 (CH₂), 31.6 (CH₂), 29.1 (CH₂), 25.5 (CH₂), 22.5 (CH₂), 14.1 (CH₃).


(1-Octyl-2-oxoimidazolidin-4-yl)methyl 4-methoxybenzoate (2am'):

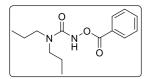
¹**H NMR (400 MHz, CDCl₃):** δ 7.95 (d, *J* = 9.0 Hz, 2H), 6.90 (d, *J* = 9.0 Hz, 2H), 4.67 (br s, 1H), 4.33 (dd, *J* = 11.1, 4.8 Hz, 1H), 4.20 (dd, *J* = 11.1, 6.9 Hz, 1H), 4.03-3.99 (m, 1H), 3.85 (s, 3H), 3.58 (t, *J* = 9.0 Hz, 1H), 3.45 (s,), 3.24-3.12 (m, 3H), 1.29-1.23 (m, 12H), 0.87-0.84 (m, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 166.0 (C), 163.7 (C), 161.4 (C), 131.8 (CH), 121.8 (C), 113.8 (CH), 66.3 (CH₂), 55.5 (CH₃), 48.6 (CH), 47.4 (CH₂), 43.4 (CH₂), 31.8 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 27.6 (CH₂), 26.8 (CH₂), 22.6 (CH₂), 14.1 (CH₃).

IR (FTIR): 3205, 2920, 2855, 1681, 1605, 1455, 1255, 1118 cm⁻¹.

Synthesis of tetrabutylammonium dibutyl phosphate base

Tetrabutylammonium dibutyl phosphate (7a): The title compound was synthesized according to a literature procedure.²⁸

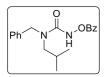

¹**H NMR (300 MHz, CDCl₃):** δ 3.81 (q, *J*= 6.6 Hz, 4H), 3.44-3.31 (m, 8H), 1.75-1.52 (m, 12H), 1.51-1.29 (m, 12H), 0.99 (t, *J*= 7.3 12H), 0.89 (t, *J*= 7.3 Hz, 6H).

¹³C NMR (75 MHz, CDCl₃): δ 64.7 (CH₂), 59.0 (CH₂), 33.3 (CH₂), 24.3 (CH₂), 19.0 (CH₂), 19.3 (CH₂), 14.0 (CH₃), 13.8 (CH₃).

³¹P NMR (121 MHz, CDCl3): δ -2.26 (s).

The ¹H NMR and ¹³C NMR is in agreement with previous reports.

Synthesis of benzoyl N-oxyureas for initial reaction screening



3-(Benzoyloxy)-1,1-dipropylurea (5a): The title compound was synthesized according to a literature procedure.¹³

²⁸ Zhu, Q.; Graff, D. E.; Knowles, R. R. J. Am. Chem. Soc. 2018, 140, 741.

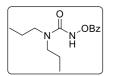
¹**H NMR (300 MHz, CDCl₃):** δ 8.57 (br s, 1H), 8.12-8.08 (m, 2H), 7.62-7.56 (m, 1H), 7.44 (tt, *J* = 7.5, 1.3 Hz, 2H), 3.24 (t, *J* = 7.6 Hz, 4H), 1.64 (ap sext, *J* = 7.5 Hz, 4H), 0.92 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 167.2 (C), 157.6 (C), 134.0 (C), 129.9 (CH), 128.6 (CH), 127.3 (C), 49.0 (CH₂), 21.4 (CH₂), 11.3 (CH₃).

3-(Benzoyloxy)-1-benzyl-1-isobutylurea (5b): The title compound was synthesized according to general procedure C using phenyl benzoyloxycarbamate (0.630 g, 2.45 mmol), and *N*-benzyl-2-methylpropan-1-amine (0.400 g, 2.45 mmol) and imidazole (0.017 g, 0.25 mol) in THF (10.0 mL, 0.30 M). The reaction was heated under microwave irradiation for 4 h at 100 °C. Upon completion, the reaction mixture was

concentrated under reduced pressure. The crude mixture was dissolved in hexanes and then recrystallized in Et_2O /hexanes. The solid was then filtered and washed with hexanes to give pure product. The title compound was obtained as a crystalline white solid (0.763 g, 78%).

M.p.: 140.1-140.4 °C.

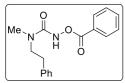

TLC R_f: 0.55 in 25% EtOAc/Hexanes.

¹H NMR (300 MHz; CDCl₃): δ 8.50-8.40 (1H, br. s.), 8.18-8.08 (2H, m), 7.67-7.57 (1H, m), 7.53-7.27 (7H, m), 4.61 (2H, s), 3.20 (2H, d, *J*=6 Hz), 2.09 (1H, sept, *J*=6 Hz), 0.99 (6H, d, *J*=6 Hz).

¹³C NMR (100 MHz, CDCl₃): δ 167.0 (C), 158.3 (C), 136.4 (C), 134.0 (CH), 129.9 (CH), 128.9 (CH), 128.6 (CH), 127.8 (CH), 127.1 (CH), 127.0 (C), 54.6 (CH2), 50.6 (CH2), 27.3 (CH), 20.2 (CH₃).

IR (FTIR): 3106, 2955, 1756, 1645, 1495, 1232 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₉H₂₂N₂O₃Na [M+Na]⁺: 349.1528. Found: 349.1515.



3-(Benzoyloxy)-1,1-dipropylurea (5c): The title compound was synthesized according to a literature procedure.¹³

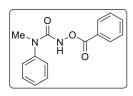
¹**H NMR (300 MHz, CDCl₃):** δ 8.57 (br s, 1H), 8.12-8.08 (m, 2H), 7.62-7.56 (m, 1H), 7.44 (tt, *J* = 7.5, 1.3 Hz, 2H), 3.24 (t, *J* = 7.6 Hz, 4H), 1.64 (ap sext, *J* = 7.5 Hz, 4H), 0.92 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 167.2 (C), 157.6 (C), 134.0 (C), 129.9 (CH), 128.6 (CH), 127.3 (C), 49.0 (CH₂), 21.4 (CH₂), 11.3 (CH₃).

The ¹H NMR and ¹³C NMR is in agreement with previous reports.

3-(Benzoyloxy)-1-methyl-1-phenethylurea (5d): The title compound was synthesized according to general procedure C using phenyl benzoyloxycarbamate (0.772 g, 3.00 mmol), and *N*-methyl-2-phenylethanamine (0.406 mg, 3.00 mmol) and imidazole (0.020 g, 0.30 mmol) in THF (16.7 mL, 0.30 M). The reaction was heated under microwave irradiation for 2 h at 100 °C

Solvent was removed under reduced pressure and the crude product isolated using flash chromatography (20% EtOAc/Hexanes) to yield the title compound as a colourless oil (0.841 g, 95%).


TLC R_f: 0.35 in 33% EtOAc/Hexanes.

¹**H NMR (400 MHz, CDCl₃):** δ 8.25 (s, 1H), 8.11-8.08 (m, 2H), 7.63-7.57 (m, 1H), 7.48-7.43 (m, 2H), 7.33-7.28 (m, 2H), 7.23-7.19 (m, 3H), 3.56 (t, *J* = 7.4 Hz, 2H), 2.92-2.88 (m, 5H).

¹³C NMR (100 MHz, CDCl₃): δ 166.9 (C), 157.7 (C), 138.7 (C), 134.1 (C), 130.1 (CH), 129.0 (CH), 128.9 (CH), 128.8 (CH), 127.3 (C), 126.8 (CH), 51.5 (CH2), 34.9 (CH₃), 34.3 (CH₂).

IR (FTIR): 3257, 3071, 3027, 2948, 1750, 1672, 1485, 1253, 1079 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for C₁₇H₁₈N₂O₃Na [M+Na]⁺: 321.1210. Found: 321.1215.

3-(Benzoyloxy)-1-methyl-1-phenylurea (5e): The title compound was synthesized according to a literature procedure.¹³

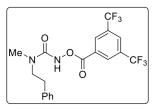
¹**H NMR (400 MHz, CDCl₃):** δ 8.11 (br s, 1H), 8.07-8.04 (m, 2H), 7.62-7.57 (m, 1H), 7.51-7.35 (m, 7H), 3.33 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 166.8 (C), 157.1 (C), 141.4 (C), 134.0 (C), 130.4 (CH), 130.0 (CH), 128.7 (CH), 128.6 (CH), 127.2 (CH), 127.1 (CH), 38.0 (CH₃).

The ¹H NMR and ¹³C NMR is in agreement with previous reports.

1-Methyl-1-phenethyl-3-hydroxyurea (6e): The title compound was synthesized according to general procedure C using phenyl *N*-hydroxycarbamate (0.337 g, 2.20 mmol), and *N*-methyl-*N*-phenethylamine (0.270 g, 2.20 mmol) and Et₃N (0.6 mL, 0.4 mmol) in THF (6.0 mL, 0.30 M). The vial was sealed with a microwave cap and heated for 16 h at 70 °C via an oil bath heating. The reaction mixture was concentrated under

reduced pressure and isolated using flash chromatography (1% MeOH/CH₂Cl₂ \rightarrow 5% MeOH/CH₂Cl₂). The title compound was obtained as an amorphous white solid (0.321 g, 83%).


TLC R_f : 0.15 in 2% MeOH/CH₂Cl₂.

¹**H NMR (400 MHz, CDCl₃):** δ 7.37-7.30 (m, 2H), 7.29-7.23 (m, 1H), 7.22-7.18 (m, 2H), 6.43-6.38 (br s, 1H), 6.30-6.23 (br s, 1H), 3.52 (t, *J* = 7.1 Hz, 2H), 2.90-2.83 (m, 5H).

¹³C NMR (100 MHz, CDCl₃): δ 161.5 (C), 138.5 (C), 128.9 (CH), 128.8 (CH), 126.9 (CH), 50.6 (CH₂), 34.1 (CH₂), 33.9 (CH₃).

IR (FTIR): 3326, 3023, 2924, 1645, 1491, 1390, 1296 cm⁻¹.

HRMS (ESI) m/z: Exact mass calcd for $C_{10}H_{14}N_2O_2Na$ [M+Na]⁺: 217.0948. Found: 217.0926.

3-((3,5-Bistrifuoromethylbenzoyl)oxy)-1-methyl-1-phenethylurea (5f): The title compound was synthesized according to the general procedure **B** using the pure 1-methyl-1-phenethyl-3-hydroxyurea (0.321 g, 1.66 mmol) was added CH_2Cl_2 (0.30 M) and cooled to 0 °C. To this was added Et_3N (0.23 mL, 1.66 mmol) followed immediately by dropwise addition of 3,5-bis(trifluoromethyl)benzoyl chloride (0.30 mL, 1.66 mmol). The reaction

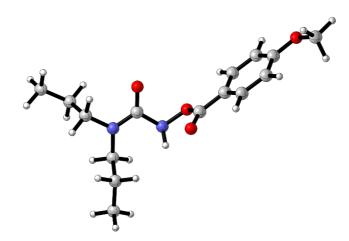
was allowed to warm to room temperature and stirred overnight. Upon completion, the reaction was extracted with NaHCO₃ (5.0 mL x1), and then brine (5.0 mL x1). The organic phase was collected and dried with Na₂SO₄. The solids were filtered over a cotton plug, and the filtrate was evaporated under reduced pressure to provide the crude which was purified by flash column chromatography (20% EtOAc/Hexanes). The title compound was obtained as an amorphous white solid (0.370 g, 46%).

TLC R_f: 0.97 in 2% MeOH/CH₂Cl₂.

¹**H NMR (400 MHz, CDCl₃):** δ 8.56-8.53 (br s, 2H), 8.14-8.11 (br s, 1H), 8.10-8.06 (br s, 1H), 7.38-7.32 (m, 2H), 7.30-7.23 (m, 3H), 3.60 (t, *J* = 7.2 Hz, 2H), 2.96-2.89 (m, 5H).

¹³C NMR (100 MHz, CDCl₃): δ 164.3 (C), 157.0 (C), 138.4 (C), 132.5 (C, q, *J*= 26 Hz), 130.0 (CH), 129.5 (C), 128.9 (CH), 128.8 (CH), 127.3 (CH, m), 126.8 (CH), 122.7 (C, d, *J*= 203 Hz), 51.3 (CH₂), 34.7 (CH), 34.1 (CH₂).

IR (FTIR): 3208, 1774, 1670, 1497, 1279, 1121 cm⁻¹.

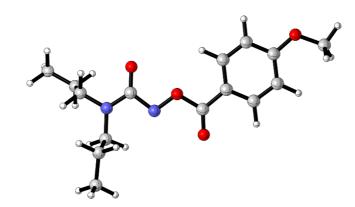

HRMS (ESI) m/z: Exact mass calcd for C₉H₁₆F₆N₂O₃Na [M+Na]⁺: 457.0963. Found: 457.0954.

Computational Details/DFT Calculations

Density functional theory (DFT) calculations have been performed using WebMO (G09). Optimized molecular geometries were calculated using the $B3LYP^{29}$ exchange-correlation functional. The 6-311+G(2d,p) basis set was used for calculations. Vibrational frequency calculations were performed to ensure that the stationary points and to calculate vibrational zero point energy. The unscaled frequencies were used for calculating enthalpies and BDEs (at 298 K and 1 atm).

Ultimately DFT data are inconsistent with an EnT process affording triplet nitrenes from the neutral precursor. Combined with ¹H-NMR studies, which indicated that deprotonation of the substrate does not occur with Et₃N, we conclude that EnT to the anionic precursor is also unlikely in this system. Moreover, even if the precursor could be deprotonated, the triplet transfer from Ru(bpy)₃ to the anionic substrate is still expected to be slow, given the endothermicity of the process. On the other hand, DFT lends some support to the PCET oxidation pathway, given the downhill formation of the capto-dative N-centered radical.

^{(&}lt;sup>29</sup>) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648.



Vibrational frequency of 1p

Quantity	Value
Job History	<u>20370,20385,37254,37256,40582</u>
Route	#N B3LYP/6-311+G(2d,p) FREQ SCRF=(PCM,Solvent=Acetonitrile) Geom=Conne
Stoichiometry	$C_{15}H_{22}N_2O_4$
Symmetry	C1
Basis	6-311+G(2d,p)
RB3LYP Energy	-995.546488834 Hartree
ZPE	0.359200 Hartree
Conditions	298.150K, 1.00000 atm
Internal Energy	-995.164753 Hartree
Enthalpy	-995.163809 Hartree
Free Energy	-995.242439 Hartree
Cv	81.842 cal/mol-K
Entropy	165.491 cal/mol-K
Dipole Moment	3.1563 Debye 🔎
Server	10.72.192.49 (10221)
CPU time	96457.7 sec

Contor	Atomio		Atomia	Coordinator	(Angstroms)
Number			Atomic Type	X Y	Z Z
1	6	0	0.000000	0.000000	0.000000
2	8	0	0.000000	0.000000	1.432224
3	6	0	1.183856	0.000000	2.085138
4	6	0	2.433916	0.001153	1.456067
5	6	0	3.585120	0.001332	2.228635
6	6	0	3.519575	-0.000618	3.623707
7	6	0	2.260242	-0.001332	4.244469
8	6	0	1.108261	-0.000827	3.485685
9	1	0	0.132897	0.000084	3.955443
10	1	0	2.187256	0.000507	5.323079
11	6	0	4.781127	0.006717	4.380493
12	8	0	5.896918	0.050575	3.913319
13	8	0	4.566769	-0.082665	5.736446
14	7	0	5.738994	-0.024985	6.519091
15	6	0	6.109635	1.327536	6.813344
16	8	0	5.374201	2.265570	6.533386
17	7	0	7.286710	1.440592	7.471586
18	6	0	8.107298	0.297135	7.888463
19	1	0	8.564971	0.561239	8.844482
20	1	0	7.455273	-0.554478	8.087730
21	6	0	9.202361	-0.085642	6.886945
22	6	0	10.056578	-1.247440	7.395331
23	1	0	10.830572	-1.508891	6.671335
24	1	0	10.552125	-0.991239	8.335581
25	1	0	9.448750	-2.139028	7.570814
26	1	0	8.749588	-0.351457	5.926531
27	1	0	9.834914	0.786040	6.696256

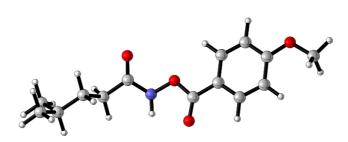
28	6	0	7.754372	2.783462	7.833989
29	1	0	8.845564	2.775186	7.779251
30	1	0	7.393986	3.482671	7.080371
31	6	0	7.300322	3.232989	9.224962
32	6	0	7.838154	4.619893	9.579063
33	1	0	7.503627	4.927736	10.571774
34	1	0	8.931601	4.633687	9.577120
35	1	0	7.494507	5.372096	8.863826
36	1	0	6.207430	3.235682	9.255078
37	1	0	7.635539	2.505619	9.970688
38	1	0	6.465460	-0.532652	6.019176
39	1	0	4.554037	0.002910	1.746703
40	1	0	2.517199	0.002177	0.379126
41	1	0	-1.046656	-0.000115	-0.292206
42	1	0	0.489787	0.894243	-0.390436
43	1	0	0.489964	-0.894242	-0.390303

Vibrational frequency of 1p radical

Quantity	Value
Job History	20370,20385,37254,37256,37262,37918,37924,40580
Route	#N B3LYP/6-311+G(2d,p) FREQ SCRF=(PCM,Solvent=Acetonitrile) Geom=Conne
Stoichiometry	C ₁₅ H ₂₁ N ₂ O ₄ (2)
Symmetry	C1
Basis	6-311+G(2d,p)
UB3LYP Energy	-994.897469537 Hartree
ZPE	0.345825 Hartree
Conditions	298.150K, 1.00000 atm
Internal Energy	-994.529155 Hartree
Enthalpy	-994.528211 Hartree
Free Energy	-994.607363 Hartree
Cv	81.219 cal/mol-K
Entropy	166.590 cal/mol-K
Dipole Moment	2.1669 Debye 🔎
Server	10.72.192.49 (8931)
CPU time	196664.1 sec

Contor	 ۸to		tomic	Coordinate	 es (Angstroms)
Number				X Y	Z
		0	0.00000	0.000000	
2	8	0		0.000000	
3	6	0		0.000000	
4	6	0		-0.000042	
5	6	0		0.000109	
		-			
6	6	0		0.000449	
7	6	0		0.000141	
8	6	0		0.000029	
9	1	0		-0.000077	
10	1	0		-0.000396	
11	6	0	4.773627	0.000731	4.376796
12	8	0	5.887718	0.000080	3.930605
13	8	0	4.518235	0.001432	5.766537
14	7	0	5.636782	0.004070	6.523536
15	6	0	5.225394	-0.011077	7.889625
16	8	0	4.057880	-0.067216	8.268736
17	7	0	6.299620	0.044579	8.719248
18	6	0	7.699296	0.112199	8.270771
19	1	0	8.294802	-0.410877	9.022457
20	1	0	7.803498	-0.436386	7.338025
21	6	0	8.210684	1.545103	8.101867
22	6	0	9.693195	1.579160	7.729952
23	1	0	10.039733	2.607003	7.606027
24	1	0	10.307106	1.111617	8.504498
25	1	0	9.879097	1.049666	6.791727
26	1	0	7.616680	2.038248	7.327299

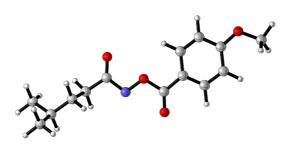
27	1	0	8.047615	2.102393	9.029053
28	6	0	6.051758	0.065835	10.162910
29	1	0	6.848302	0.653788	10.623421
30	1	0	5.108061	0.581604	10.338005
31	6	0	6.005606	-1.335205	10.782879
32	6	0	5.766103	-1.280142	12.291890
33	1	0	5.739741	-2.284855	12.718416
34	1	0	6.558452	-0.723387	12.799526
35	1	0	4.814797	-0.794375	12.524707
36	1	0	5.212278	-1.909157	10.297508
37	1	0	6.946560	-1.853296	10.574884
38	1	0	4.550552	0.000008	1.750804
39	1	0	2.516054	-0.000131	0.382245
40	1	0	-1.046705	0.000533	-0.291425
41	1	0	0.490416	0.894223	-0.389182
42	1	0	0.489496	-0.894740	-0.389198


Quantity	Value
Job History	<u>20371,20372</u>
Route	#N B3LYP/6-311+G(2d,p) OPT FREQ SCRF=(PCM,Solvent=Acetonitrile) Geom=C
Stoichiometry	H(2)
Symmetry	ОН
Basis	6-311+G(2d,p)
UB3LYP Energy	-0.502177020841 Hartree
ZPE	0.000000 Hartree
Conditions	298.150K, 1.00000 atm
Internal Energy	-0.500761 Hartree
Enthalpy	-0.499817 Hartree
Free Energy	-0.512831 Hartree
Cv	2.981 cal/mol-K
Entropy	27.392 cal/mol-K
Dipole Moment	0.0000 Debye 🔎
Server	10.72.192.49 (31757)
CPU time	1.4 sec

Vibrational frequency of H-atom

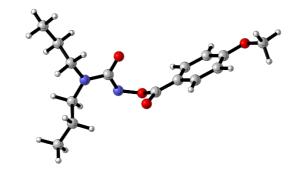
Input orientation:

CenterAtomicAtomicCoordinates (Angstroms)NumberNumberTypeXYZ1100.0000000.0000000.000000



Vibrational frequency of 1h

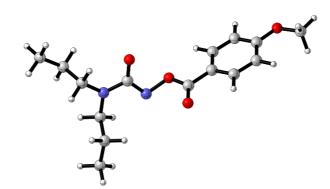
Quantity	Value
Job History	20370,23453,23465,23475,43197,43199,43200
Route	#N B3LYP/6-311+G(2d,p) FREQ SCRF=(PCM,Solvent=Acetonitrile) Geom=Conne
Stoichiometry	C ₁₄ H ₁₉ NO ₄
Symmetry	C1
Basis	6-311+G(2d,p)
RB3LYP Energy	-900.848191837 Hartree
ZPE	0.313090 Hartree
Conditions	298.150K, 1.00000 atm
Internal Energy	-900.515112 Hartree
Enthalpy	-900.514168 Hartree
Free Energy	-900.587179 Hartree
Cv	73.106 cal/mol-K
Entropy	153.663 cal/mol-K
Dipole Moment	5.0929 Debye 🔎
Server	General (68310)
CPU time	47443.4 sec


Center	Atomic		tomic	Coordinates (Angstroms)		
Number	Ν	umber	Туре	X Y	Z	
1	6	0	0.000000	0.000000	0.000000	
2	8	0	0.000000	0.000000	1.432488	
3	6	0	1.183246	0.000000	2.084958	
4	6	0	2.433339	-0.000998	1.455466	
5	6	0	3.584850	0.000545	2.227149	
6	6	0	3.518197	0.002396	3.622355	
7	6	0	2.259107	0.001652	4.244269	
8	6	0	1.107581	0.000830	3.485905	
9	1	0	0.132244	0.001129	3.955581	
10	1	0	2.186121	0.003003	5.323061	
11	6	0	4.777573	0.012235	4.377362	
12	8	0	5.898884	0.018895	3.913350	
13	8	0	4.565548	0.009506	5.730537	
14	7	0	5.761918	-0.016691	6.465634	
15	6	0	5.737598	0.640001	7.670672	
16	8	0	4.708463	1.038367	8.190357	
17	6	0	7.104442	0.743914	8.317405	
18	1	0	7.865008	0.266773	7.694283	
19	1	0	7.048533	0.176776	9.249499	
20	6	0	7.480931	2.207841	8.595924	
21	6	0	8.866346	2.391900	9.238061	
22	6	0	9.217220	3.882917	9.306828	
23	1	0	10.216273	4.032273	9.723774	
24	1	0	9.193432	4.343815	8.315987	
25	1	0	8.506826	4.420260	9.943071	
26	6	0	8.962656	1.750791	10.627580	

27	1	0	9.952101	1.917582	11.060609
28	1	0	8.223786	2.186300	11.307994
29	1	0	8.796896	0.671832	10.598722
30	1	0	9.603455	1.904233	8.587801
31	1	0	7.456505	2.762005	7.651985
32	1	0	6.718836	2.654983	9.241476
33	1	0	6.567514	0.030681	5.846898
34	1	0	4.553641	0.000885	1.744967
35	1	0	2.516132	-0.002115	0.378450
36	1	0	-1.046614	-0.001082	-0.292134
37	1	0	0.489258	0.894823	-0.389817
38	1	0	0.490999	-0.893881	-0.389454

Vibrational frequency of 1h radical

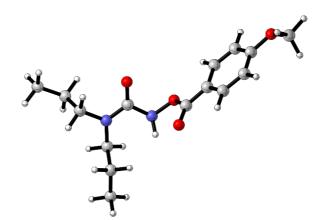
Quantity	Value
Job History	<u>20370,23453,23465,23475,43197,43199</u>
Route	#N B3LYP/6-311+G(2d,p) FREQ SCRF=(PCM,Solvent=Acetonitrile) Geom=Conne
Stoichiometry	C ₁₄ H ₁₈ NO ₄ (2)
Symmetry	C1
Basis	6-311+G(2d,p)
UB3LYP Energy	-900.18925328 Hartree
ZPE	0.299774 Hartree
Conditions	298.150K, 1.00000 atm
Internal Energy	-899.869514 Hartree
Enthalpy	-899.868570 Hartree
Free Energy	-899.942308 Hartree
Cv	72.402 cal/mol-K
Entropy	155.196 cal/mol-K
Dipole Moment	4.9703 Debye 🔎
Server	General (68314)
CPU time	138251.9 sec


Vibrational frequency of anionic 1p (triplet)

Quantity	Value
Job History	20370,20385,37254,37256,40582,43019,43020
Route	#N B3LYP/6-311+G(2d,p) FREQ SCRF=(PCM,Solvent=Acetonitrile) Geom=Conne
Stoichiometry	C ₁₅ H ₂₁ N ₂ O ₄ (1-,3)
Symmetry	C1
Basis	6-311+G(2d,p)
UB3LYP Energy	-994.974027916 Hartree
ZPE	0.341705 Hartree
Conditions	298.150K, 1.00000 atm
Internal Energy	-994.609506 Hartree
Enthalpy	-994.608561 Hartree
Free Energy	-994.687569 Hartree
Cv	83.224 cal/mol-K
Entropy	166.286 cal/mol-K
Dipole Moment	8.1645 Debye 🔎
Server	General (67416)
CPU time	172639.6 sec

Center Atomic Atomic Coordinates (Angstroms)							
			Х				
			0.000000				
2 8			0.000000				
3 6	0		0.000000				
4 6			0.000479				
56	0		-0.000588				
6 6	0	3.631793	-0.001551	3.593625			
76	0	2.339968	-0.005045	4.216482			
8 6	0	1.184496	-0.001859	3.470272			
91	0	0.217364	-0.000929	3.961681			
10 1	0	2.270869	-0.005158	5.296346			
11 6	0	4.848408	0.013788	4.296652			
12 8	0	6.028770	0.043437	3.905808			
13 8	0	4.647484	-0.201347	5.773641			
14 7	0	5.393370	0.468680	6.662058			
15 6	0	5.771025	1.787333	6.277628			
16 8	0	5.053174	2.512801	5.586500			
17 7	0	6.922369	2.205208	6.866145			
18 6	0	7.774887	1.347822	7.695737			
19 1	0	8.182560	1.972893	8.495102			
20 1	0	7.153627	0.587423	8.165783			
21 6	0	8.919198	0.680846	6.926767			
22 6	0	9.820781	-0.139594	7.850241			
23 1	0	10.62844	5 -0.614700	7.289638			
24 1	0	10.27536	6 0.488626	6 8.621394			
25 1	0	9.256634	-0.929038	8.354529			
26 1	0	8.496072	0.039428	6.149381			
27 1	0	9.511310	1.446417	6.416206			

28	6	0	7.343315	3.593182	6.667764
29	1	0	8.435577	3.613071	6.679063
30	1	0	7.018221	3.910776	5.677052
31	6	0	6.791582	4.551822	7.727859
32	6	0	7.277432	5.985243	7.510770
33	1	0	6.875032	6.656025	8.272746
34	1	0	8.368456	6.045486	7.557005
35	1	0	6.964786	6.365255	6.534236
36	1	0	5.699372	4.517452	7.697953
37	1	0	7.092506	4.204811	8.721242
38	1	0	4.595405	0.001528	1.645579
39	1	0	2.534652	0.001799	0.340683
40	1	0	-1.045121	0.000739	-0.303846
41	1	0	0.492981	0.891299	-0.400936
42	1	0	0.491691	-0.892029	-0.401027


Vibrational frequency of anionic 1p (singlet)

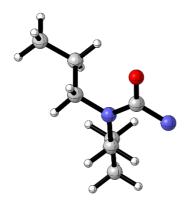
Quantity	Value
Job History	20370,20385,37254,37256,40582,43019
Route	#N B3LYP/6-311+G(2d,p) FREQ SCRF=(PCM,Solvent=Acetonitrile) Geom=Conne
Stoichiometry	C ₁₅ H ₂₁ N ₂ O ₄ (1-)
Symmetry	C1
Basis	6-311+G(2d,p)
RB3LYP Energy	-995.061093687 Hartree
ZPE	0.344749 Hartree
Conditions	298.150K, 1.00000 atm
Internal Energy	-994.693880 Hartree
Enthalpy	-994.692936 Hartree
Free Energy	-994.772062 Hartree
C _v	81.054 cal/mol-K
Entropy	166.534 cal/mol-K
Dipole Moment	6.1381 Debye 🎤
Server	General (67415)
CPU time	57784.6 sec

٦

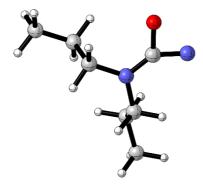
Center	Atomic	Atomic	Coordin	ates (Angstro
Number	Numbe	r Type	Х	Y Z
1 6			0.000000	
28	0	0.000000	0.000000	1.429579
36	0	1.193395	0.000000	2.079474
4 6	0	2.438607	-0.001272	1.446001
56	0	3.596413	-0.003518	2.215222
6 6	0	3.545116	-0.001282	3.608358
76	0	2.288144	0.002276	4.230191
86	0	1.127967	0.001261	3.478645
91	0	0.155783	0.000614	3.956061
10	1 0	2.224446	0.002283	5.309582
11	6 0	4.827985	-0.007007	4.373619
12	8 0	5.918917	-0.105368	3.835797
13	8 0	4.617541	0.100680	5.683493
14	7 0	5.785415	-0.084789	6.543622
15	6 0	6.091123	1.109692	7.087416
16	8 0	5.592991	2.232155	6.808632
17	7 0	7.083996	1.030095	8.072871
18	6 0	7.731178	-0.224666	8.431400
19	1 0	8.048944	-0.151385	9.477738
20	1 0	6.991795	-1.024706	8.379711
21	6 0	8.944140	-0.596679	7.567180
22	6 0	9.602193	-1.899484	8.023811
23	1 0	10.46365	4 -2.150393	3 7.400409
24	1 0	9.951809	-1.826671	9.058075
25	1 0	8.900168	-2.736882	7.971156
26	1 0	8.619192	-0.685348	6.527711

27	1	0	9.677122	0.216243	7.602062
28	6	0	7.663274	2.254310	8.605278
29	1	0	8.751248	2.130740	8.665631
30	1	0	7.467954	3.060267	7.898422
31	6	0	7.128008	2.651589	9.987315
32	6	0	7.800695	3.912991	10.530447
33	1	0	7.407480	4.182677	11.513369
34	1	0	8.880993	3.773052	10.632426
35	1	0	7.639937	4.765119	9.863504
36	1	0	6.047389	2.805377	9.913457
37	1	0	7.278954	1.823171	10.687660
38	1	0	4.562959	-0.006631	1.728251
39	1	0	2.516791	-0.001050	0.368387
40	1	0	-1.046342	0.000235	-0.294727
41	1	0	0.490583	0.893603	-0.392484
42	1	0	0.490249	-0.893632	-0.392994

Vibrational frequency of neutral 1p (triplet)


Quantity	Value					
Job History	20370,20385,37254,37256,40582,41038					
Route	#N B3LYP/6-311+G(2d,p) FREQ SCRF=(PCM,Solvent=Acetonitrile) Geom=Conne					
Stoichiometry	C ₁₅ H ₂₂ N ₂ O ₄ (3)					
Symmetry	C1					
Basis	6-311+G(2d,p)					
UB3LYP Energy	-995.430848351 Hartree					
ZPE	0.354867 Hartree					
Conditions	298.150K, 1.00000 atm					
Internal Energy	-995.052591 Hartree					
Enthalpy	-995.051647 Hartree					
Free Energy	-995.133360 Hartree					
Cv	84.460 cal/mol-K					
Entropy	171.981 cal/mol-K					
Dipole Moment	4.5586 Debye 🔎					
Server	10.72.192.49 (27526)					
CPU time	137523.1 sec					

Center	Ator	nic A	tomic	Coordinate	es (Angstroms)
Number	Nu	mber	Туре	х ү	Z
1	6	0	0.000000	0.000000	0.000000
2	8	0	0.000000	0.000000	1.436900
3	6	0	1.166266	0.000000	2.100749
4	6	0	2.461378	0.005115	1.509784
5	6	0	3.569028	-0.000460	2.295943
6	6	0	3.449079	-0.021306	3.769763
7	6	0	2.120582	-0.011091	4.350101
8	6	0	1.031883	-0.002317	3.550334
9	1	0	0.030354	0.004056	3.962299
10	1	0	2.010879	-0.011265	5.424540
11	6	0	4.640415	-0.052328	4.551526
12	8	0	5.795718	-0.059294	4.117061
13	8	0	4.385191	-0.116292	5.927892
14	7	0	5.541363	-0.013103	6.720695
15	6	0	5.864064	1.346022	7.026460
16	8	0	5.098636	2.264610	6.759079
17	7	0	7.039155	1.495478	7.685278
18	6	0	7.899255	0.378127	8.091807
19	1	0	8.358193	0.655194	9.043628
20	1	0	7.276751	-0.494299	8.295757
21	6	0	8.996322	0.030478	7.079531
22	6	0	9.895550	-1.099988	7.580933
23	1	0	10.669438	-1.337723	6.848651
24	1	0	10.393130	-0.824100	8.514581
25	1	0	9.320534	-2.011179	7.766427
26	1	0	8.542618	-0.253192	6.124661
27	1	0	9.596297	0.923146	6.880353


28	6	0	7.460378	2.849767	8.059204
29	1	0	8.551306	2.879811	8.004535
30	1	0	7.076090	3.543169	7.312022
31	6	0	6.992029	3.272412	9.454051
32	6	0	7.480538	4.674737	9.818800
33	1	0	7.137340	4.962681	10.814545
34	1	0	8.572842	4.727651	9.814904
35	1	0	7.108916	5.419892	9.110188
36	1	0	5.899752	3.235938	9.484443
37	1	0	7.353248	2.551392	10.193822
38	1	0	6.292577	-0.489910	6.226318
39	1	0	4.559526	0.006211	1.866185
40	1	0	2.569699	0.015607	0.433697
41	1	0	-1.046159	-0.003428	-0.290631
42	1	0	0.490562	0.896900	-0.379926
43	1	0	0.496673	-0.893641	-0.379849

Vibrational frequency of nitrene 1p (triplet)

Quantity	Value
Job History	20370,20382,20416,37250,37252,40581
Route	#N B3LYP/6-311+G(2d,p) FREQ SCRF=(PCM,Solvent=Acetonitrile) Geom=Conne
Stoichiometry	C ₇ H ₁₄ N ₂ O(3)
Symmetry	C1
Basis	6-311+G(2d,p)
UB3LYP Energy	-459.965682017 Hartree
ZPE	0.206760 Hartree
Conditions	298.150K, 1.00000 atm
Internal Energy	-459.746817 Hartree
Enthalpy	-459.745872 Hartree
Free Energy	-459.798765 Hartree
Cv	42.509 cal/mol-K
Entropy	111.322 cal/mol-K
Dipole Moment	6.9519 Debye 🔎
Server	10.72.192.49 (9017)
CPU time	8678.3 sec

Center	Atc	omic	Atomic	Coordinate	es (Angstroms)
Number	Ν	umber	Туре	Х Ү	Z
1	6	0	0.000000	0.000000	0.000000
2	7	0	0.000000	0.000000	1.468465
3	6	0	1.145661	0.000000	2.181806
4	7	0	2.352798	0.059300	1.497850
5	8	0	1.222740	-0.049254	3.421474
6	6	0	-1.271939	-0.081637	2.194852
7	6	0	-1.739250	1.249206	2.797444
8	6	0	-3.046827	1.079813	3.571886
9	1	0	-3.373004	2.032427	3.993667
10	1	0	-3.846953	0.709902	2.925146
11	1	0	-2.929283	0.372255	4.396797
12	1	0	-0.959848	1.631707	3.459886
13	1	0	-1.870488	1.983650	1.999354
14	1	0	-2.016280	-0.465075	1.495448
15	1	0	-1.150136	-0.817936	2.992649
16	6	0	-0.483845	1.309907	-0.625523
17	6	0	-0.438238	1.247577	-2.152846
18	1	0	-0.786135	2.185740	-2.588891
19	1	0	0.578516	1.068560	-2.512060
20	1	0	-1.074680	0.445561	-2.535754
21	1	0	-1.504859	1.521799	-0.298124
22	1	0	0.143554	2.128639	-0.262033
23	1	0	1.015018	-0.215869	-0.335465
24	1	0	-0.630951	-0.831314	-0.327450

Vibrational frequency of nitrene 1p (singlet)

Quantity	Value
Job History	20370,20382,20416,37250,37252,40581,40847,42883,42886
Route	#N B3LYP/6-311+G(2d,p) FREQ SCRF=(PCM,Solvent=Acetonitrile) Geom=Conne
Stoichiometry	C ₇ H ₁₄ N ₂ O
Symmetry	C1
Basis	6-311+G(2d,p)
RB3LYP Energy	-459.951776226 Hartree
ZPE	0.207153 Hartree
Conditions	298.150K, 1.00000 atm
Internal Energy	-459.732259 Hartree
Enthalpy	-459.731315 Hartree
Free Energy	-459.784642 Hartree
Cv	42.649 cal/mol-K
Entropy	112.237 cal/mol-K
Dipole Moment	7.4145 Debye 🔎
Server	General (66802)
CPU time	3396.1 sec

	Ato	omic	Atomic	Coordinate	 es (Angstroms)
			Туре		Z
1	6	0	0.000000	0.000000	0.000000
2	7	0	0.000000	0.000000	1.471179
3	6	0	1.153932	0.000000	2.103188
4	7	0	2.422072	0.038088	1.899005
5	8	0	1.445369	-0.059049	3.376245
6	6	0	-1.249390	-0.105714	2.245158
7	6	0	-1.798805	1.230541	2.749653
8	6	0	-3.084161	1.037103	3.555337
9	1	0	-3.465538	1.995015	3.913537
10	1	0	-3.866084	0.572542	2.948692
11	1	0	-2.913474	0.398888	4.426410
12	1	0	-1.039661	1.715119	3.369685
13	1	0	-1.986407	1.894905	1.903053
14	1	0	-1.975466	-0.601775	1.598385
15	1	0	-1.065283	-0.772674	3.090245
16	6	0	-0.456683	1.314364	-0.632464
17	6	0	-0.374801	1.256610	-2.158511
18	1	0	-0.708375	2.197121	-2.600564
19	1	0	0.649631	1.074242	-2.493637
20	1	0	-1.004815	0.458065	-2.559168
21	1	0	-1.484051	1.530568	-0.329074
22	1	0	0.166132	2.128714	-0.251845
23	1	0	1.017006	-0.234178	-0.323152
24	1	0	-0.637527	-0.824471	-0.330241

BDE calculation for carbamoyl precursor **1p**

BDE = $[\Delta H(radical) + \Delta H(hydrogen)] - \Delta H(precursor)$

BDE = [-994.528211+ (-0.499817)]- (-995.163809)

BDE = 0.135781 Hartree

BDE = 85.2 kcal/mol

BDE for the urea derived substrates was calculated to be 85.2 kcal/mol

BDE calculation for amide precursor **1h**

BDE = $[\Delta H(radical) + \Delta H(hydrogen)] - \Delta H(precursor)$

BDE = [-899.868570 + (-0.499817)]- (-900.514168)

BDE = 0.145781 Hartree

BDE = 91.5 kcal/mol

BDE for the amide derived substrates was calculated to be 91.5 kcal/mol

 E_T calculation from neutral $\mathbf{1p}$

 $E_T=T^1-S^0$

 $E_{\tau} = -995.133360 - -995.242439$

 $E_T = 0.109079$

 $E_T = 68.4 \text{ kcal/mol}$

Energy transfer (EnT) to the neutral urea precursor was calculated to be 68.4 kcal/mol

 E_{T} calculation from anionic **1**p

 $E_T=T^1-S^0$

 $E_{\tau} = -994.687569 - -994.772062$

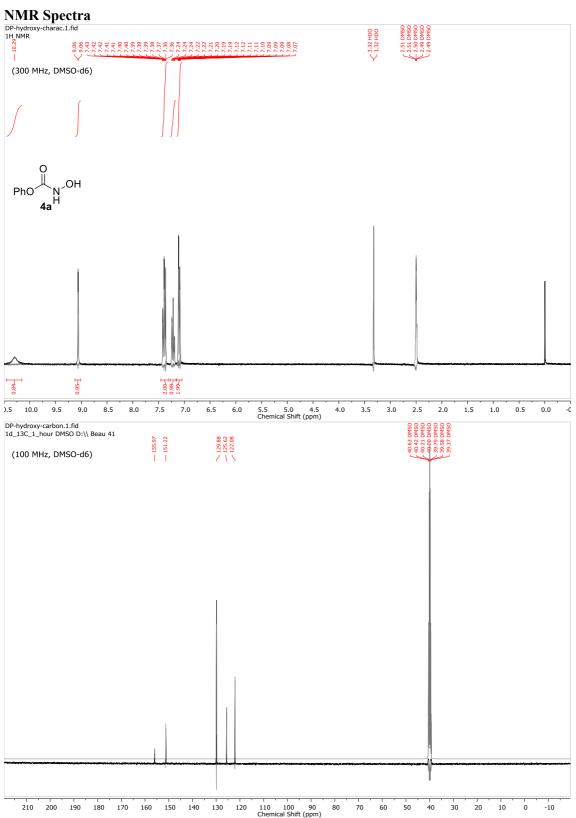
 $E_T = 0.084493$

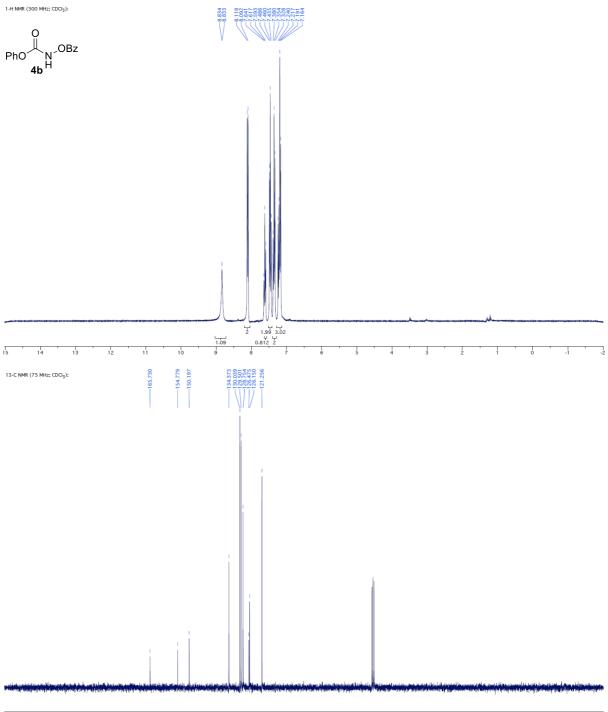
 $E_T = 53.0 \text{ kcal/mol}$

Energy transfer (EnT) to the neutral urea precursor was calculated to be 53.0 kcal/mol

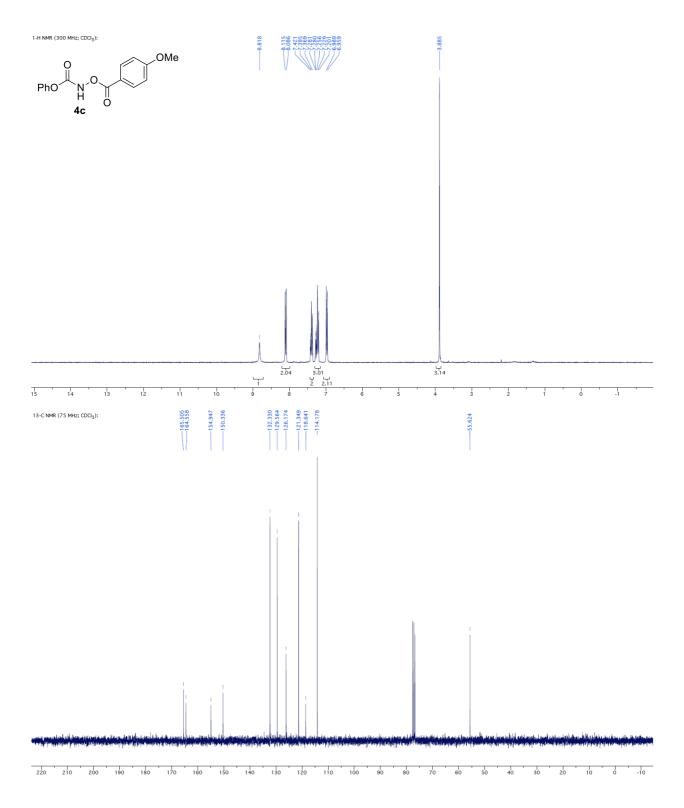
Triplet vs singlet nitrene energy from 1p

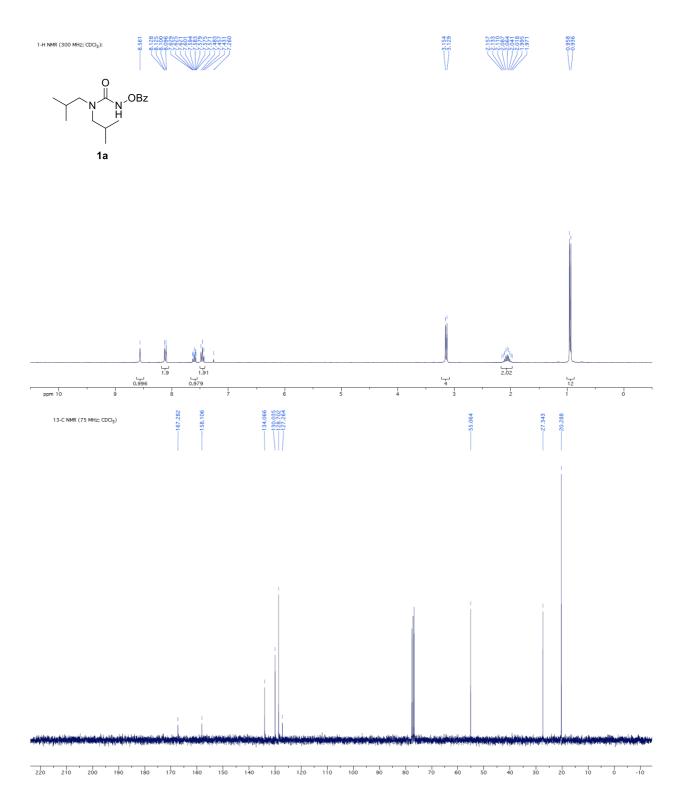
 $\varDelta G = T^1 - S^0$

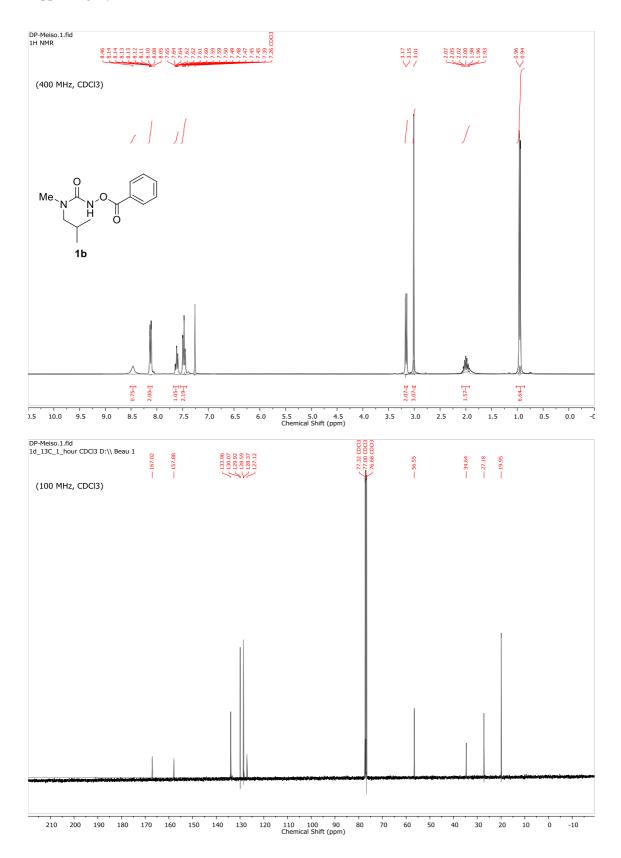

 $\Delta G = -459.798765 - (-459.784642)$


⊿*G* = -0.014123

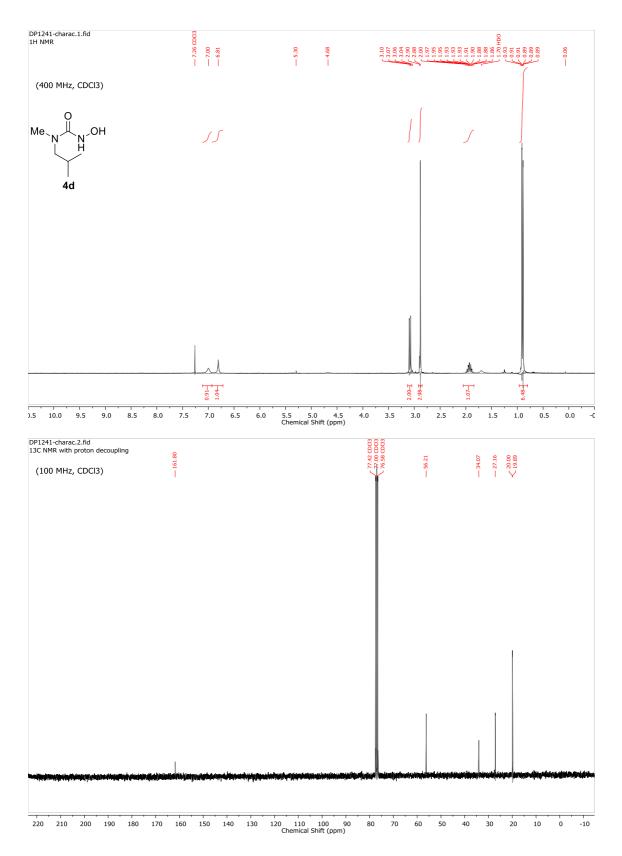
∆G = -8.9 kcal/mol

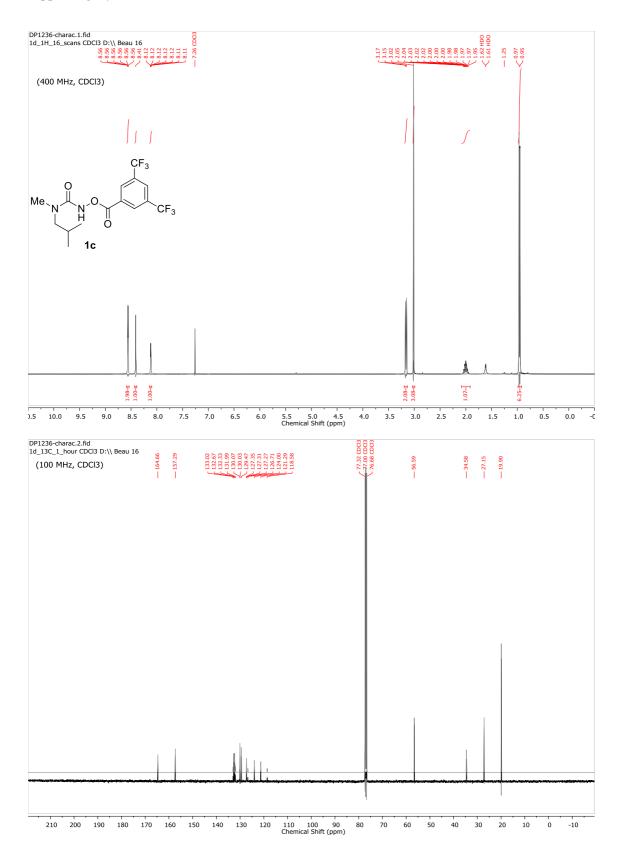

Triplet nitrene was calculated to be 8.9 kcal/mol lower in energy to the singlet nitrene

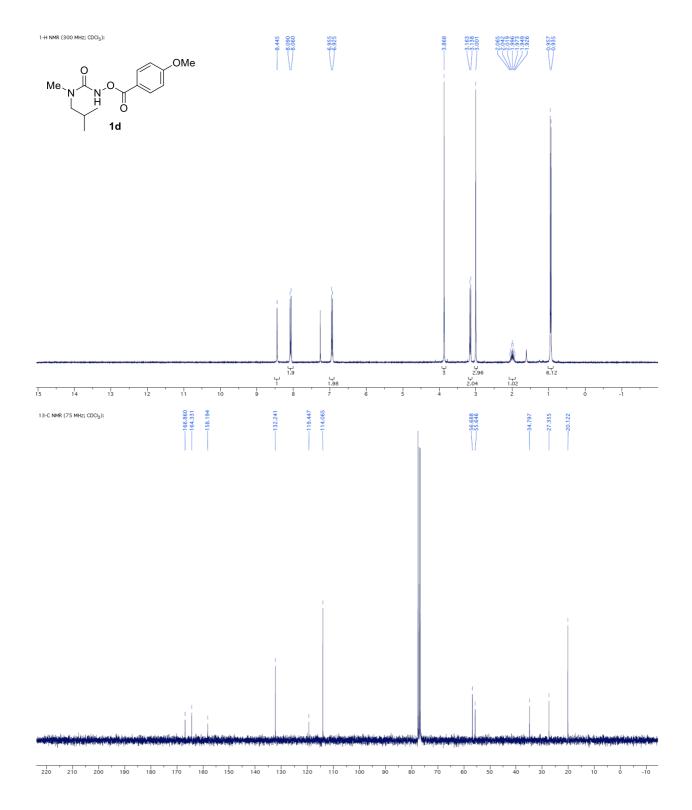




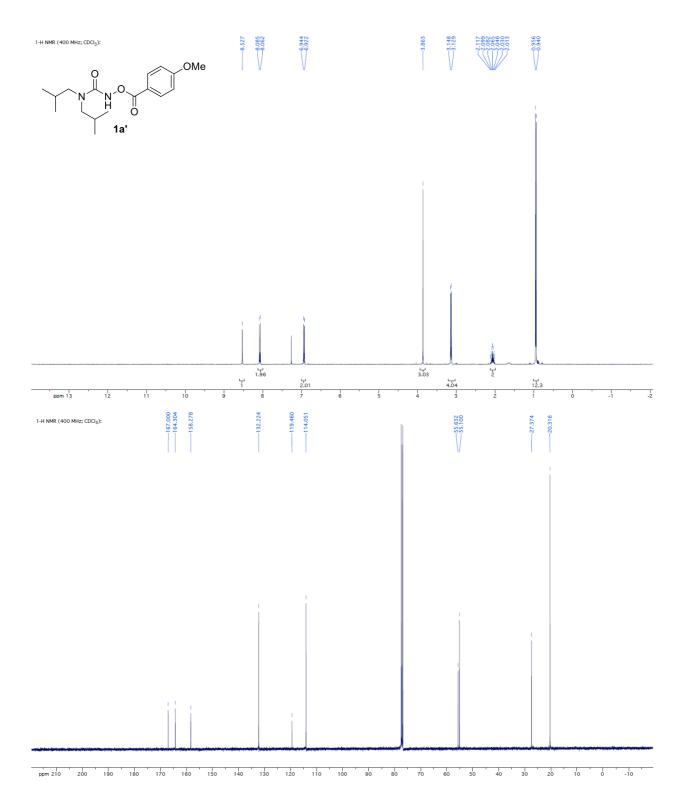
220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

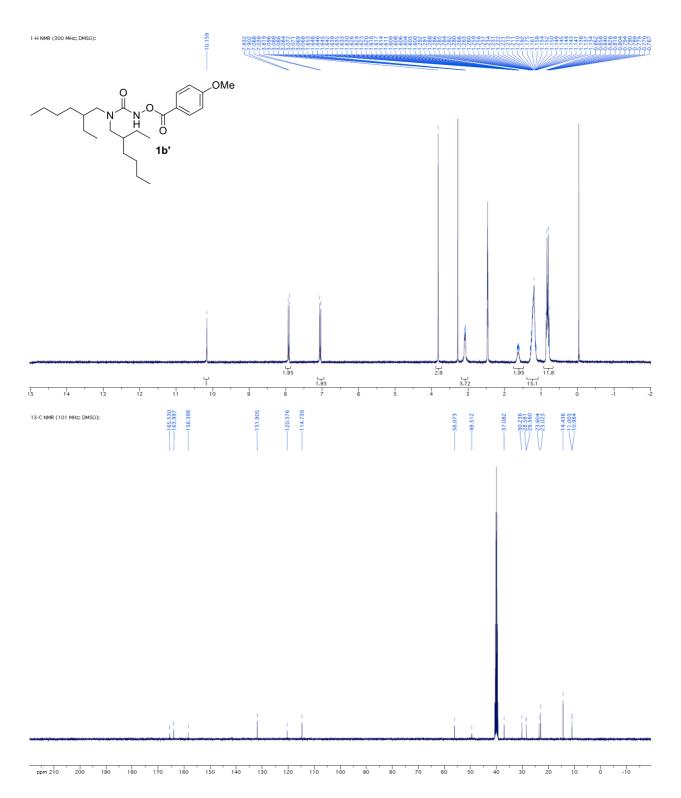


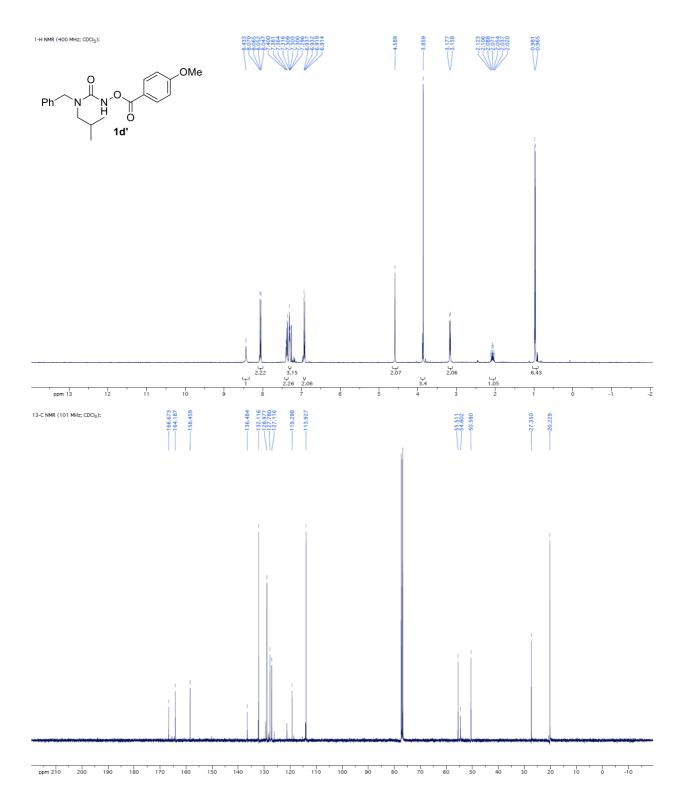

Supporting Information

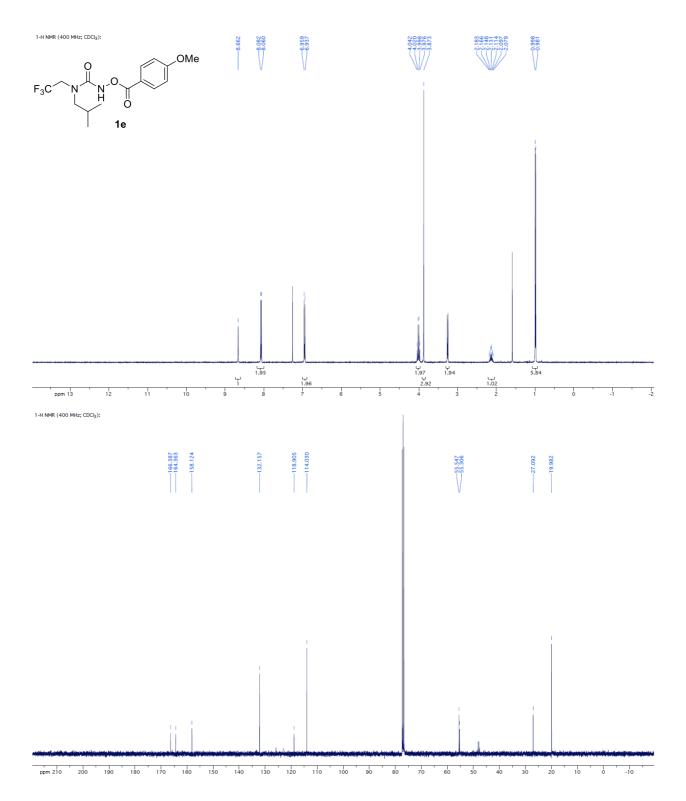


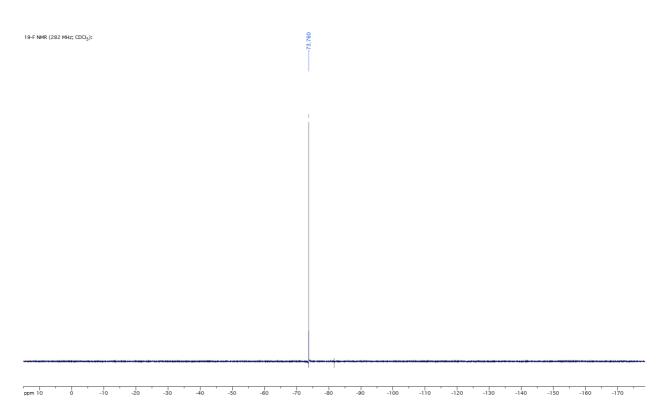
Supporting Information

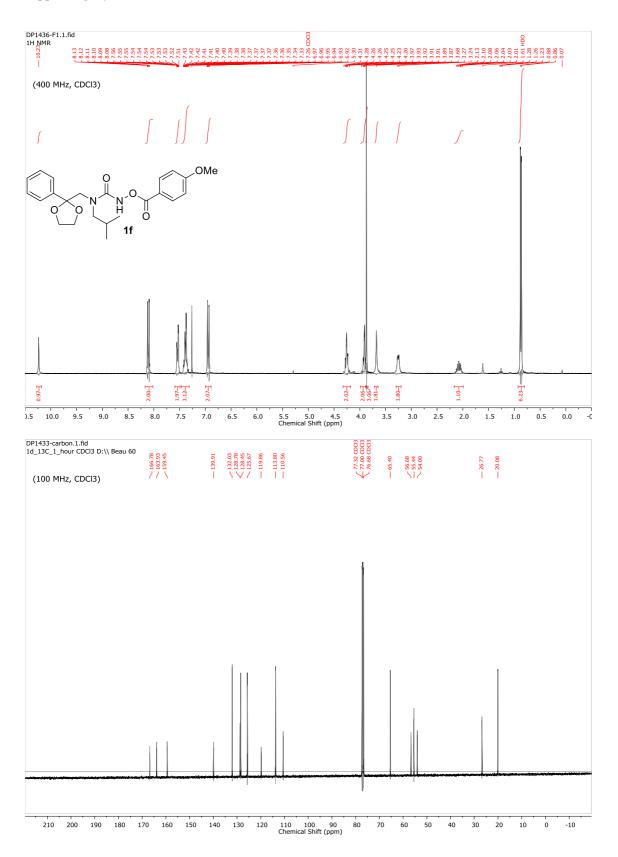


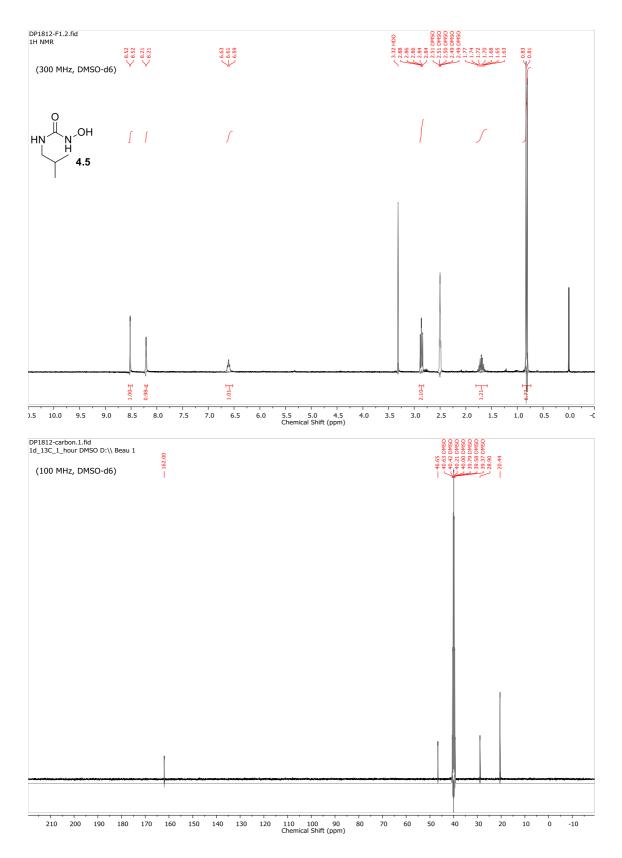

DP-19F-Meiosbutyl.1.fid 19F with 1H decoupling decoupling	10.05
-30 -35 -40 -45 -50 -55 -60	0 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 Chemical Shift (ppm)

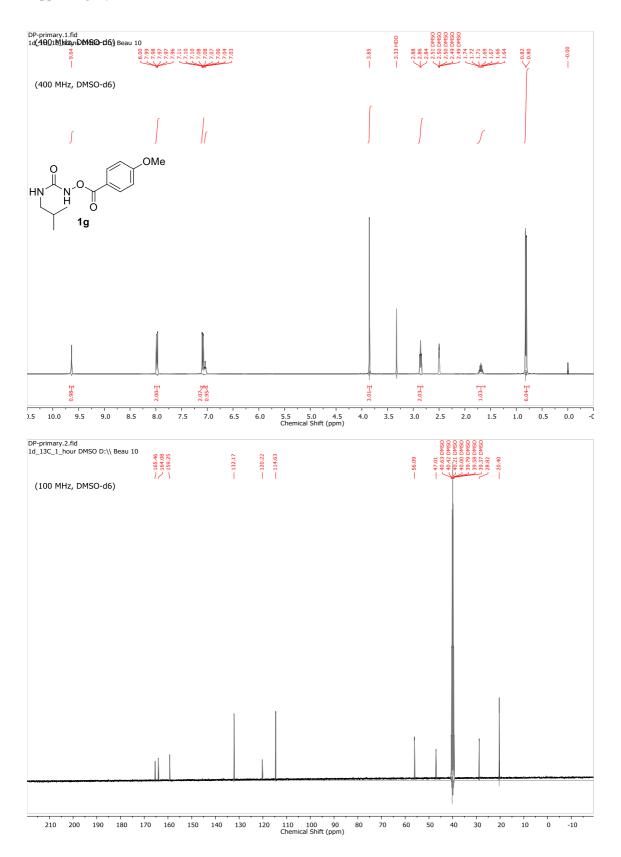


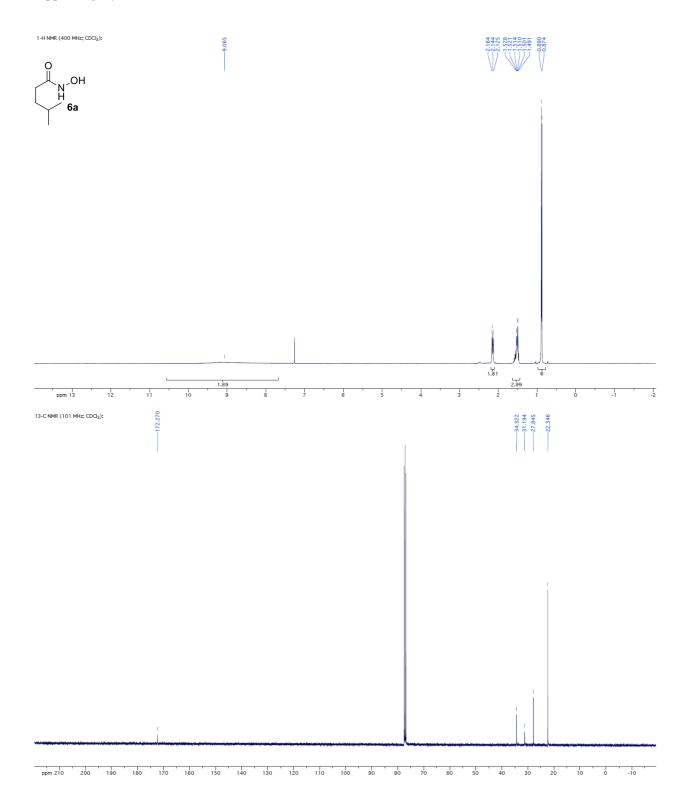

Supporting Information

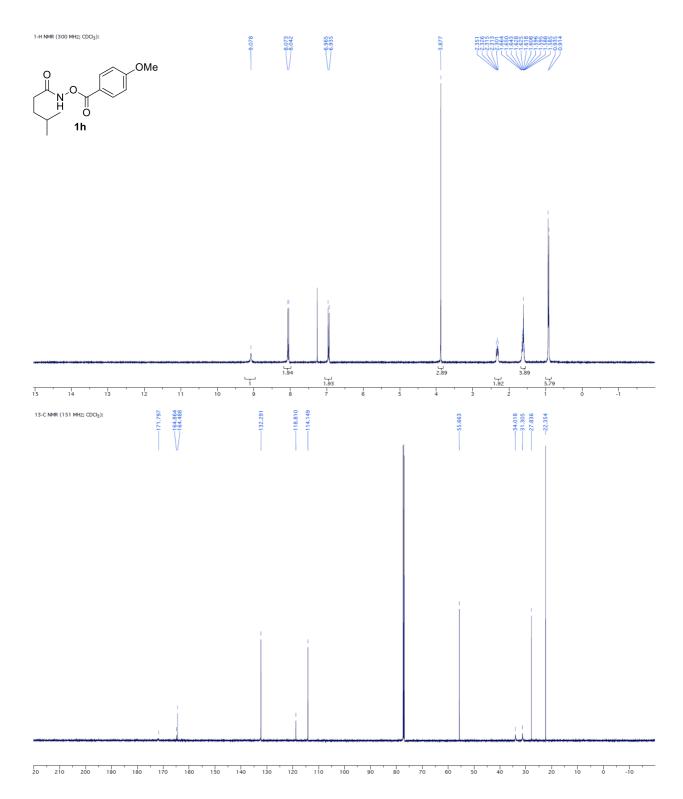


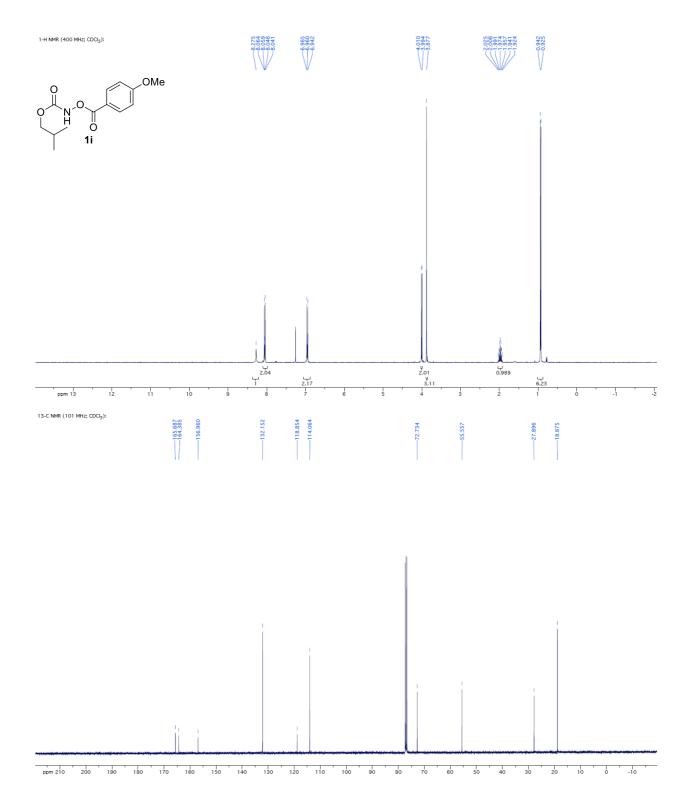

Supporting Information

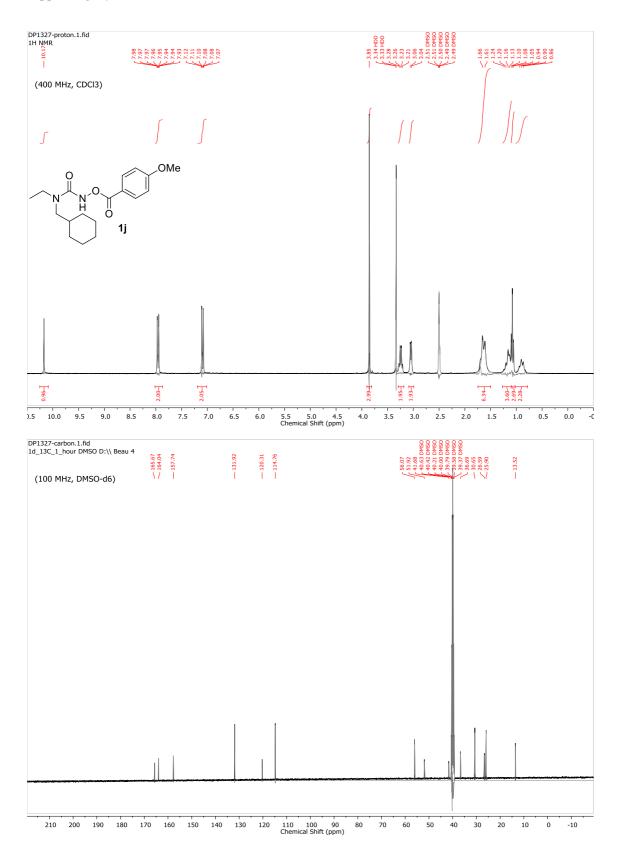


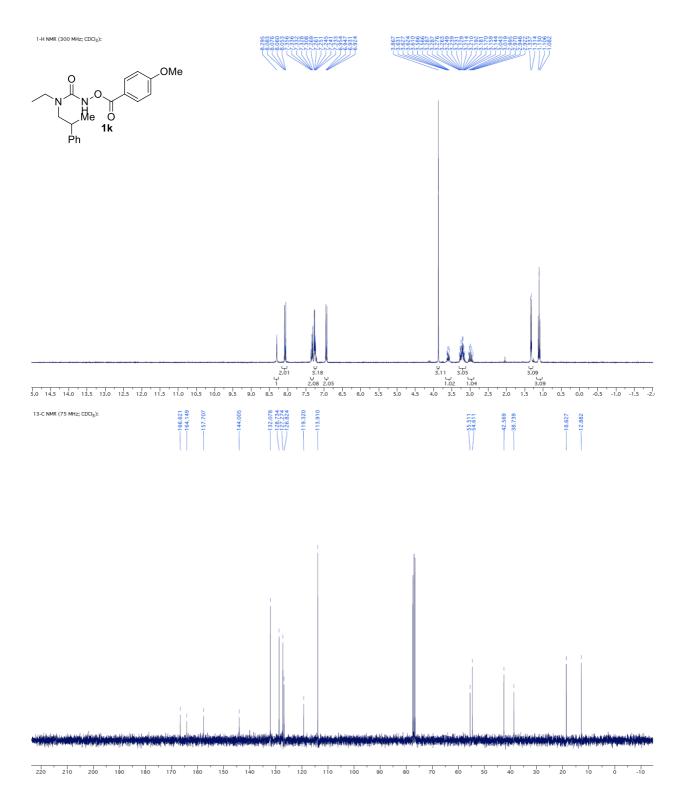


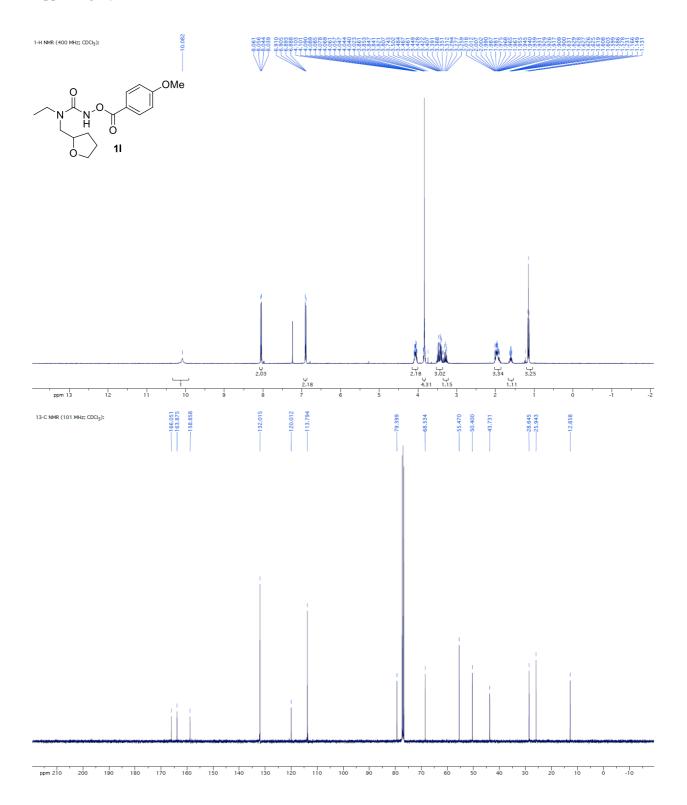


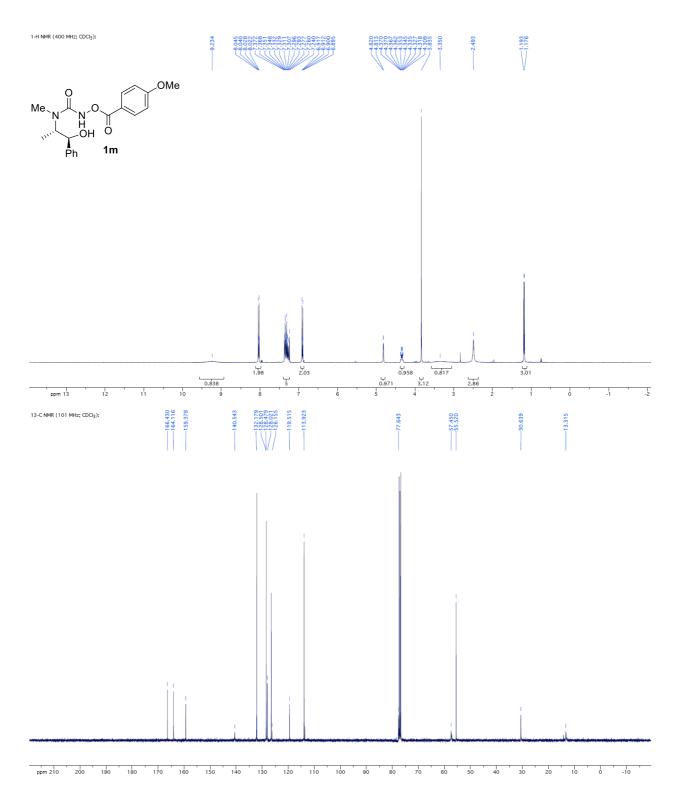


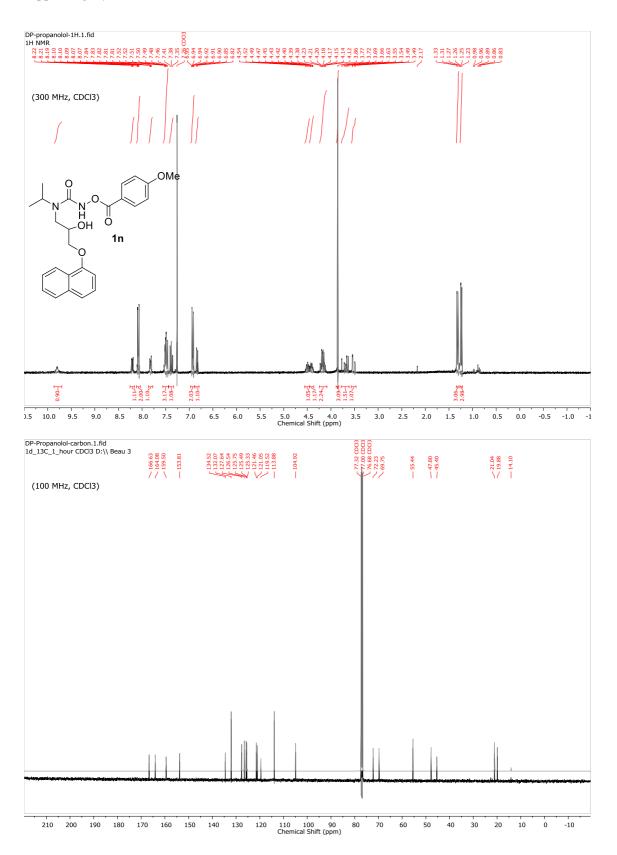

Supporting Information

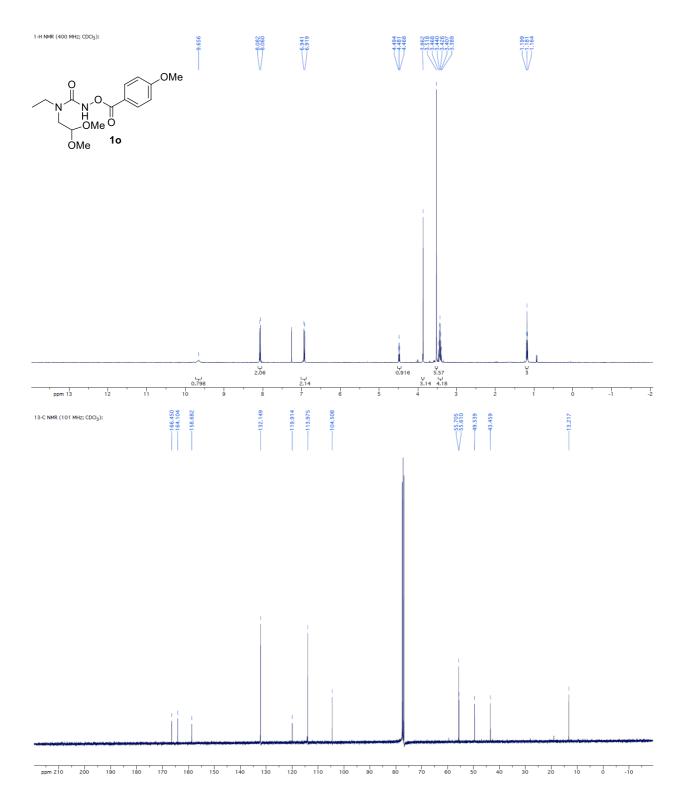


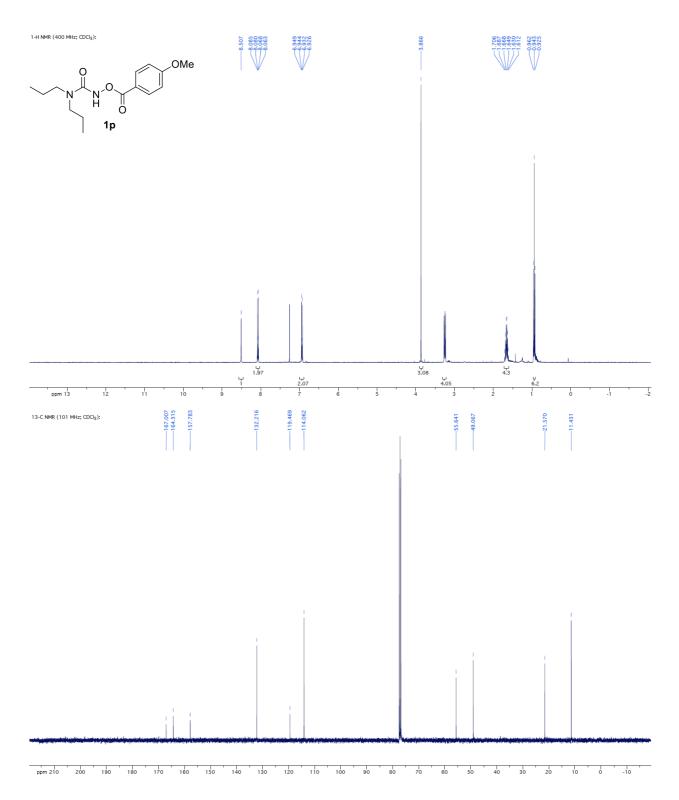


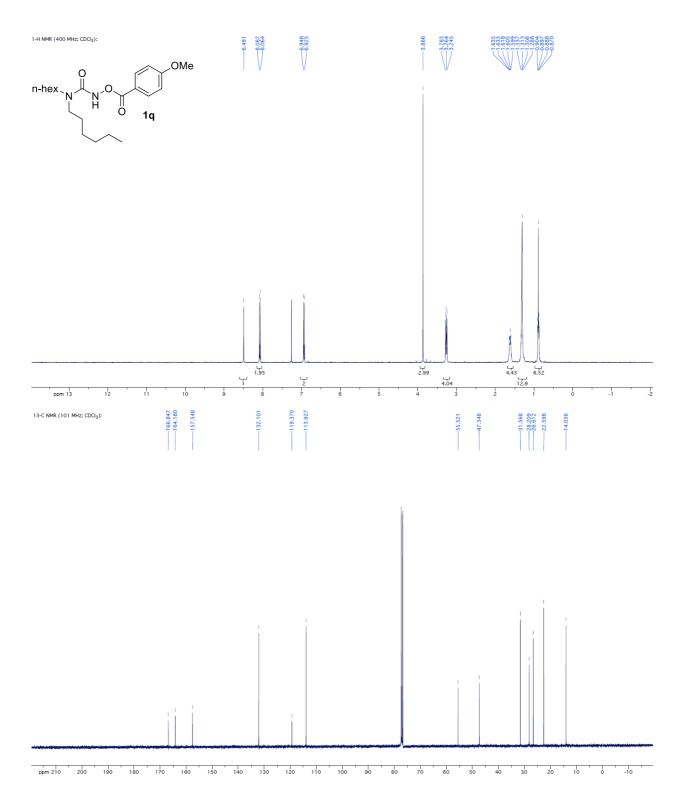


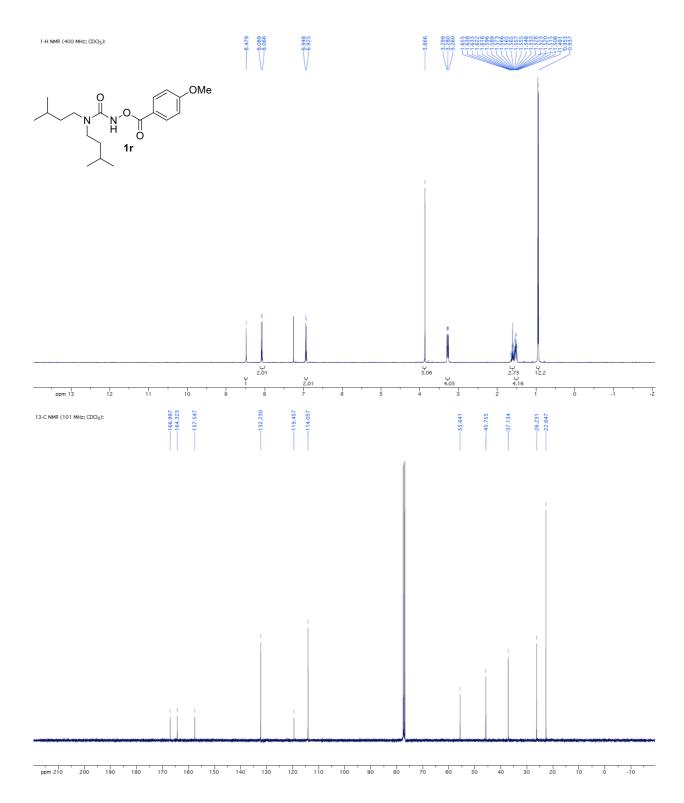

Supporting Information



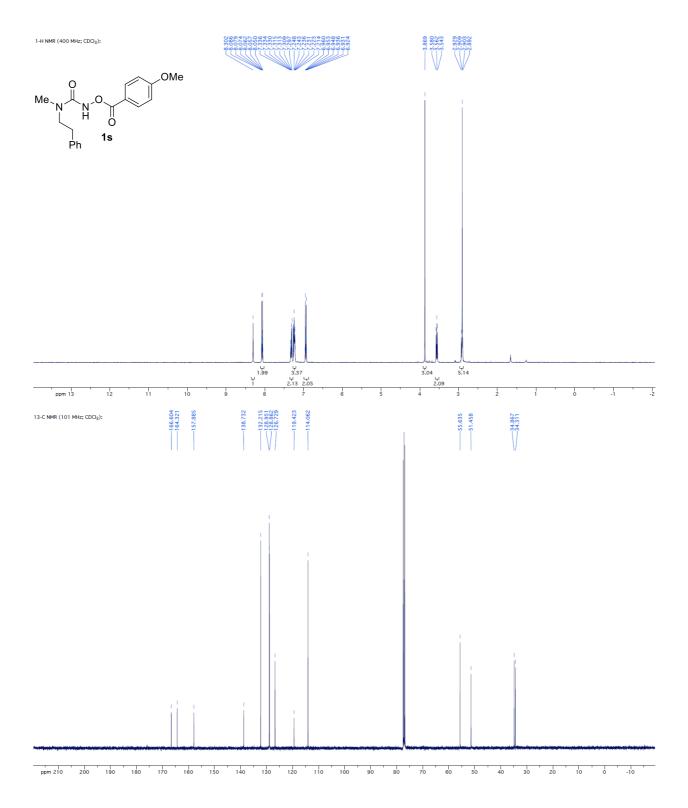


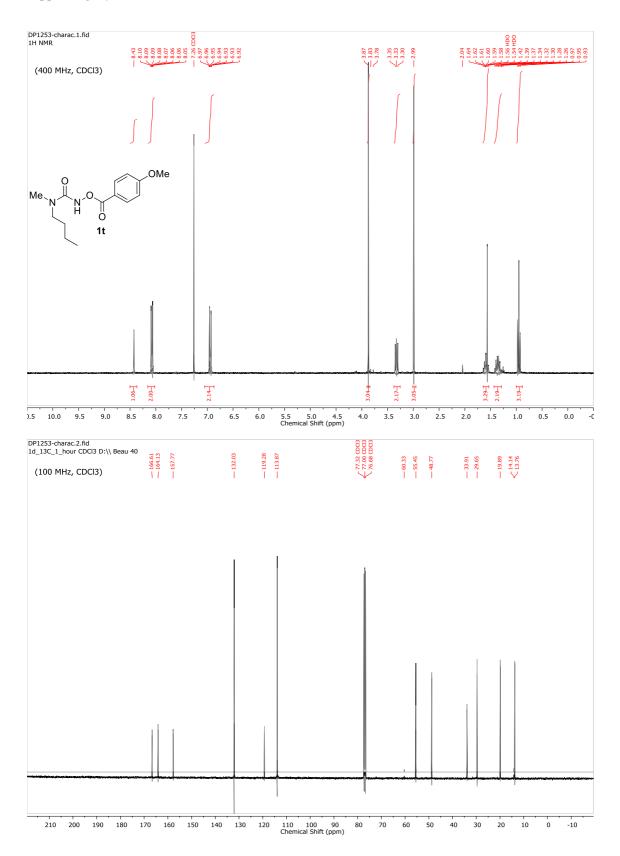


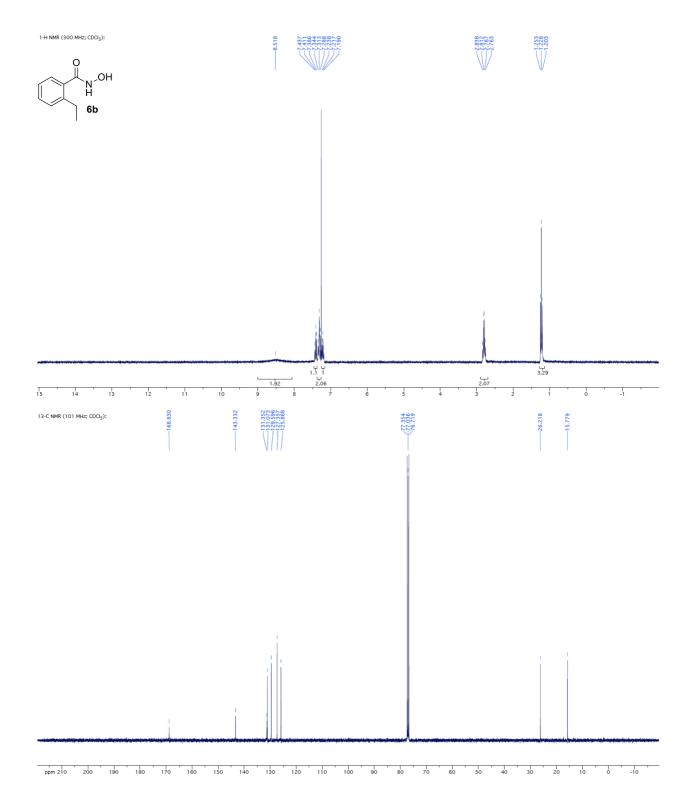

Supporting Information

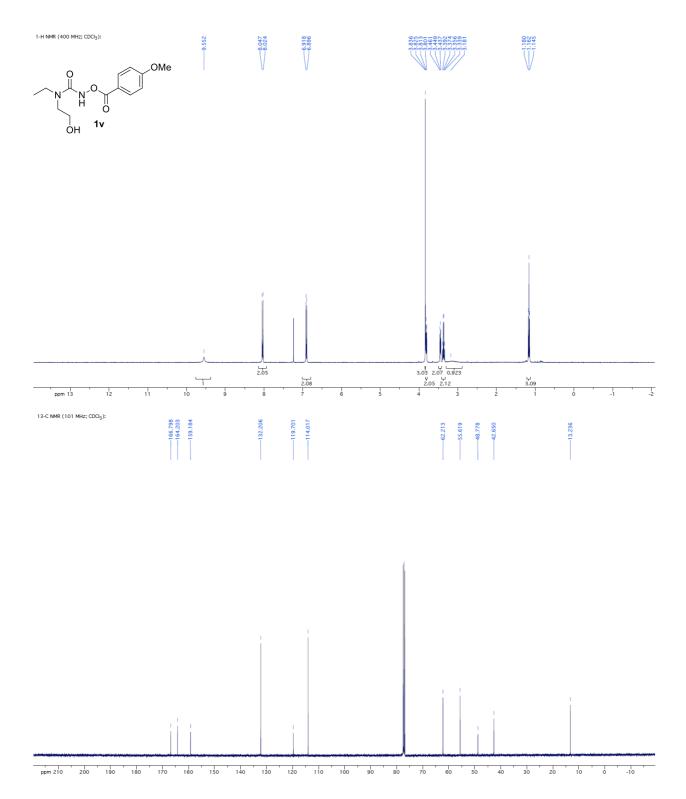


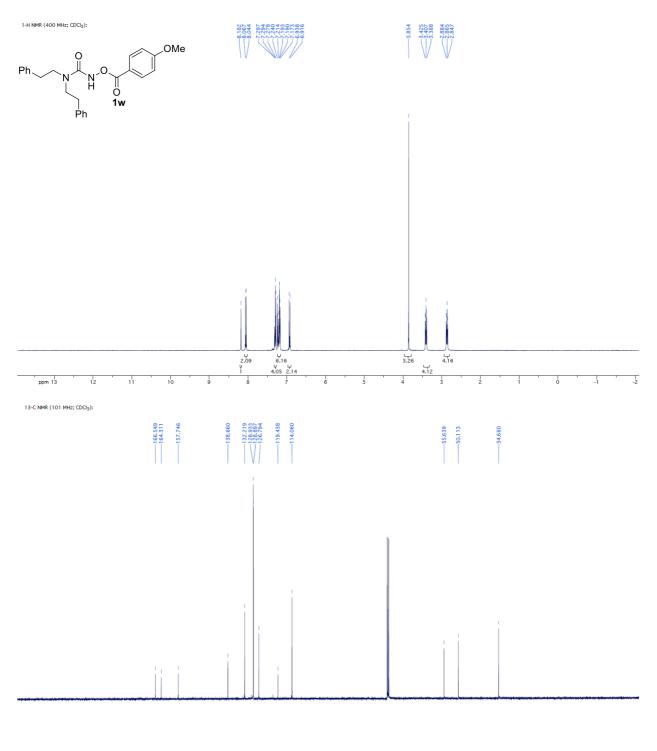
S126

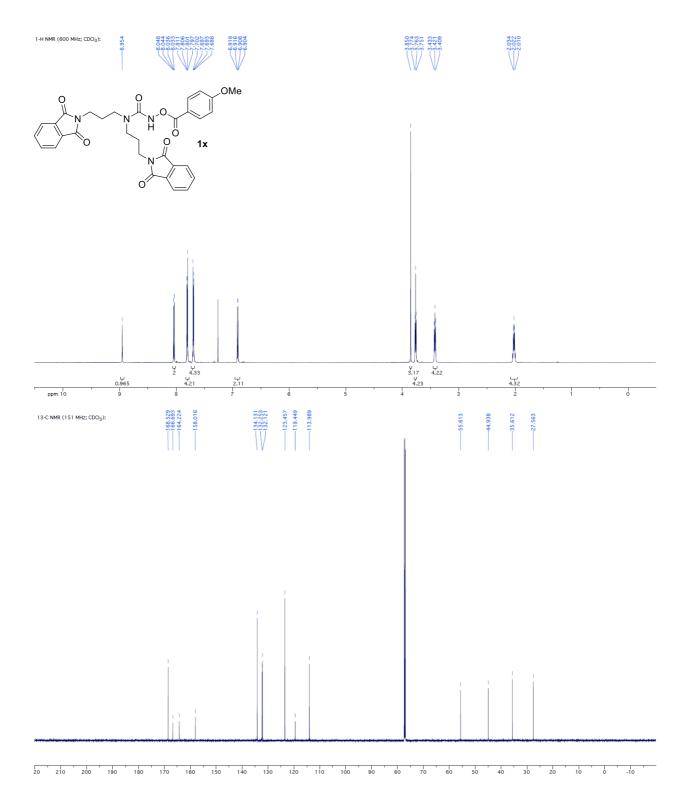

Supporting Information

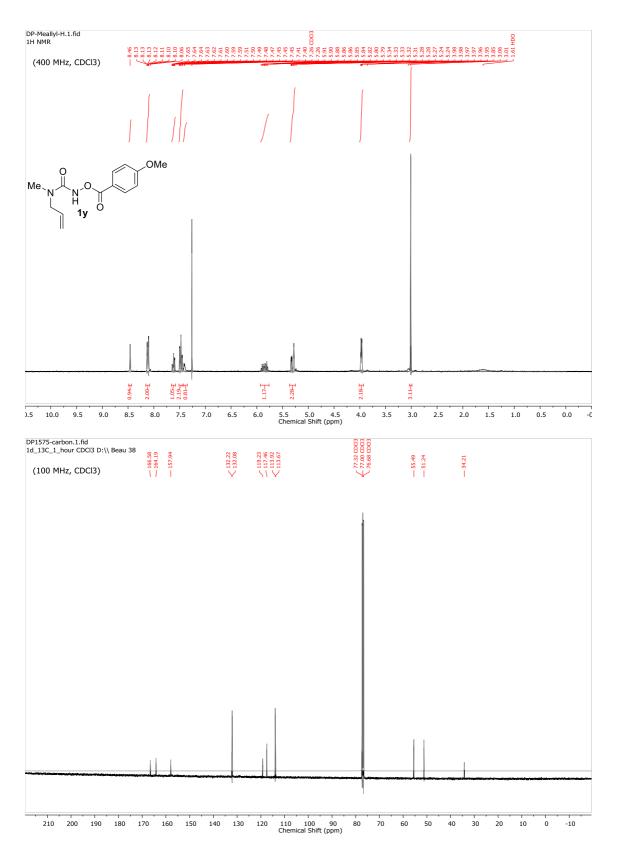


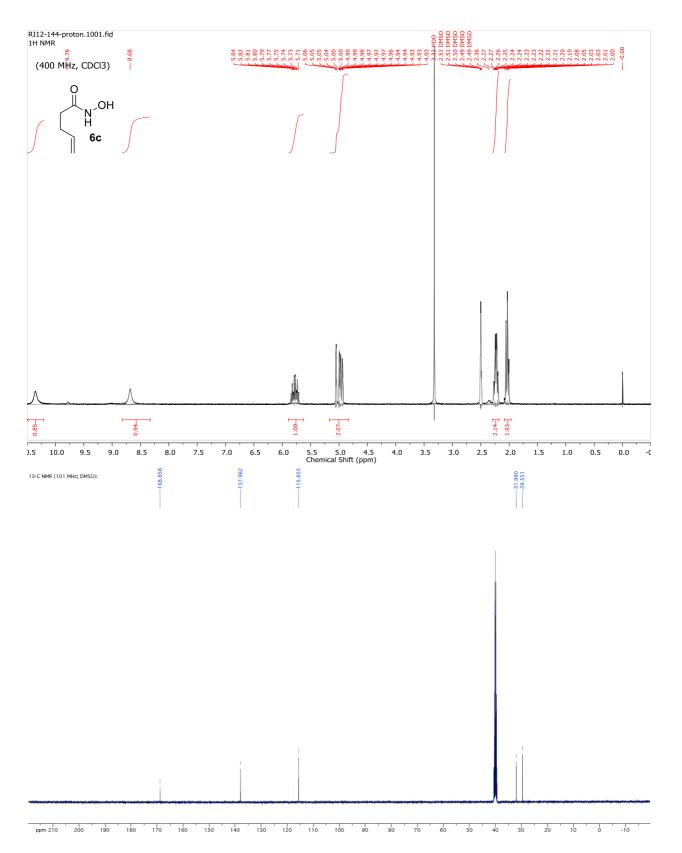


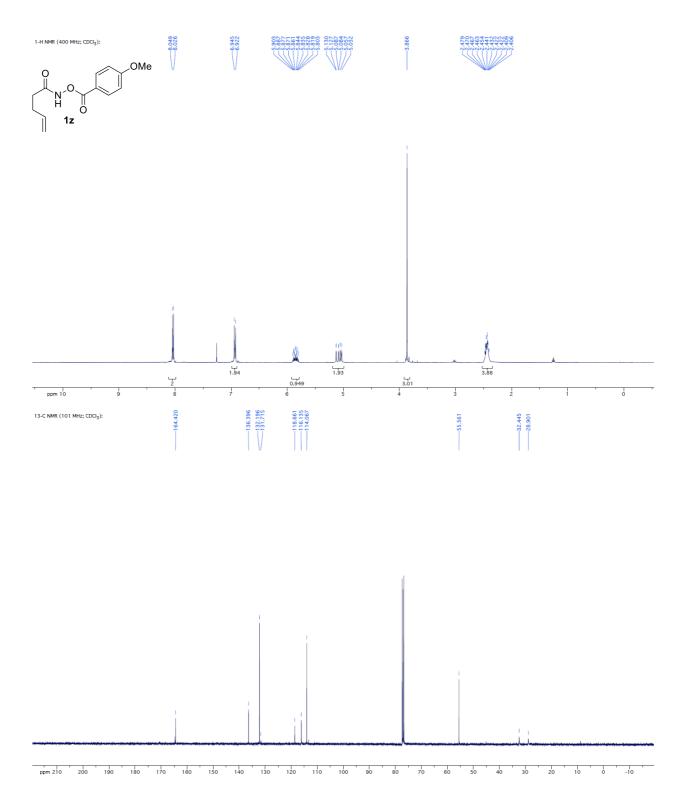

S129

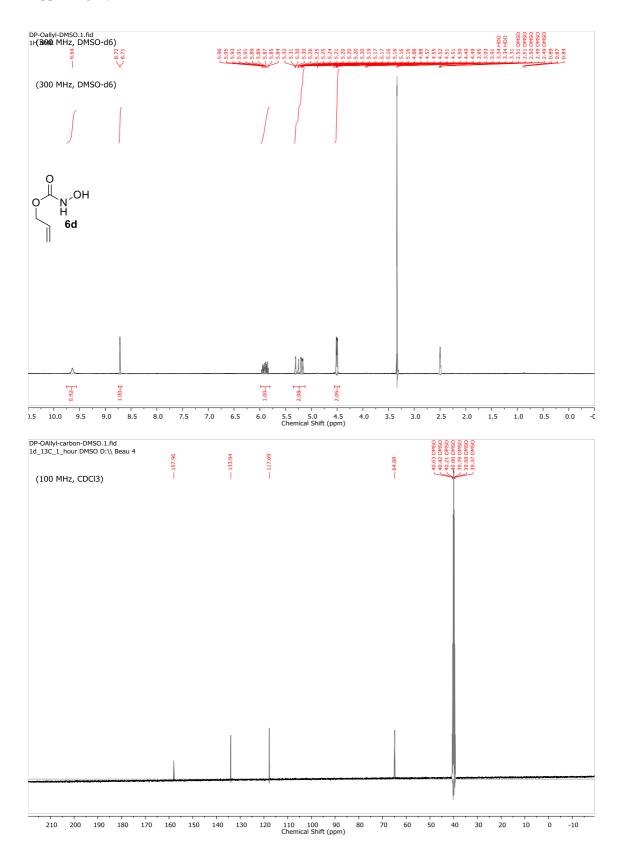


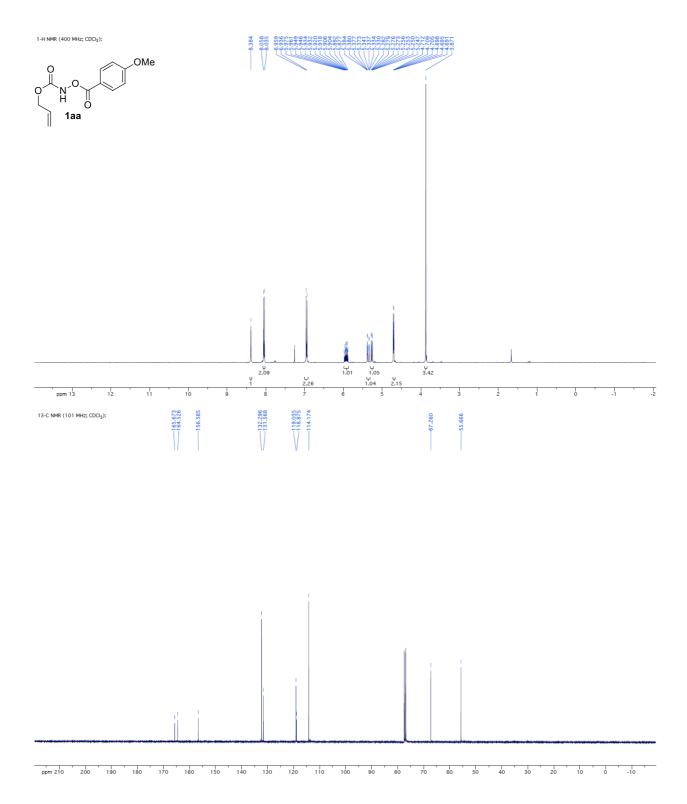


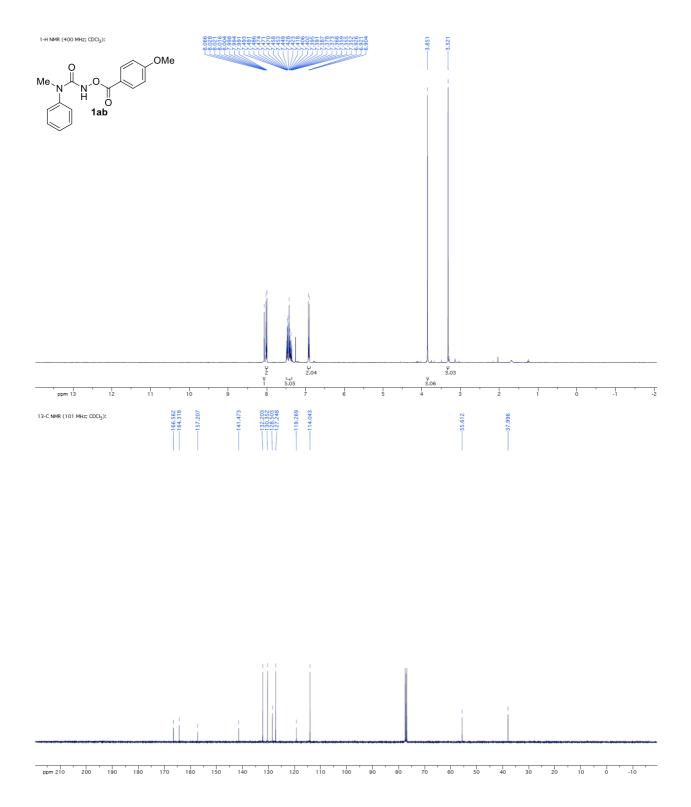


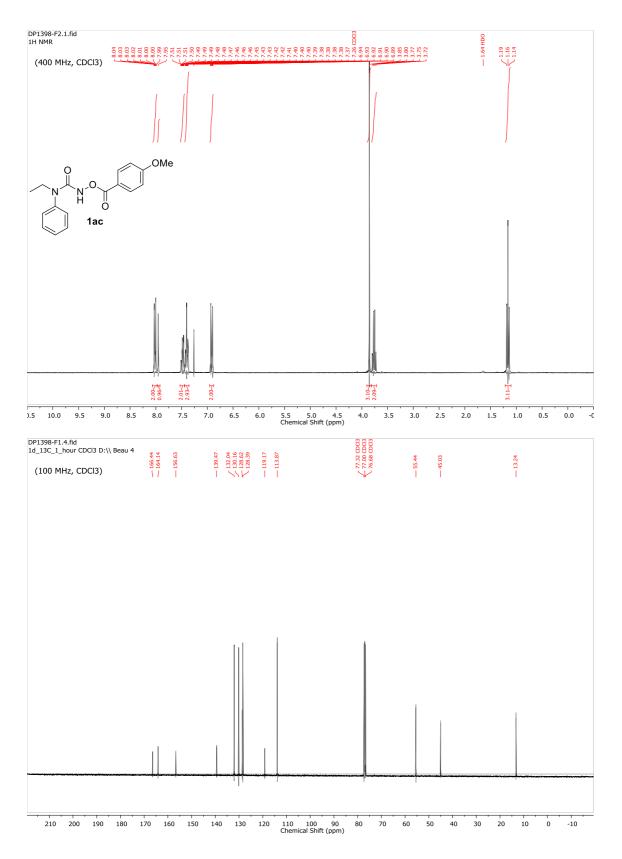


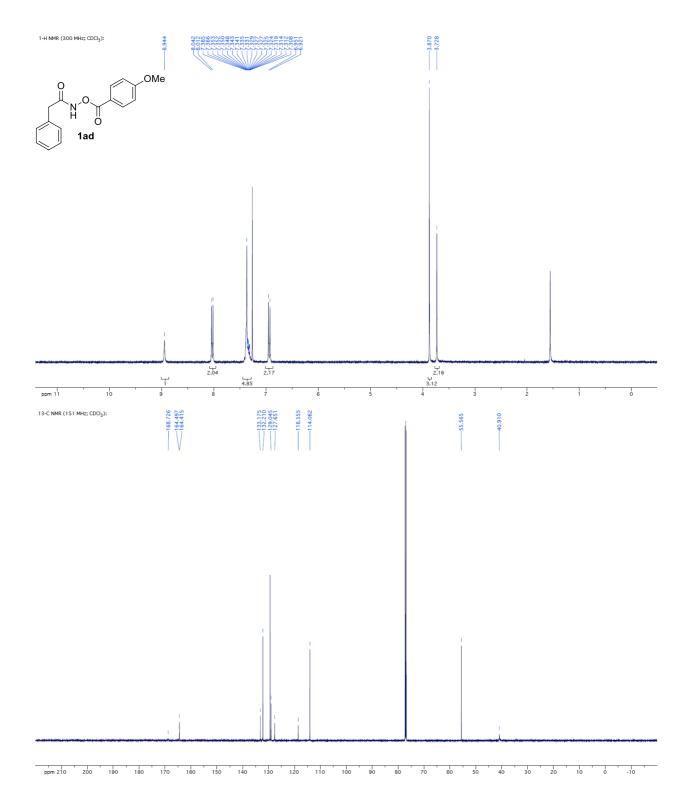


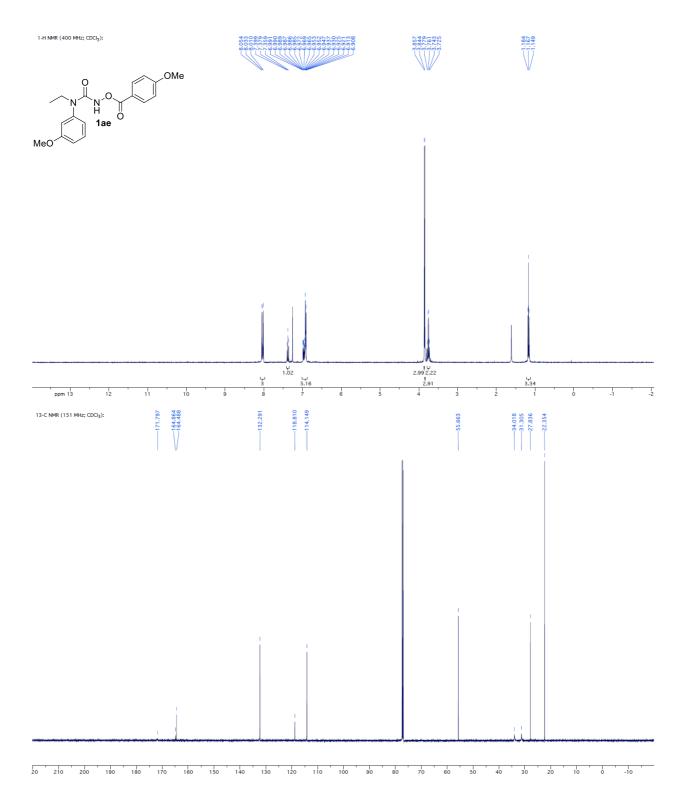

ppm 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

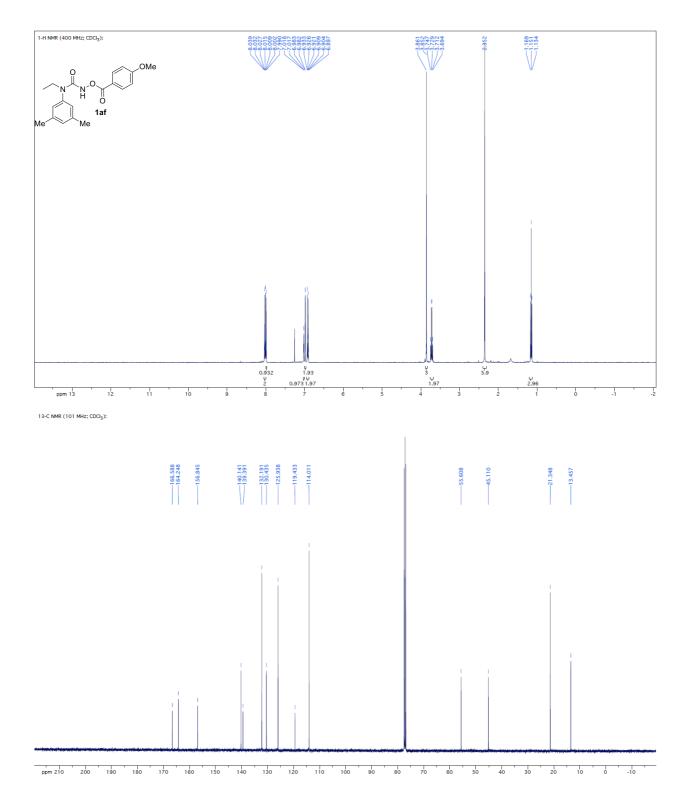


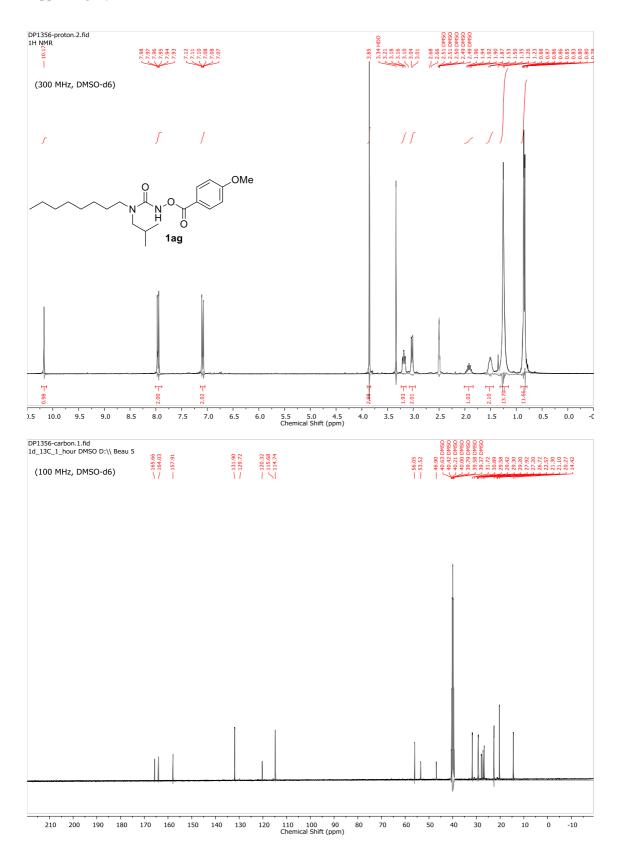


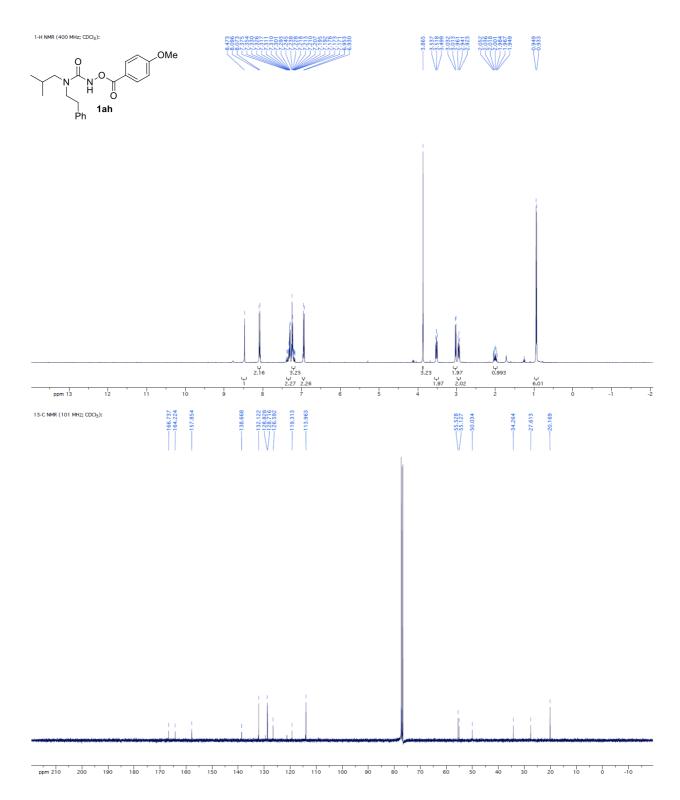


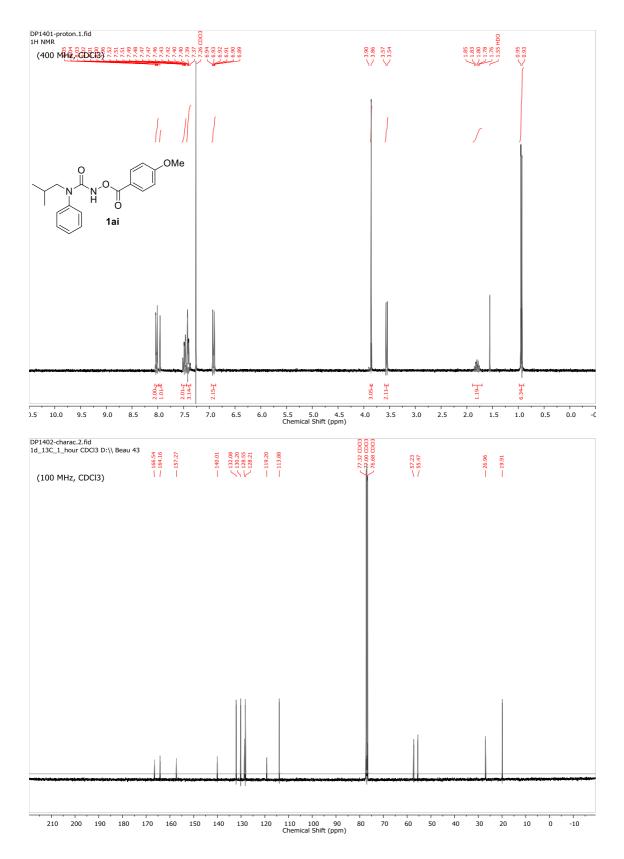


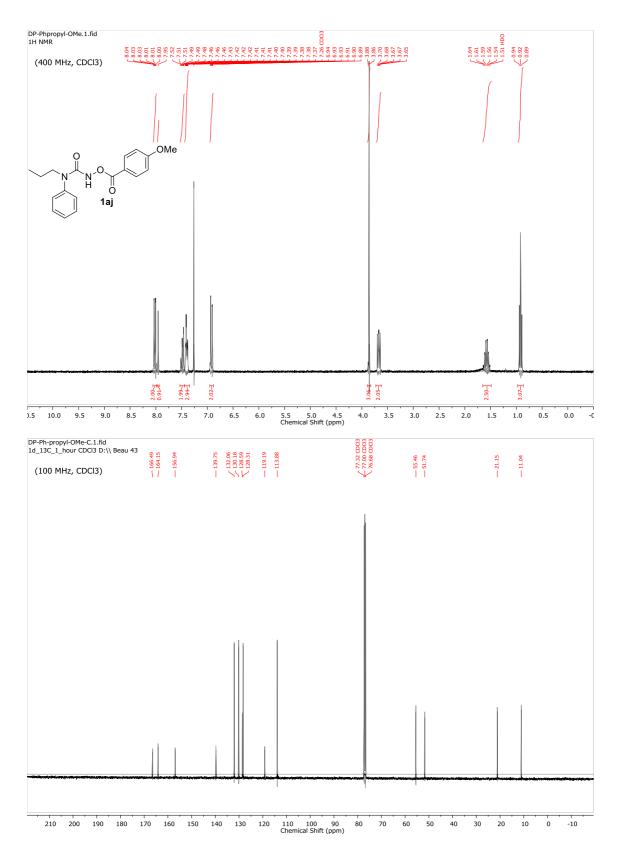


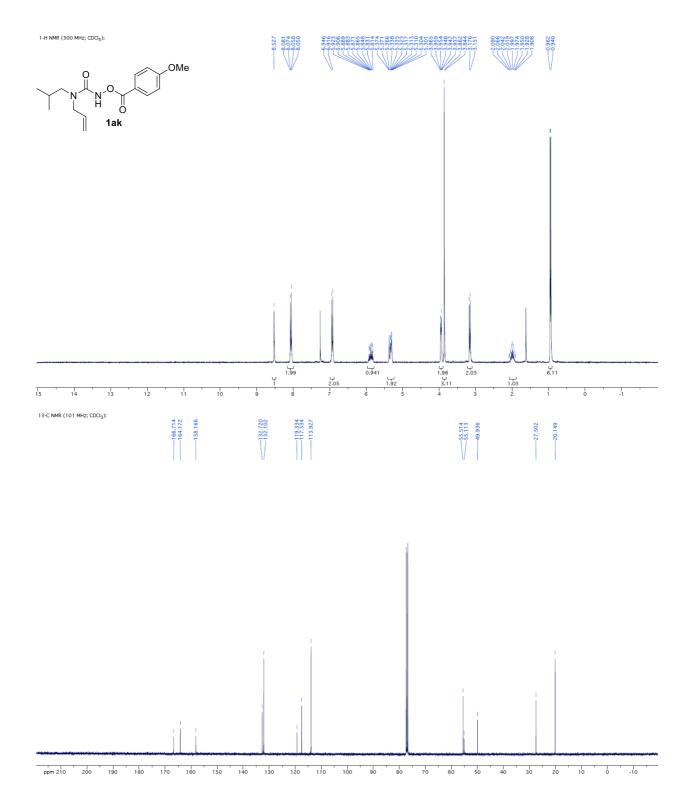


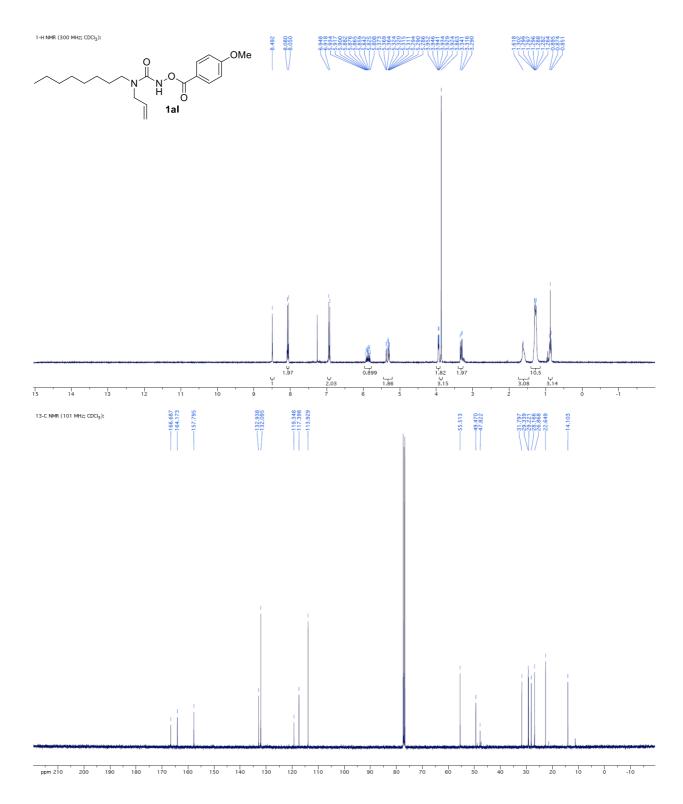


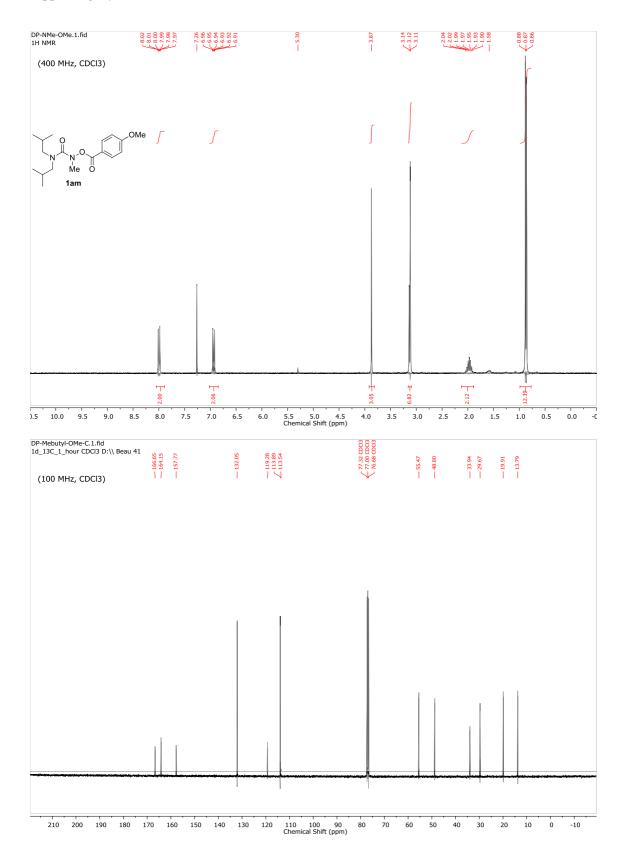


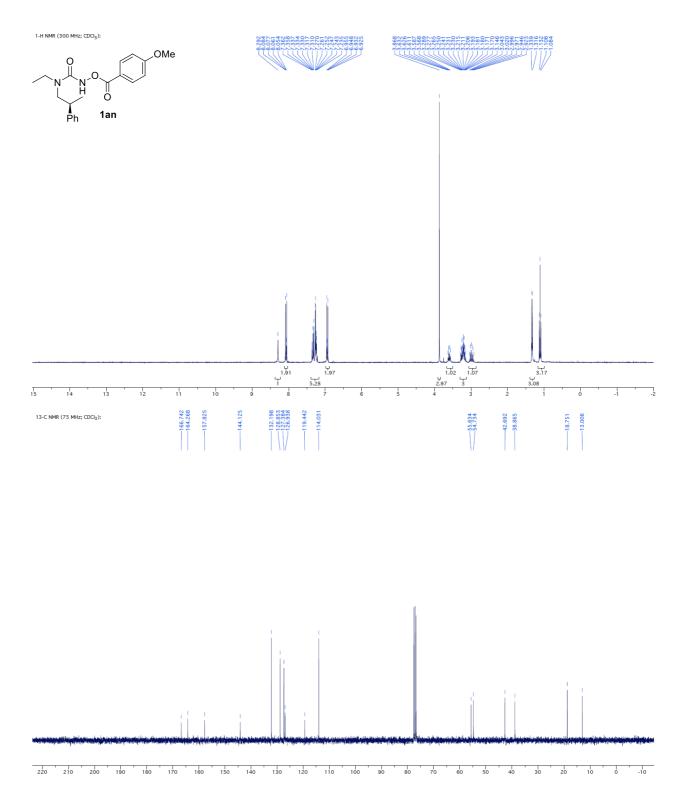


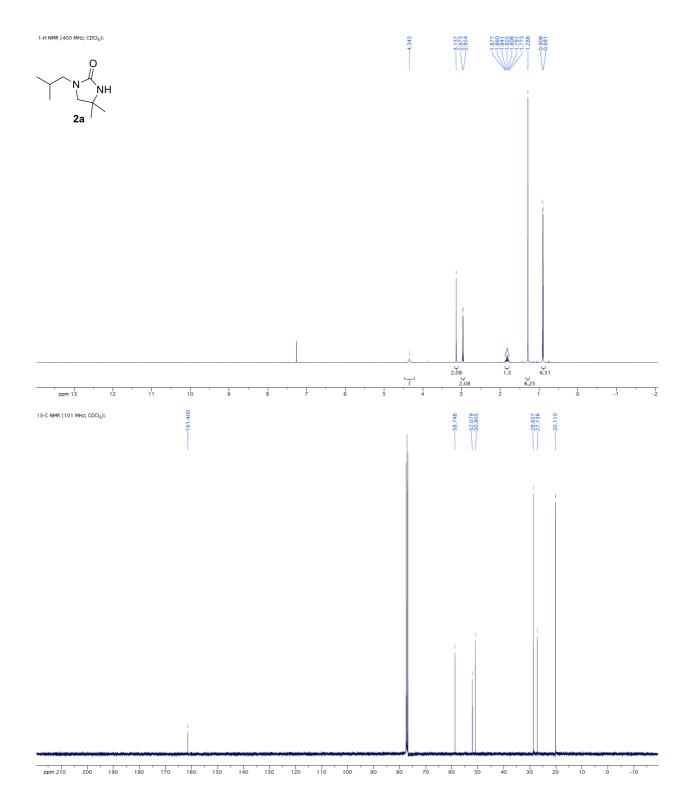


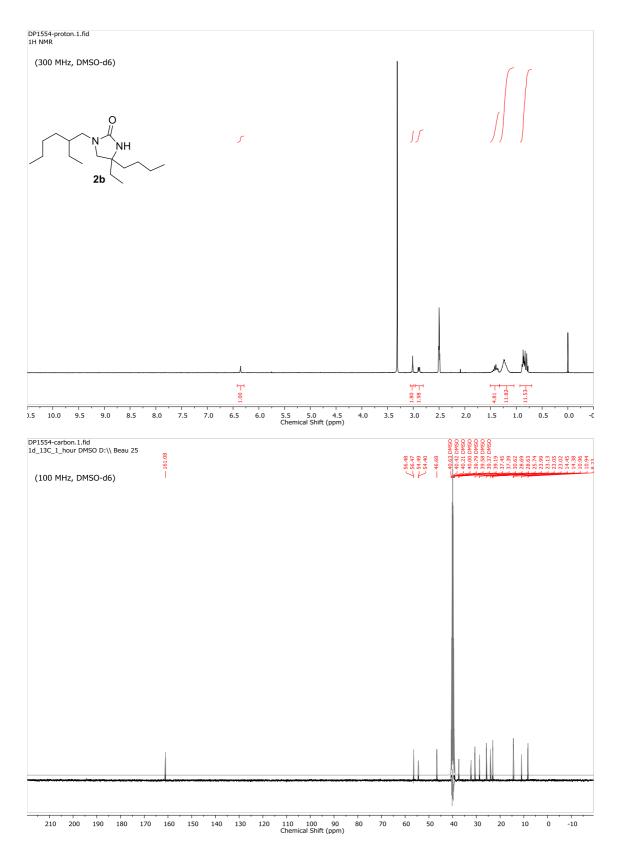


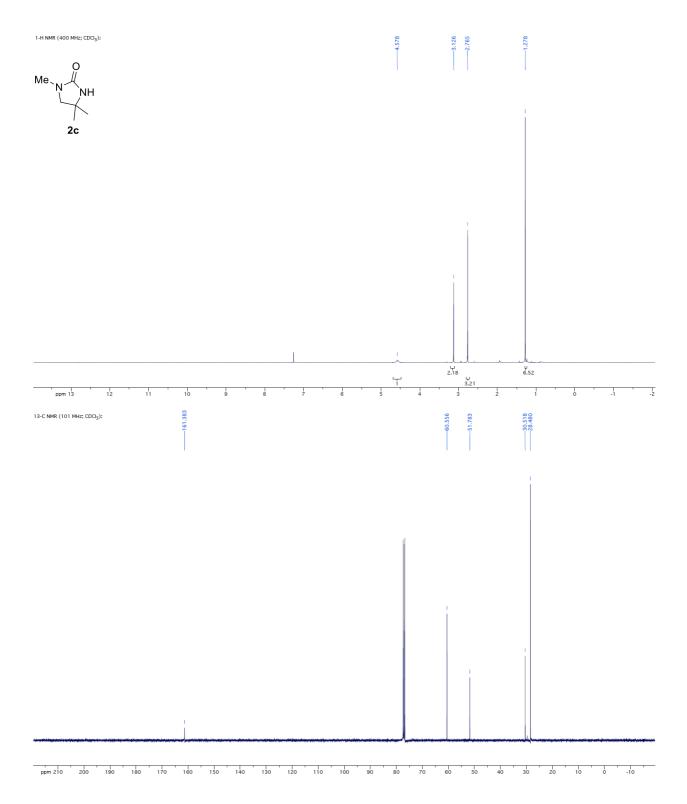


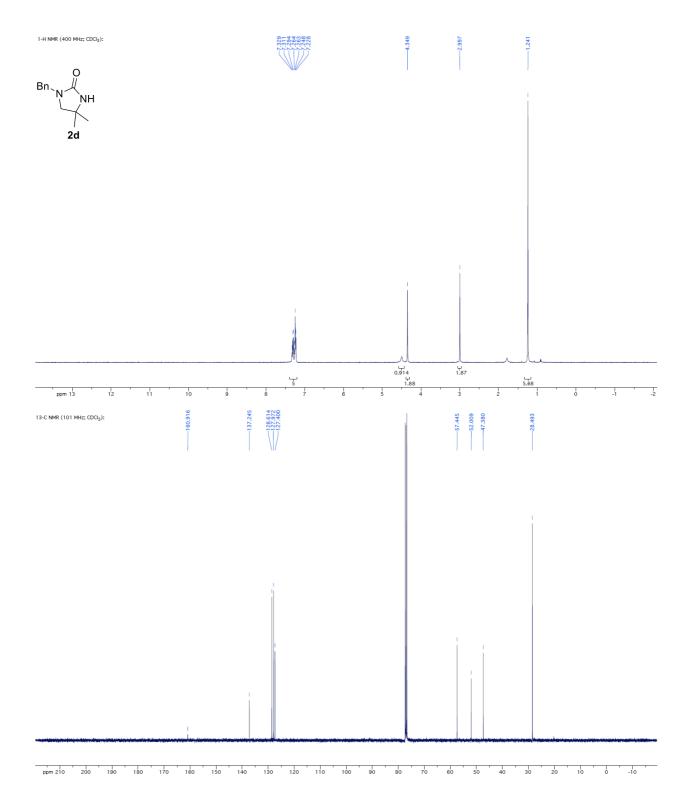


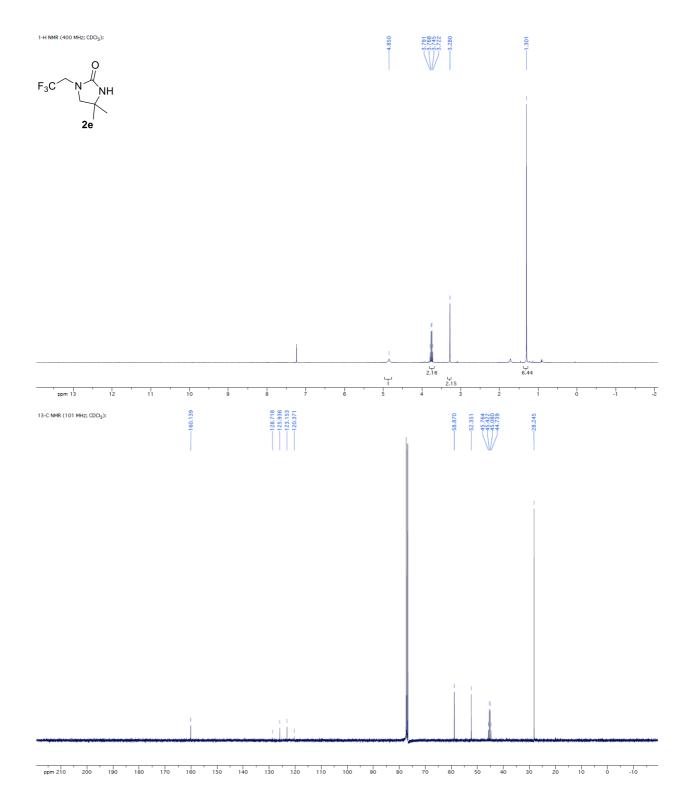


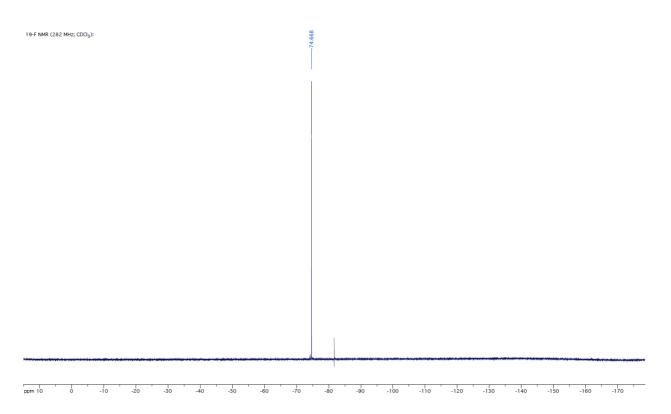


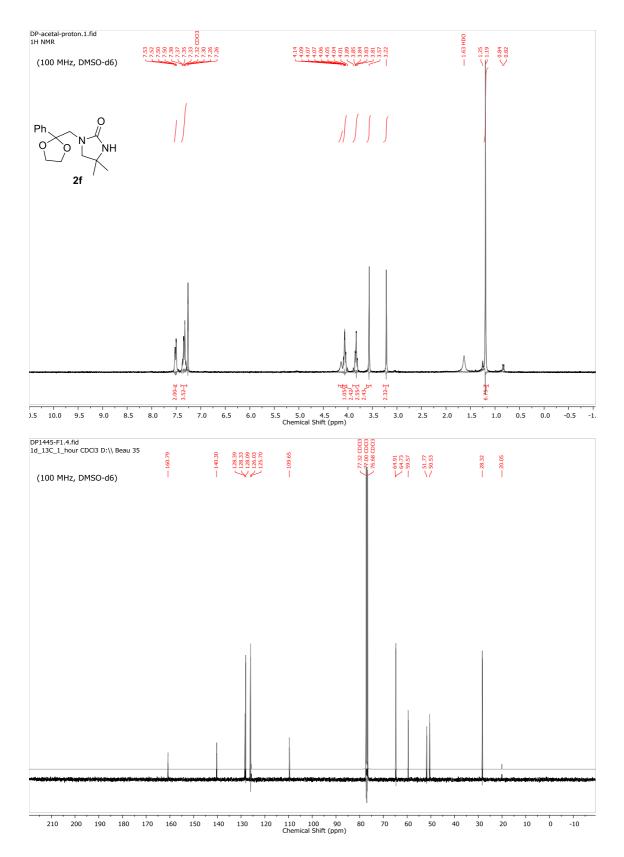


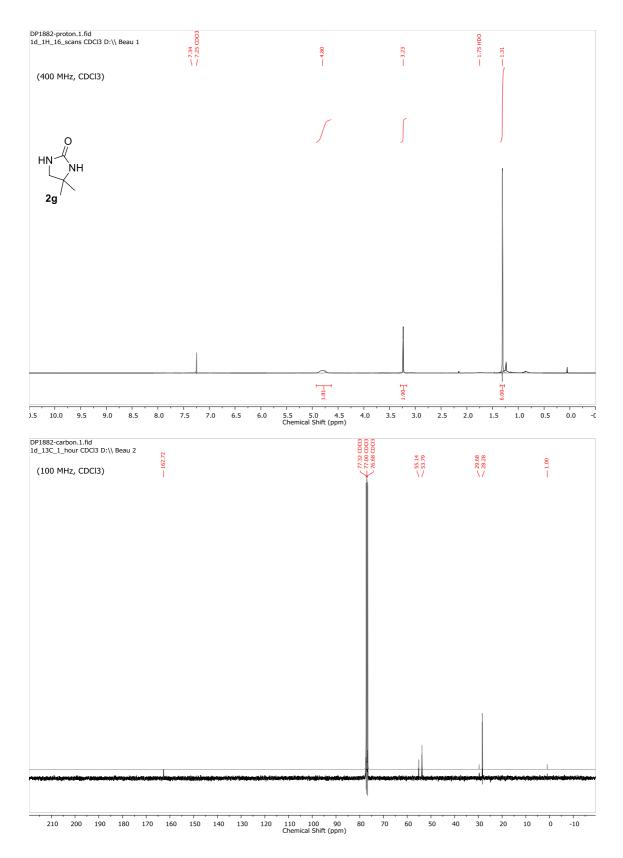

S152

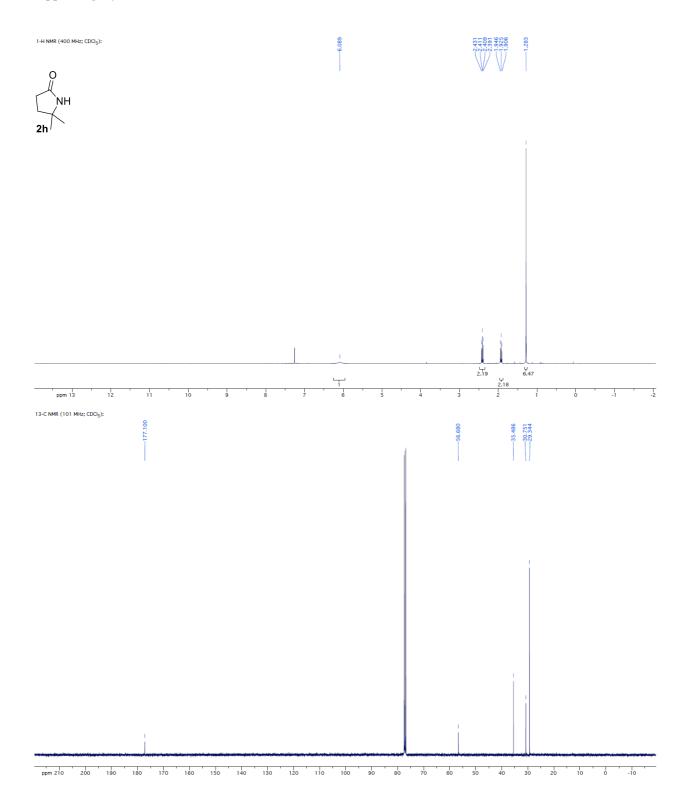


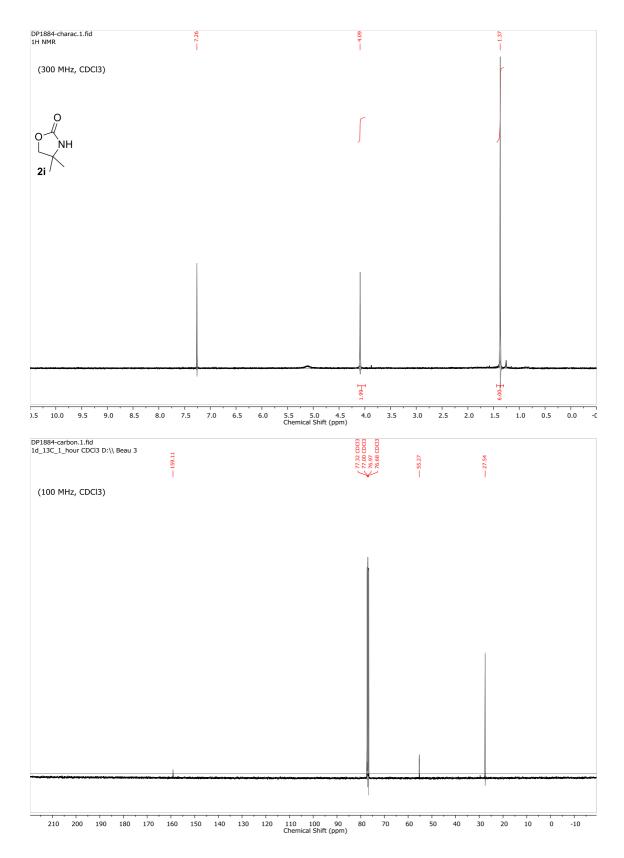


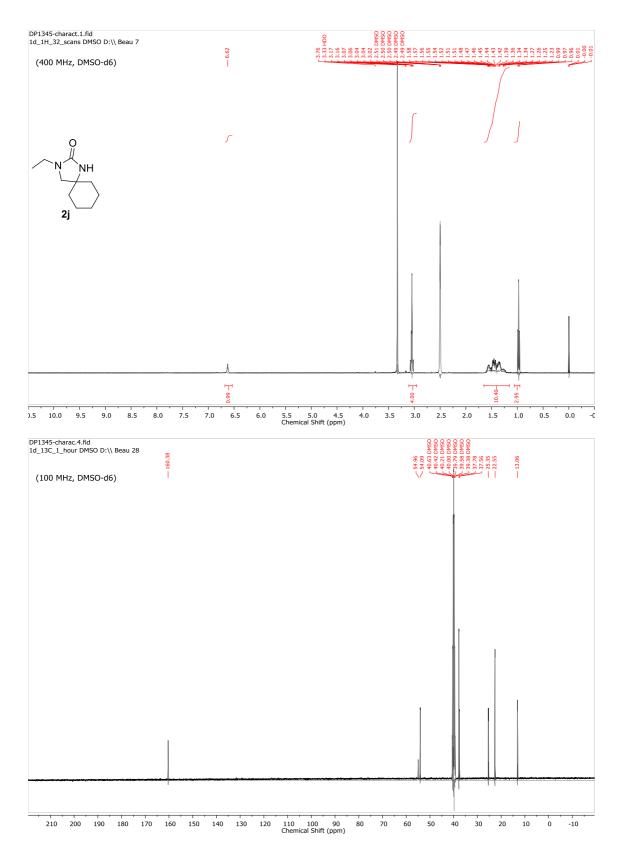


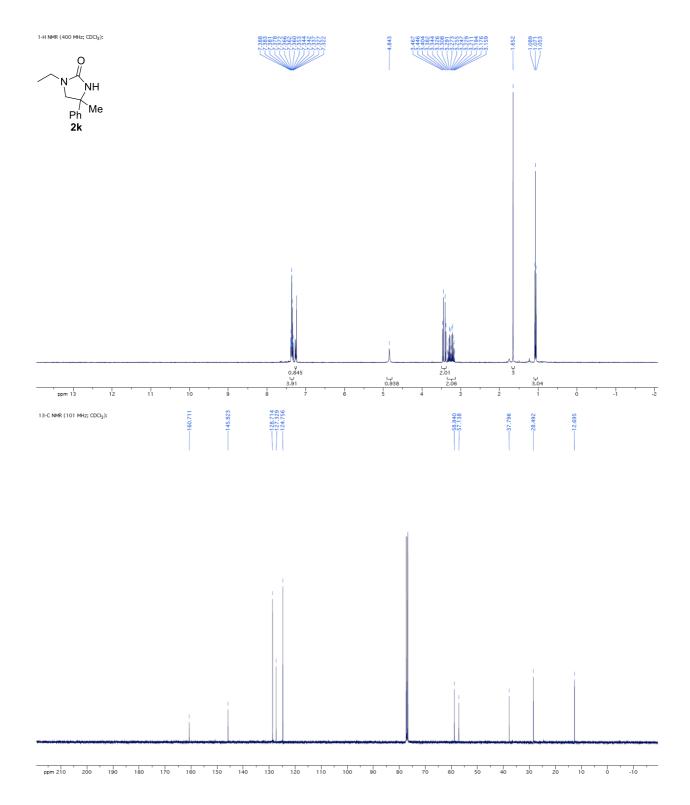


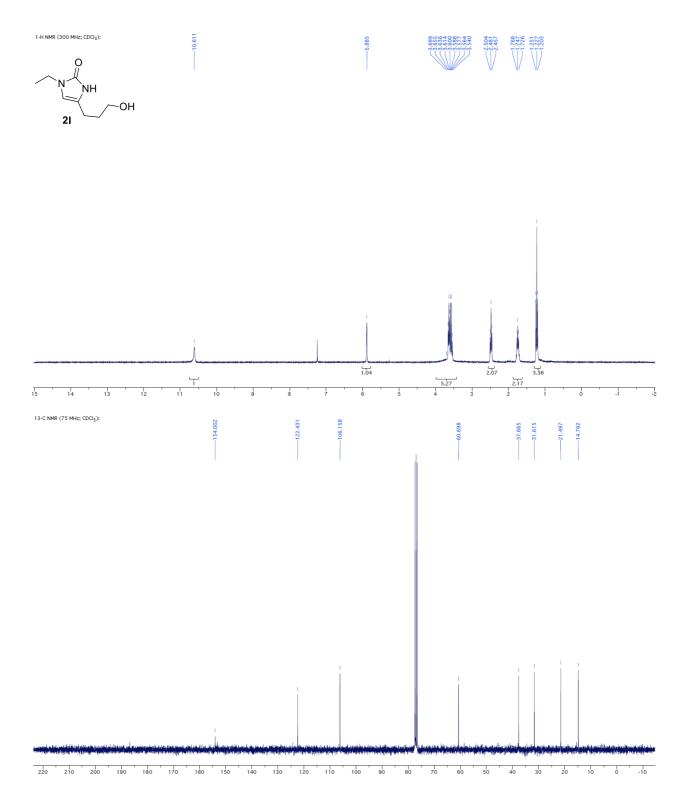


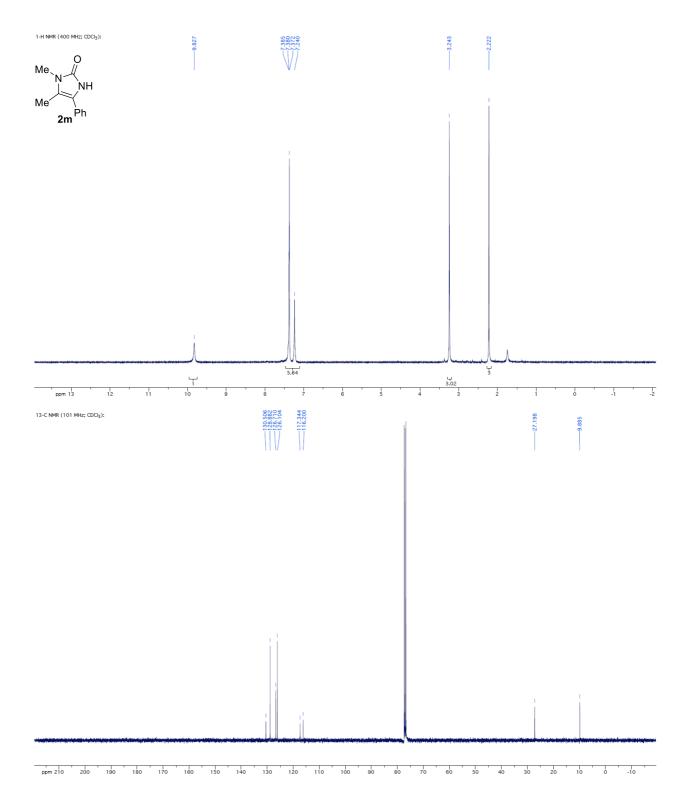


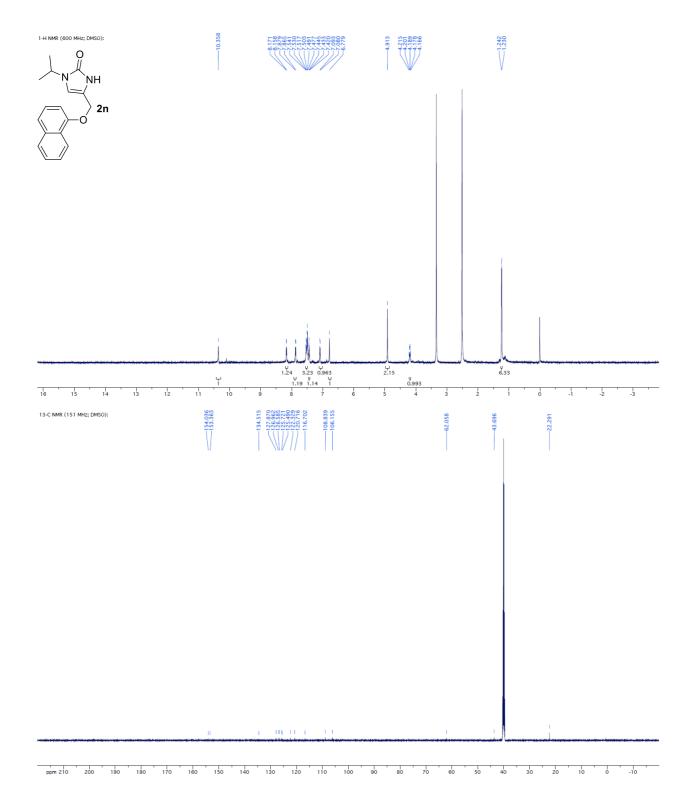


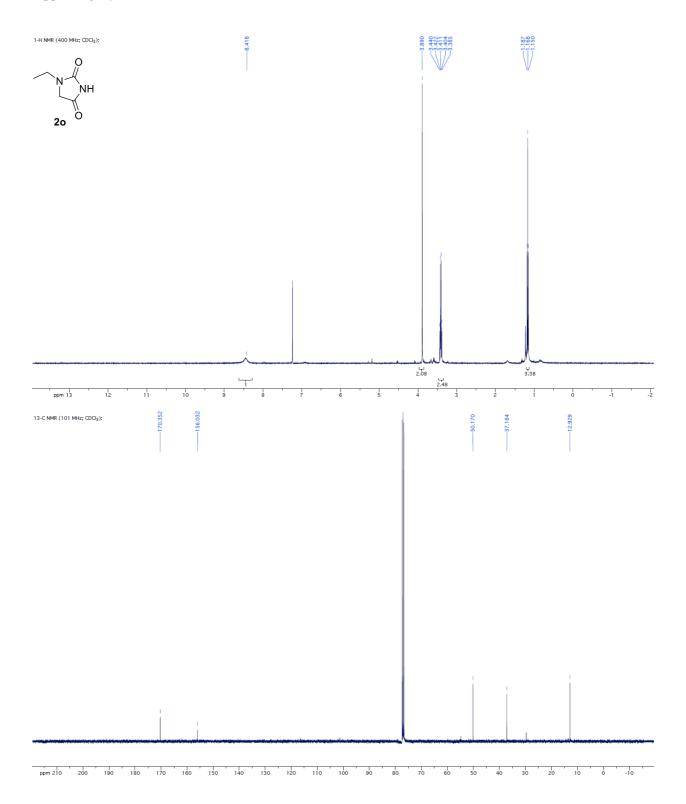


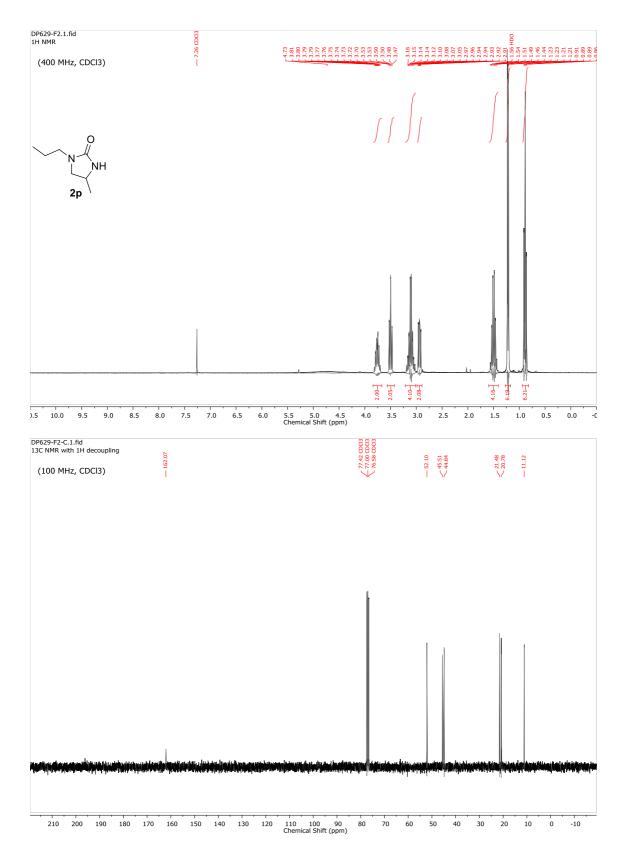


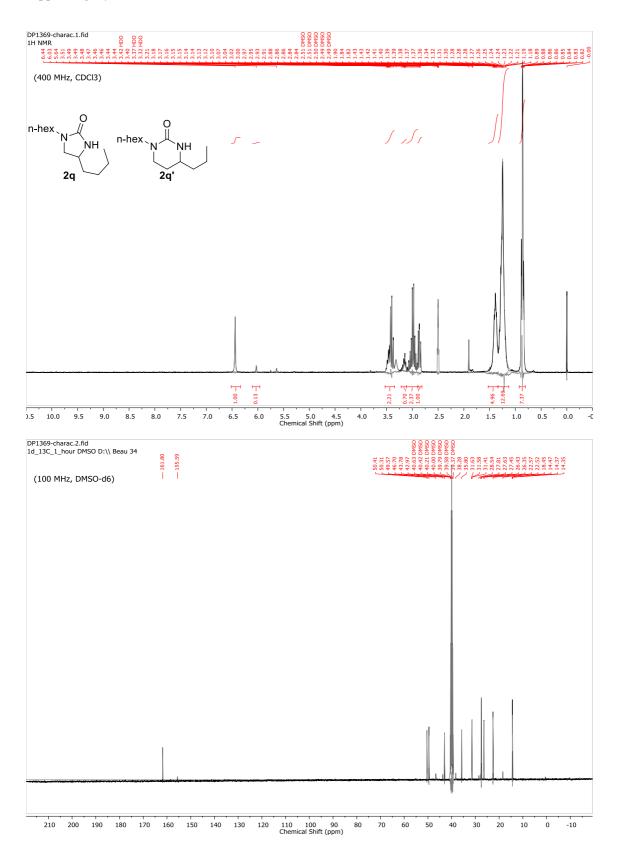


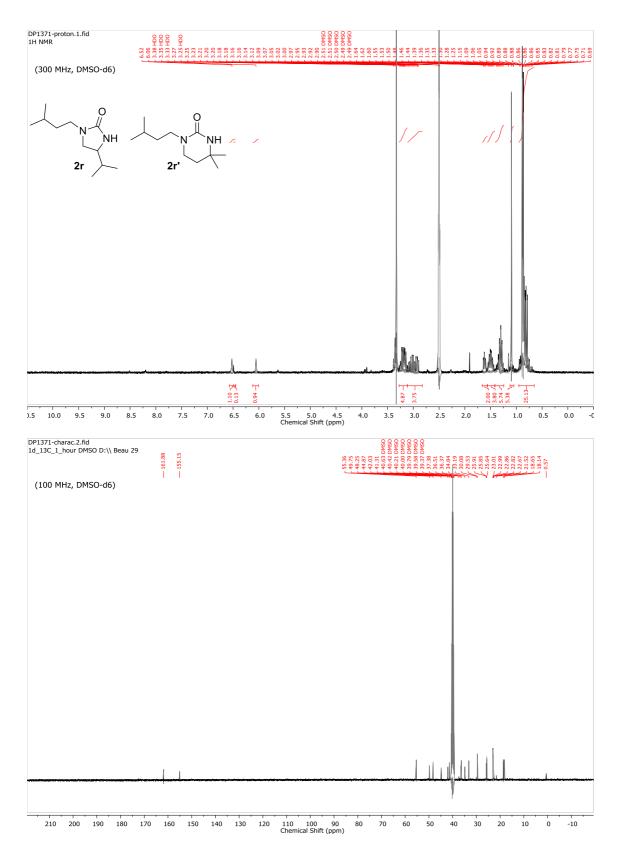

S163



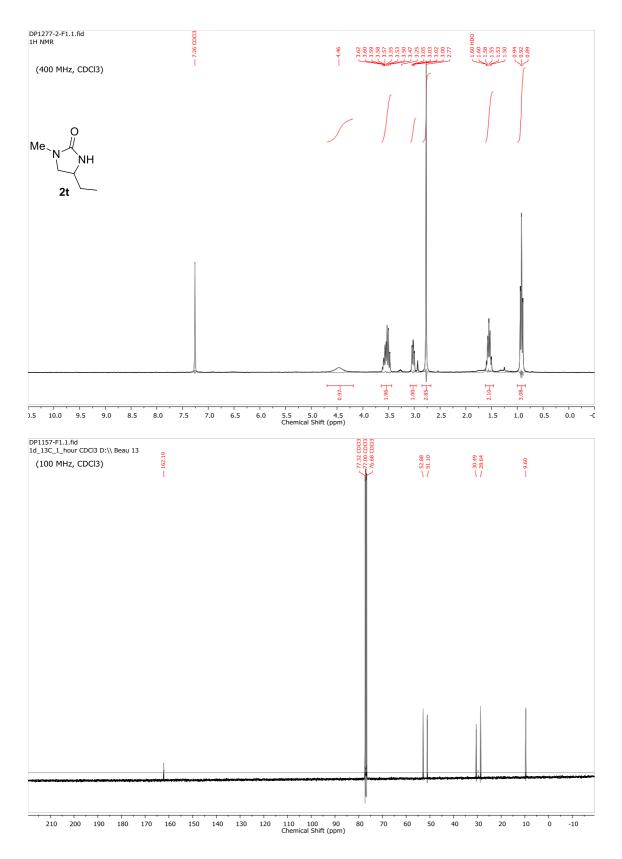


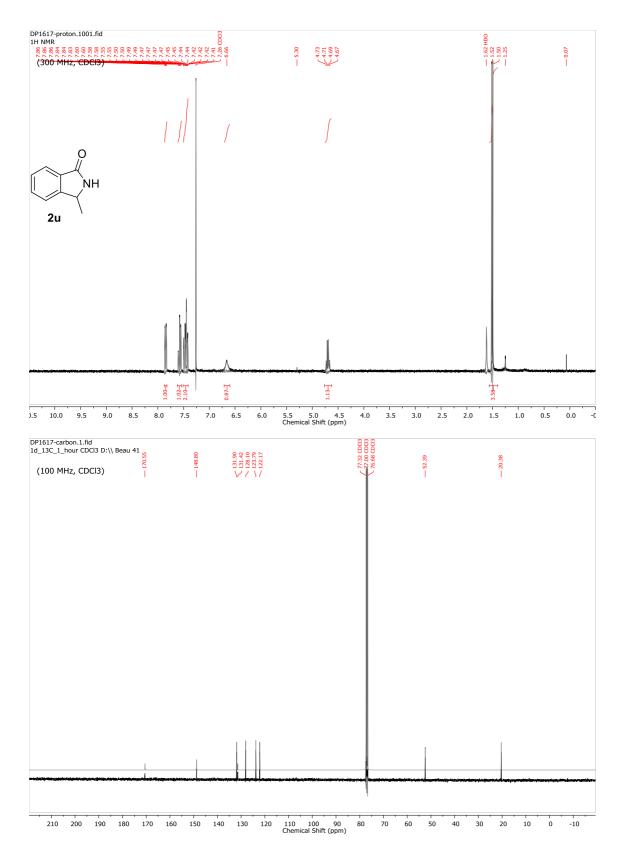


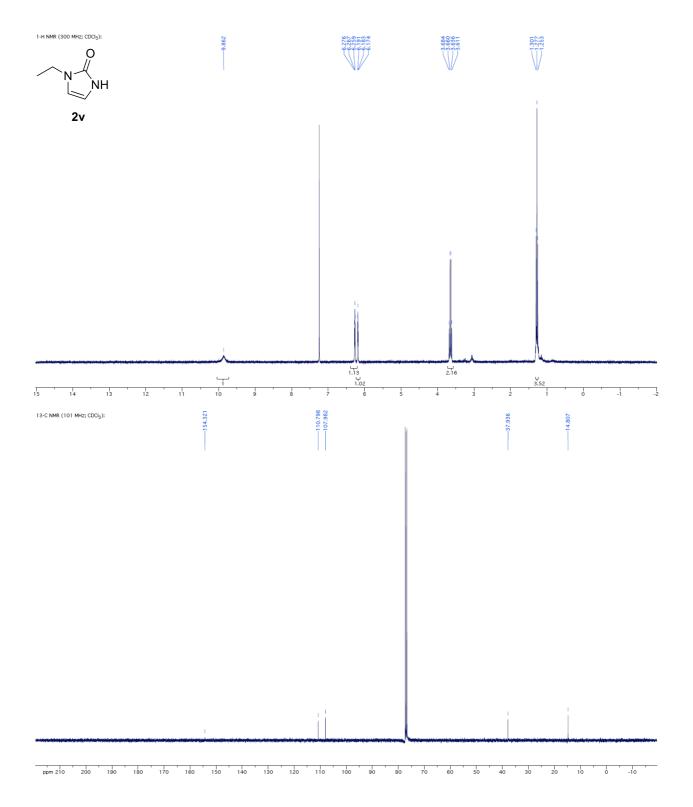


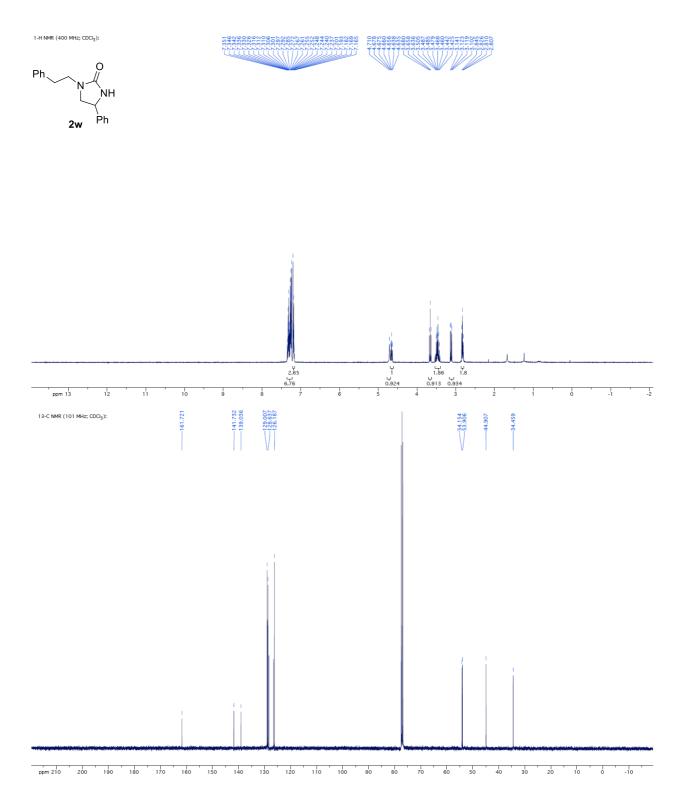


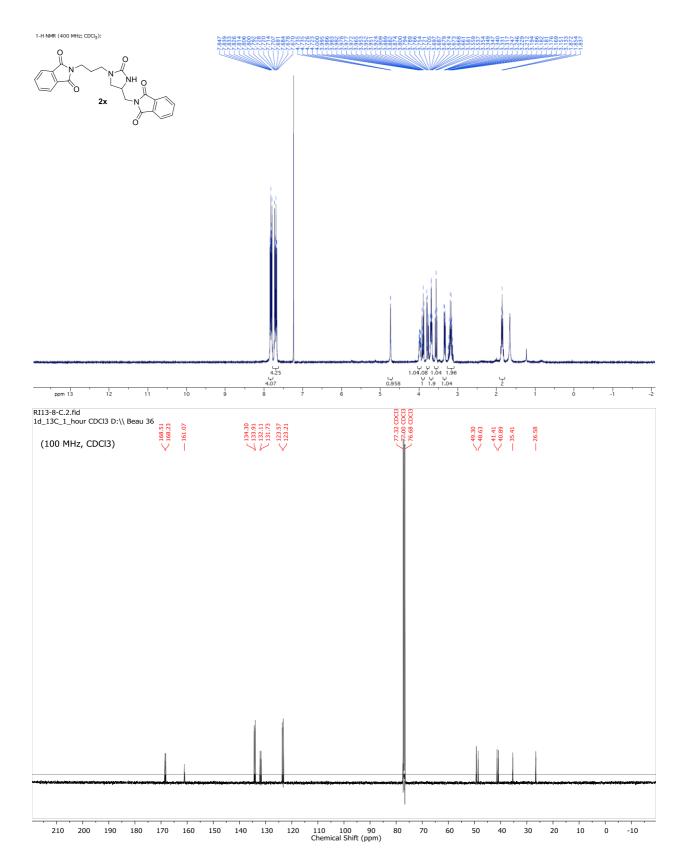
Supporting Information

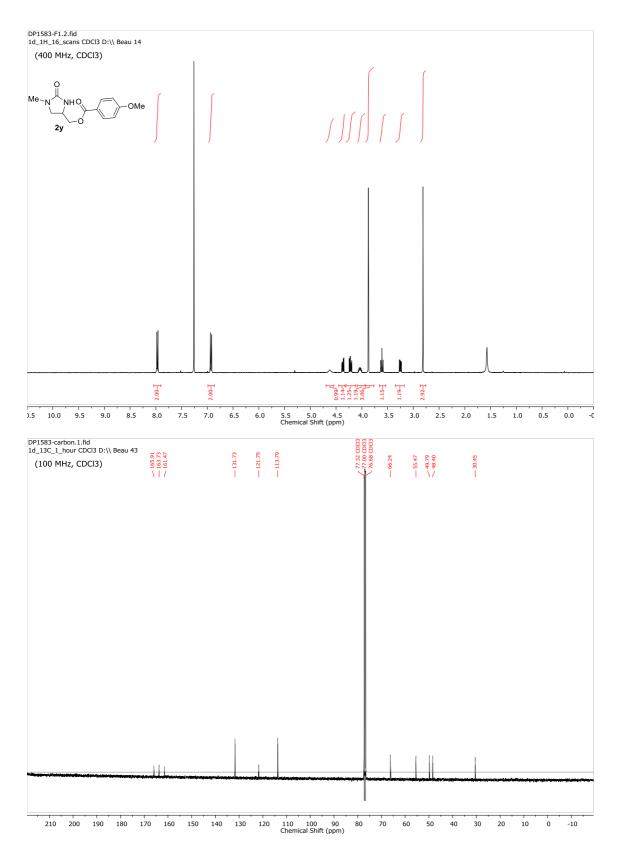


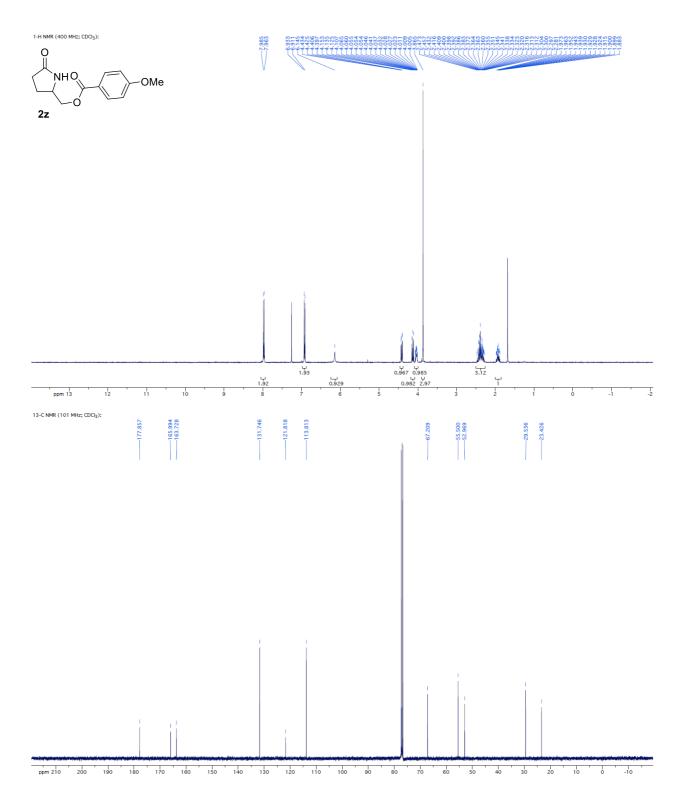


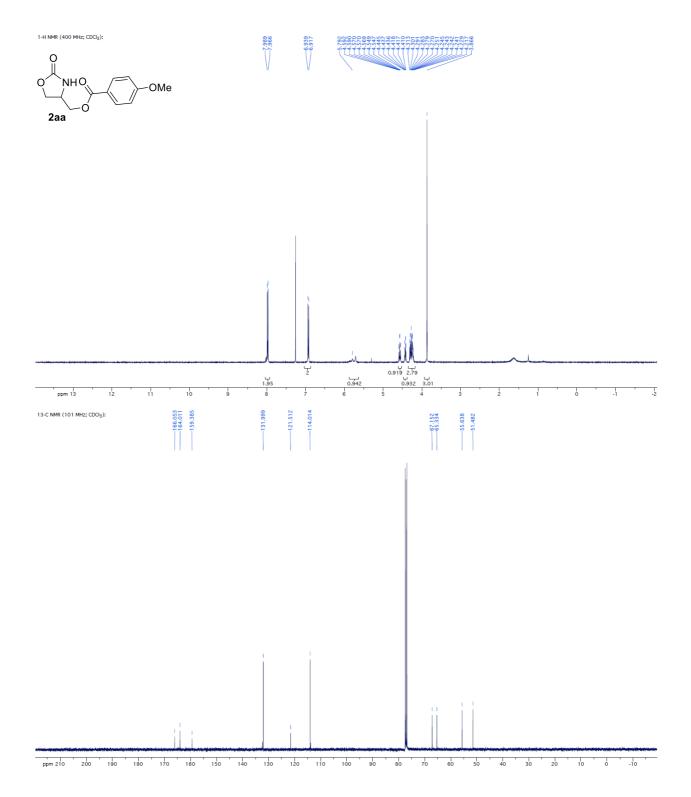


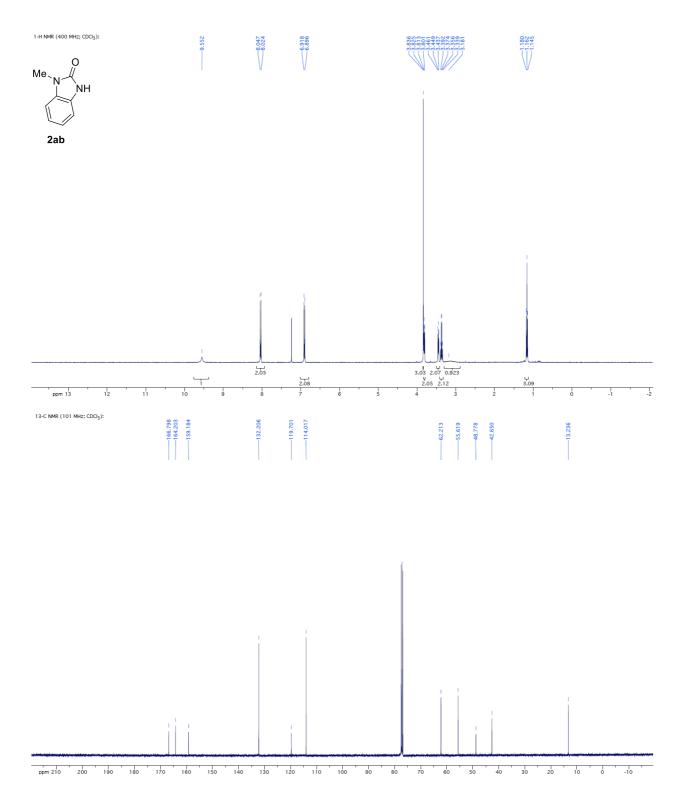


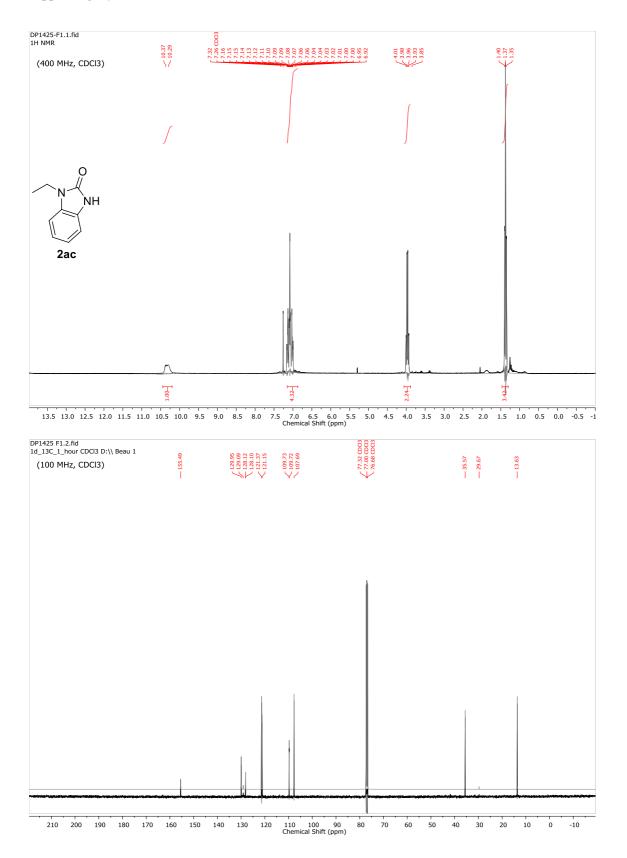


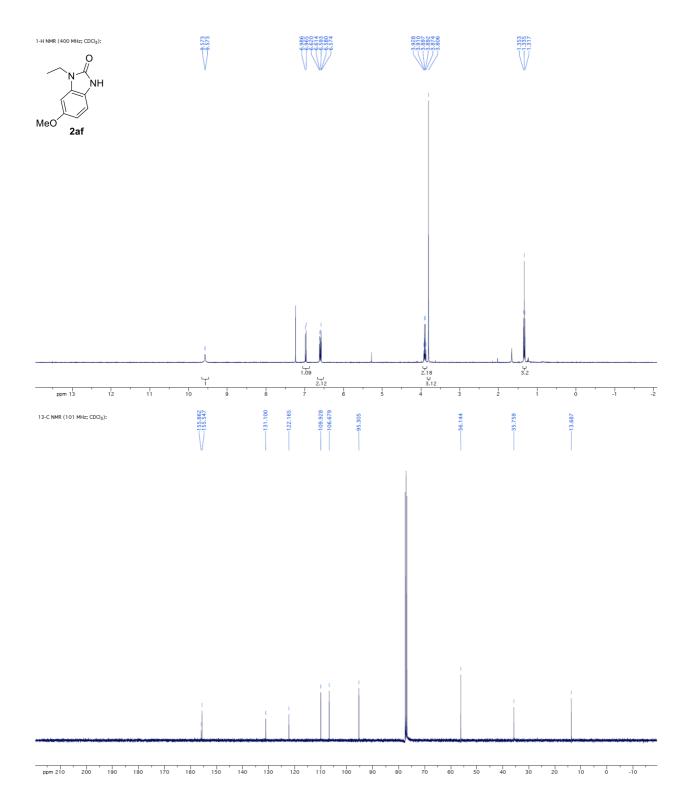


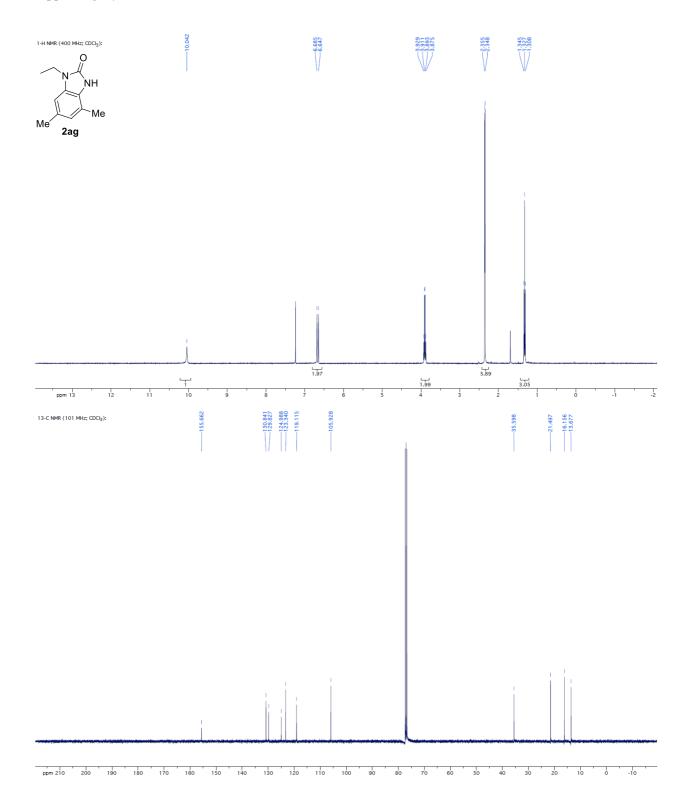


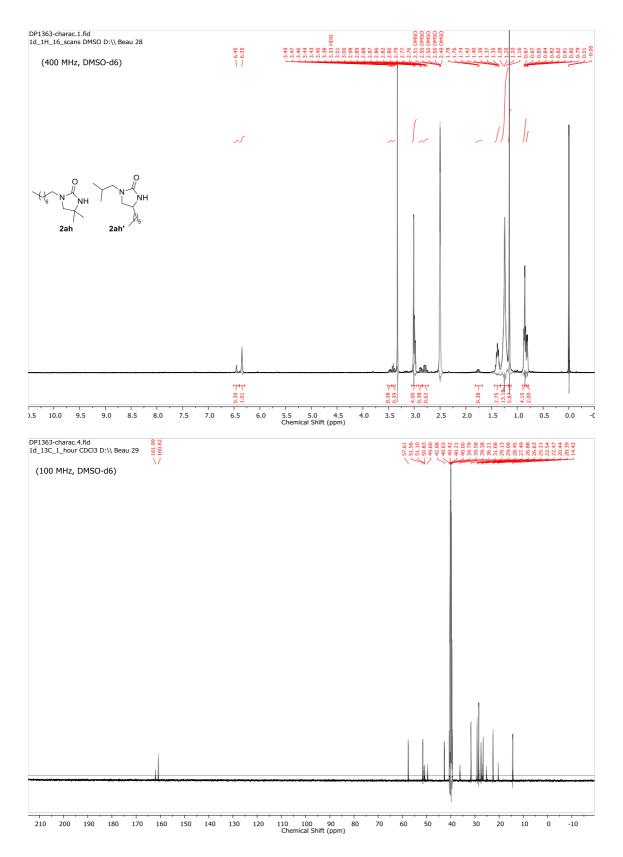


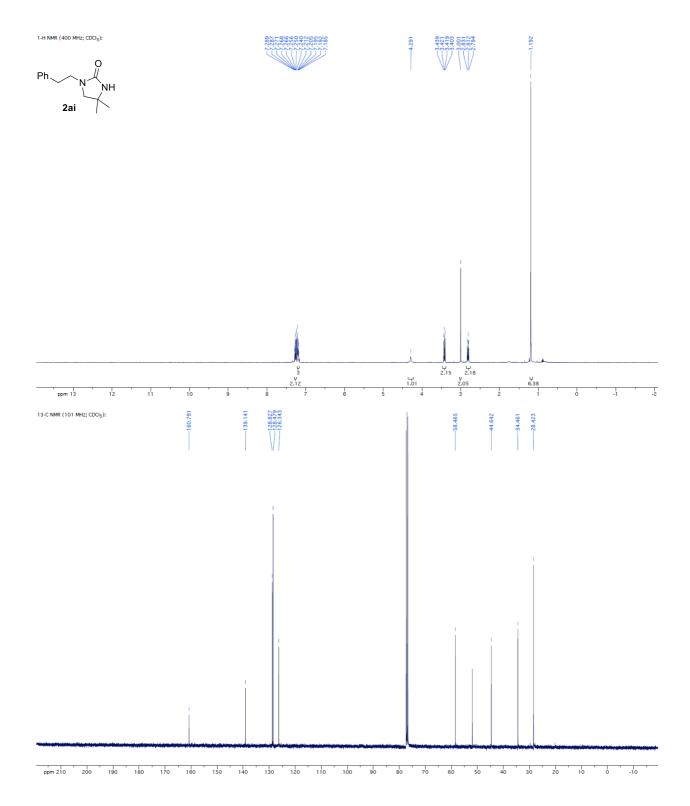


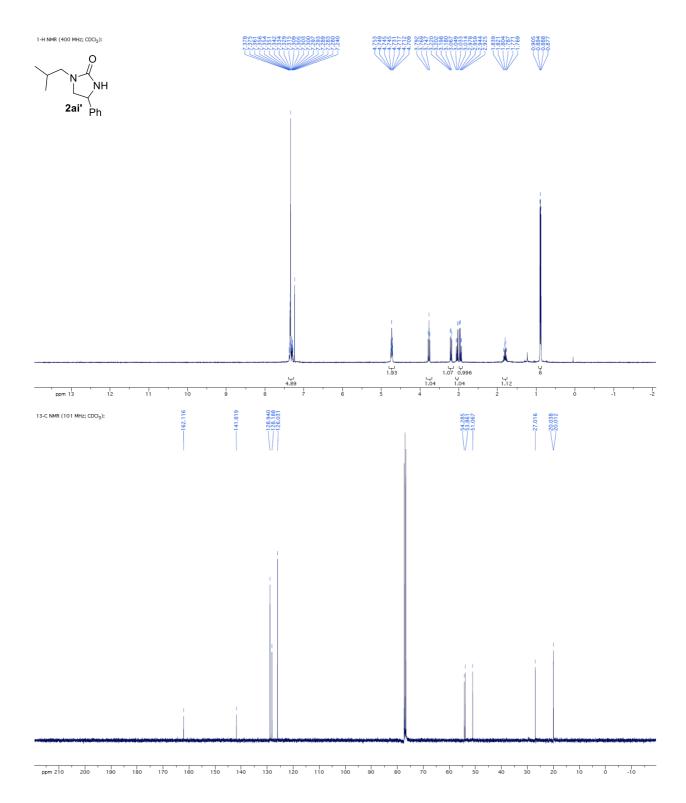


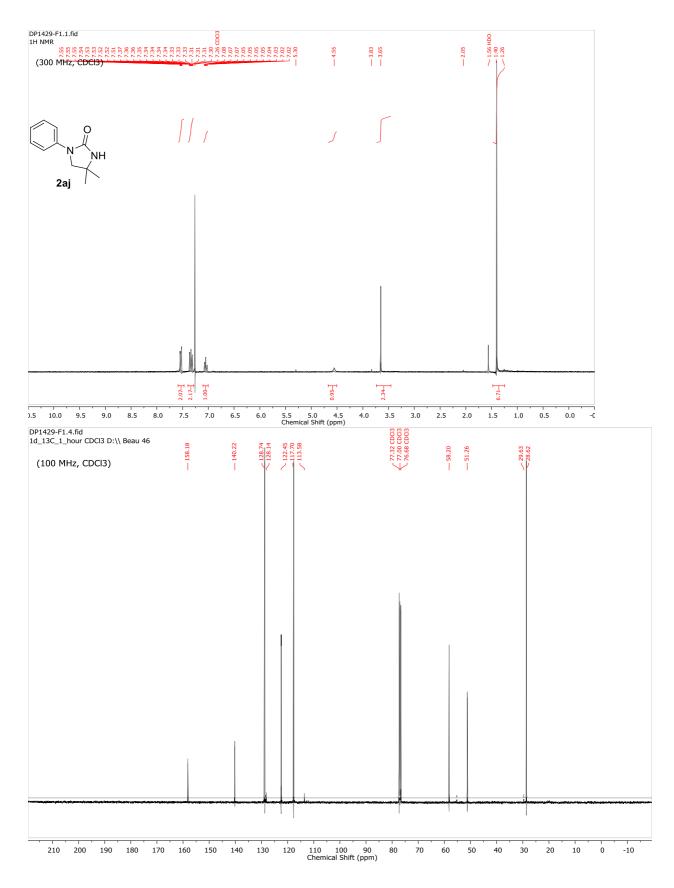


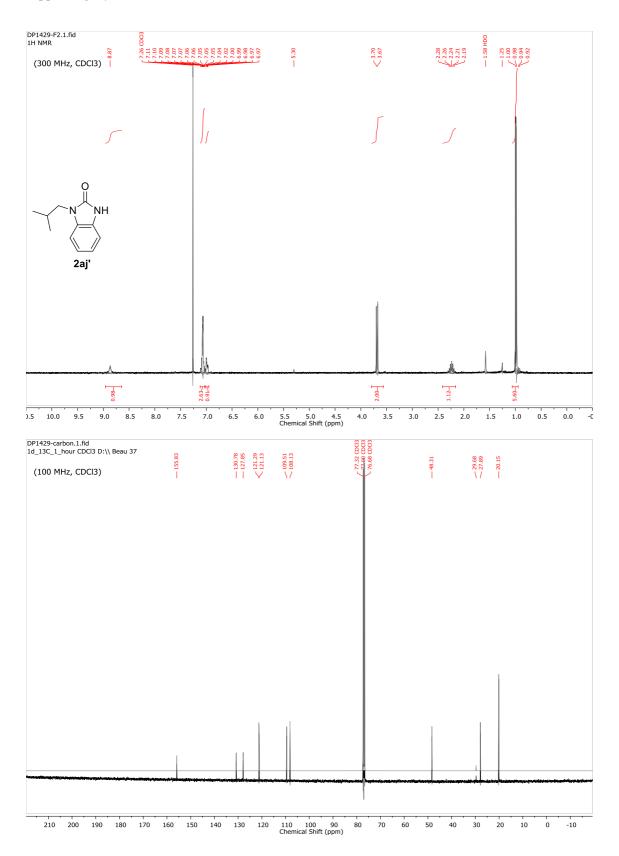

Supporting Information

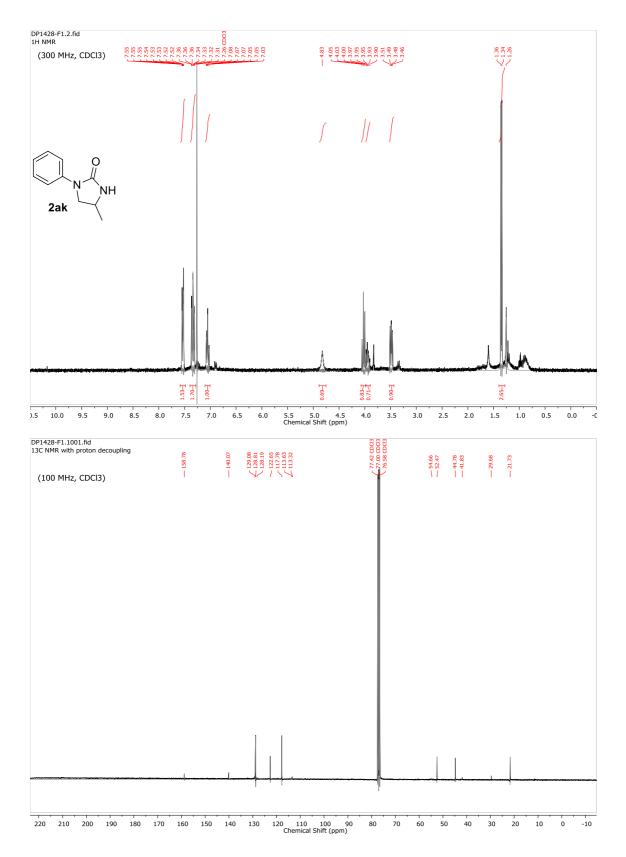


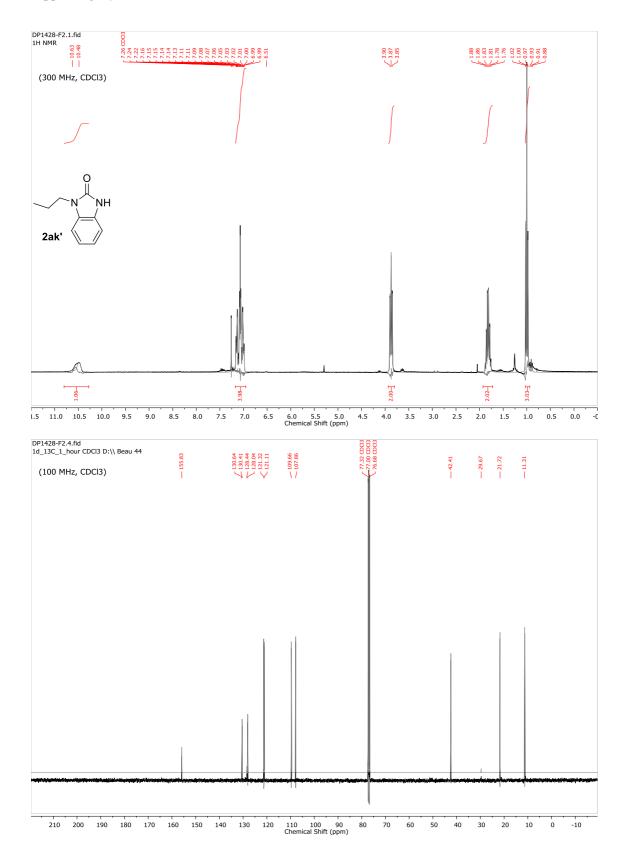

Supporting Information

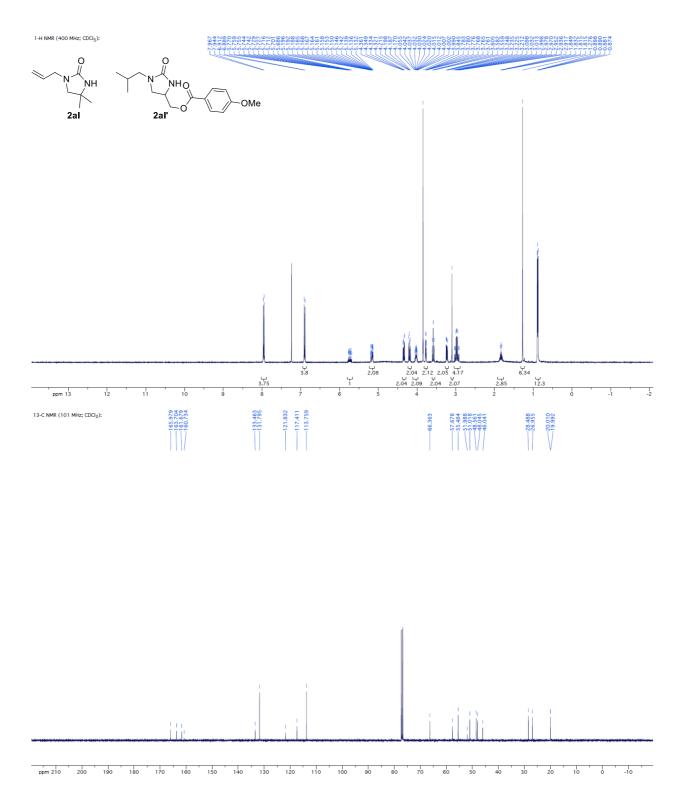


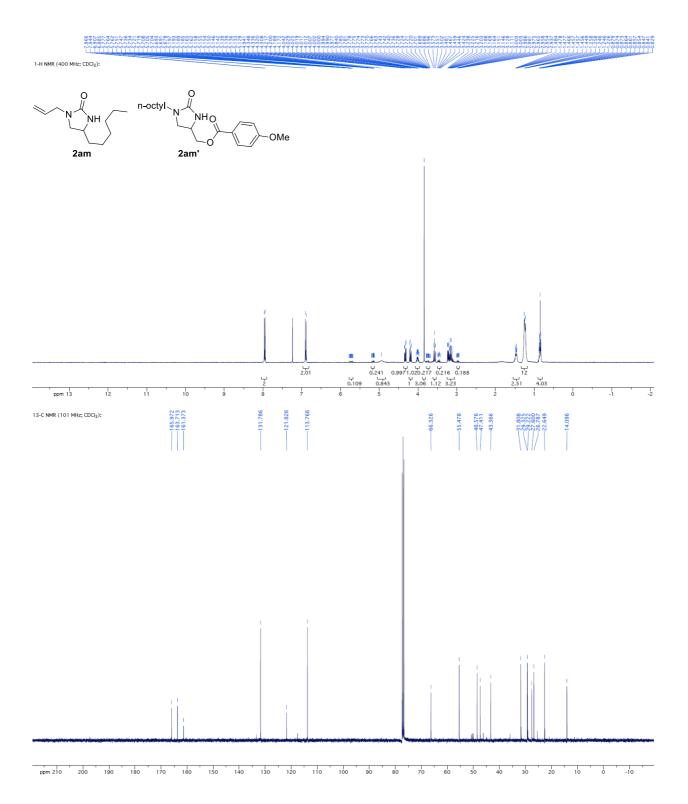


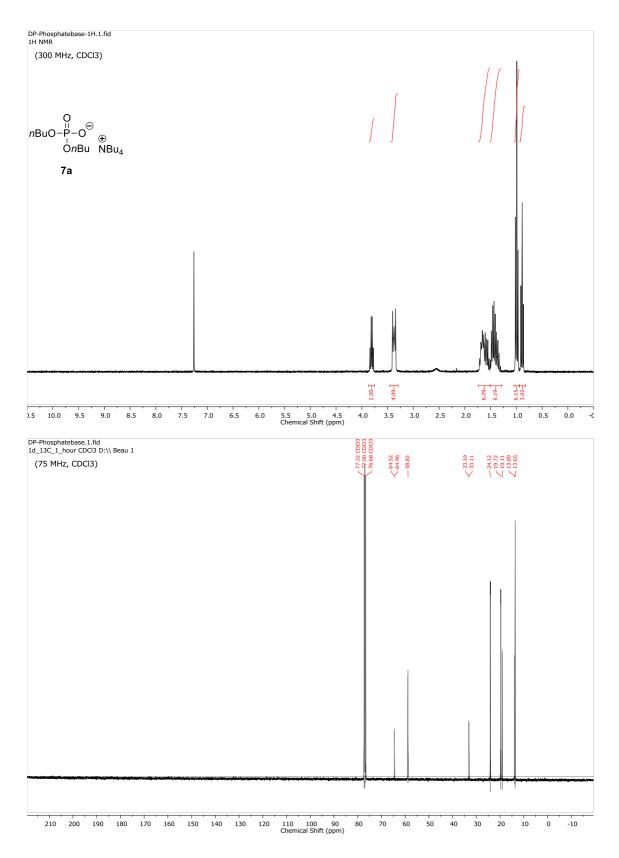


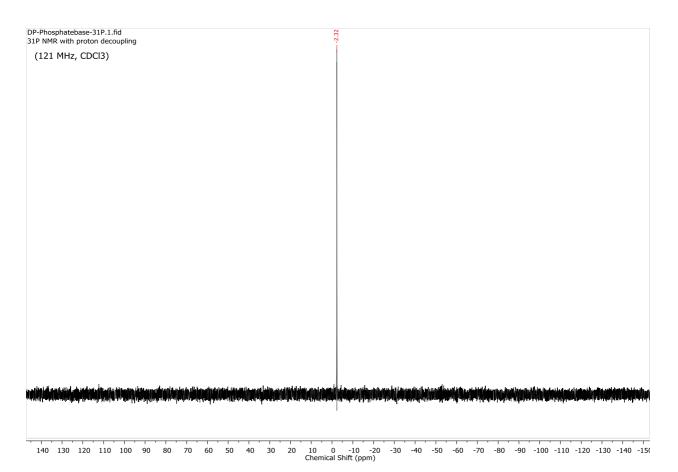


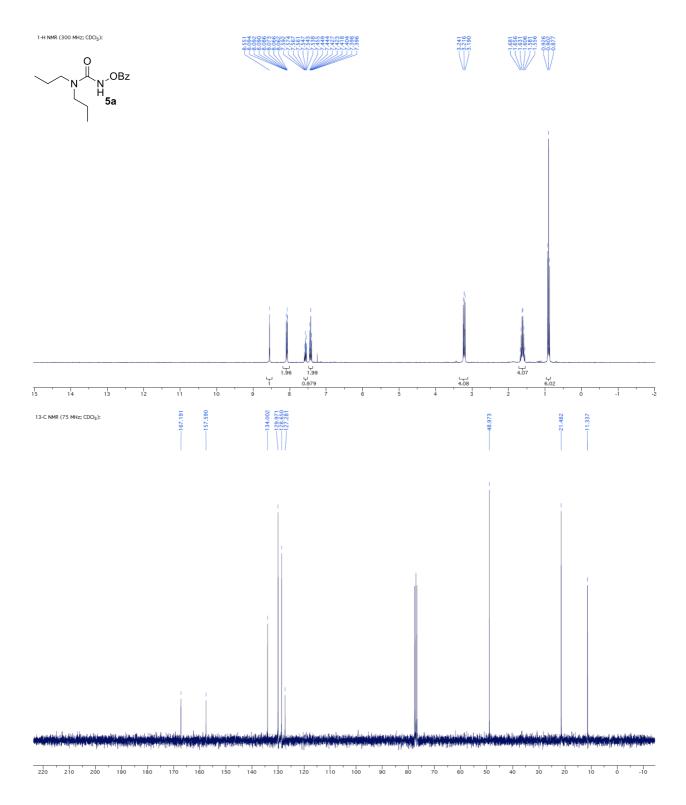


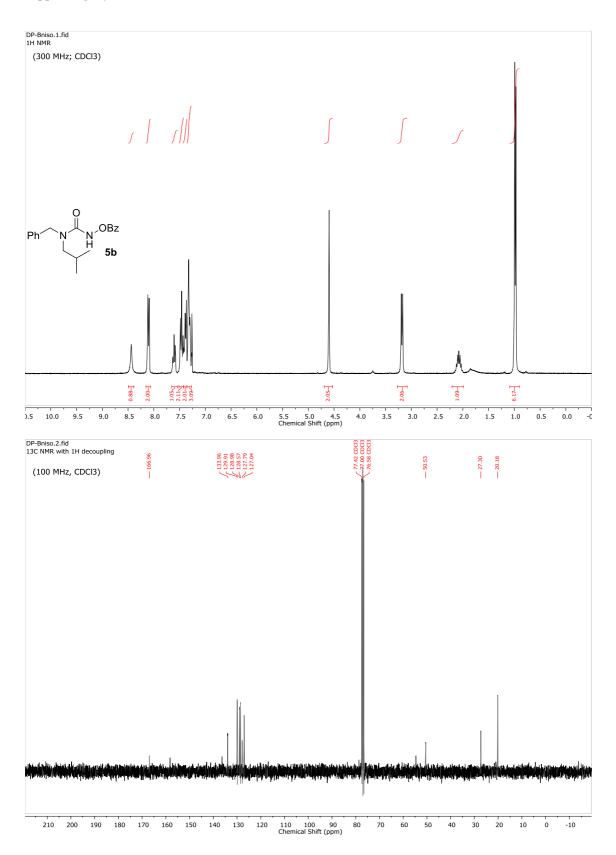

S190

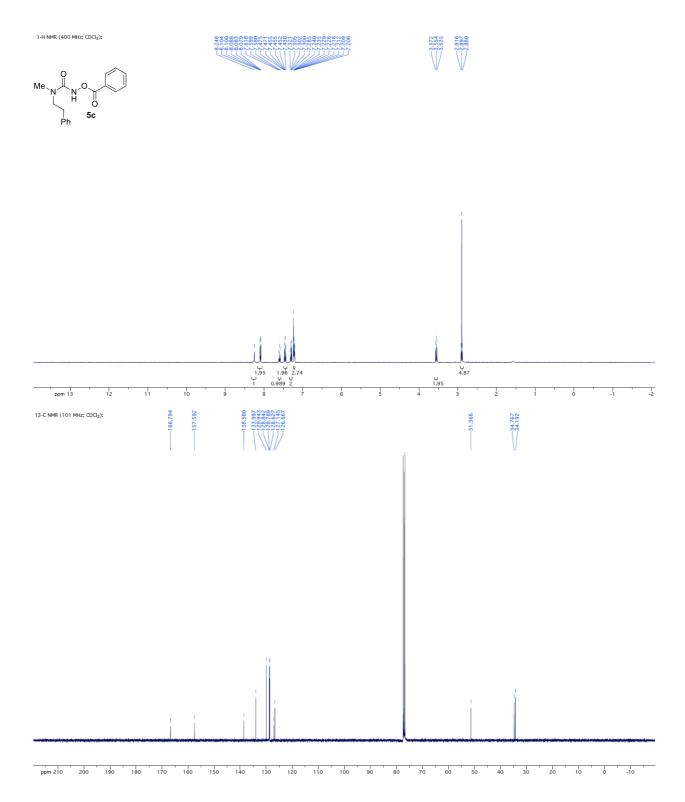

Supporting Information

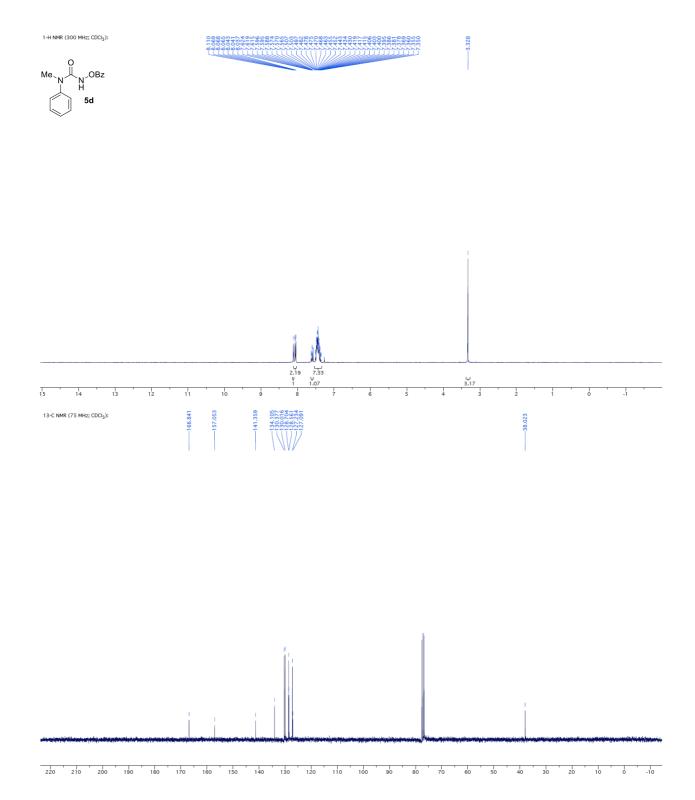


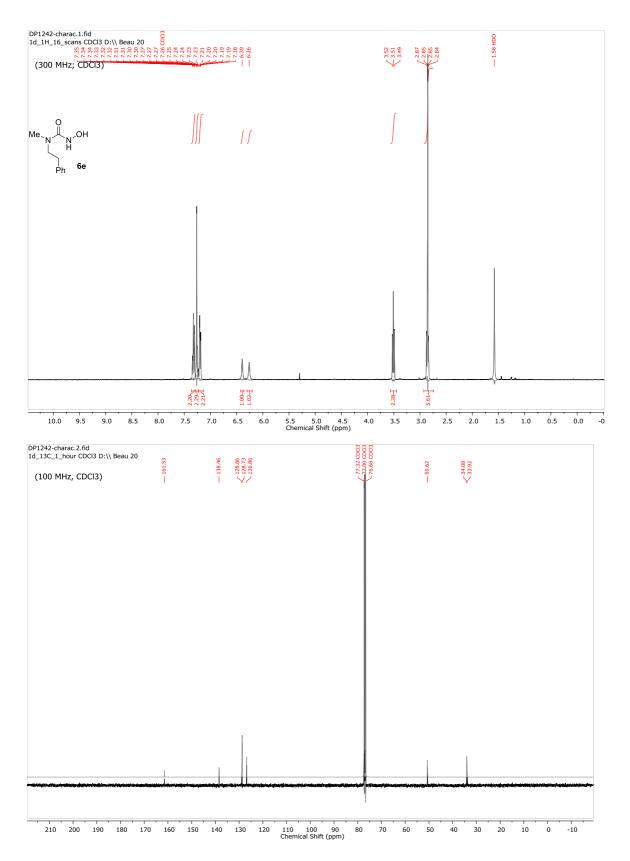


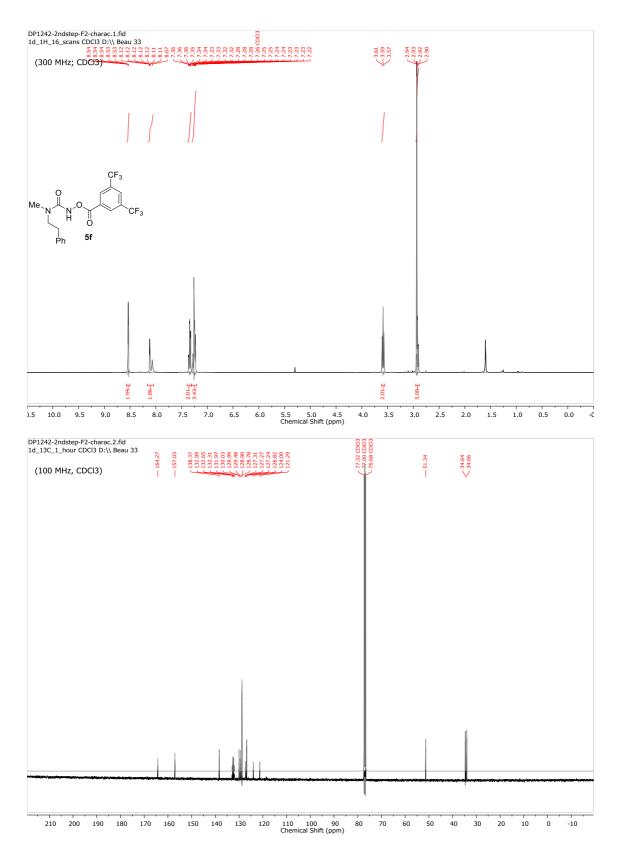












Supporting Information

DP-19F-Mebenzyl.2.fid 19F with 1H decoupling decoupling	-63.01
(280 MHz, CDCl3)	
	+ +
10 0 -10 -20 -30 -40 -50 -6	50 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 Chemical Shift (ppm)