SUPPLEMENTARY INFORMATION

Dissecting the structural and chemical determinants of the 'open-to-closed' motion in the mannosyltransferase PimA from mycobacteria.

Ane Rodrigo Unzueta^{1,2,#}, Mattia Ghirardello^{3,#}, Saioa Urresti^{1,2,#}, Ignacio Delso³, David Giganti^{1,2,4}, Itxaso Anso⁵, Beatriz Trastoy⁵, Natalia Comino⁵, Montse Tersa⁵, Cecilia D'Angelo⁵, Javier O. Cifuente⁵, Alberto Marina⁵, Jobst Liebau⁶, Lena Mäler^{6,7}, Alexandre Chenal⁸, David Albesa-Jové^{1,2,5,9}, Pedro Merino^{10,*}, and Marcelo E. Guerin^{1,2,5,9,*}

¹Instituto Biofisika, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain,

²Departamento de Bioquímica, Universidad del País Vasco, Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain,

³Department of Synthesis and Structure of Biomolecules. Institute of Chemical Synthesis and Homogeneus Catalysis (ISQCH). University of Zaragoza-CSIC. 50009 Zaragoza, Spain,

⁴Unité de Microbiologie Structurale (CNRS URA 2185), Institut Pasteur, 25 rue du Dr. Roux, 75724, Paris Cedex 15, France,

⁵Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain,

⁶Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden,

⁷Department of Chemistry, Umeå University, 901 87 Umeå, Sweden

⁸Unité de Biochimie des Interactions Macromoléculaires (CNRS UMR 3528), Institut Pasteur, 25 rue du Dr. Roux, 75724, Paris Cedex 15, France,

⁹IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain,

¹⁰Glycobiology Unit. Institute of Biocomputation and Physics of Complex Systems (BIFI). University of Zaragoza. Campus San Francisco. 50009 Zaragoza, Spain.

***To whom correspondence should be addressed**: Marcelo E. Guerin, Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain, <u>mrcguerin@cicbiogune.es</u>; Pedro Merino, Glycobiology Unit. Institute of Biocomputation and Physics of Complex Systems (BIFI). University of Zaragoza. Campus San Francisco, 50009 Zaragoza, Spain, <u>pmerino@unizar.es</u>.

[#] These authors equally contributed to this work.

CONTENTS

Supplementary Table S1. Supplementary Table S2. Supplementary Figure S1. Supplementary Figure S2. Supplementary Figure S3. Supplementary Materials and Methods. Supplementary References.

1. SUPPLEMENTARY TABLES

Table S1. Data collection and refinement statistics.

	MsPimA-GMP				
Beamline	Proxima 1				
Wavelength (Å)	0.98011				
Resolution range (Å)	36.69-2.593				
Space group	(2.730-2.393) $P2_{1}2_{1}2_{4}$				
opace group	37 32 73 38 138 78				
Unit cell	90 90 90				
Total reflections	52063 (7702)				
Unique reflections	12337 (1783)				
Multiplicity	4.2 (4.3)				
Completeness (%)	99.01 (99.20)				
Mean I/sigma(I)	10.5 (1.7)				
Wilson B-factor	53.79				
R-sym	0.060 (0.449)				
R-factor	0.2028 (0.2825)				
R-free	0.2510 (0.3205)				
Number of non-H atoms	2851				
Macromolecules	2768				
Ligands	30				
Water	53				
Protein residues	367				
RMS(bonds)	0.005				
RMS(angles)	0.84				
Ramach. favored (%)	97				
Ramach. outliers (%)	0.27				
Clashscore	5.75				
Average B-factor	59.90				
Macromolecules	60.10				
Ligands	78.80				
Solvent	48.40				

Table S2. Parameters of the unliganded MsPimA, MsPimA•GDP-Man, MsPimA•GDP, MsPimA•GMP, MsPimA•GNO, MsPimA•GUA, MsPimA•Man-PP-Rib, MsPimA•PP-Rib and MsPimA•Man-P complexes from SAXS data.

Data-collection parameters	MsPimA GDP-Man	MsPimA GDP	MsPimA GMP	MsPimA unliganded	MsPimA PP-ribose	MsPimA Man-P	MsPimA Man-PP-ribose
Instrument		Beamline B21	Beamline B21	Beamline B21	Beamline B21	Beamline B21	Beamline B21
	Beamline B21	(DLS)	(DLS)	(DLS)	(DLS)	(DLS)	(DLS)
	(DLS)						
Wavelength (Å)	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
$q \operatorname{range}(\mathrm{\AA}^{-1})^{a}$	0.009-0.3700	0.009-0.3700	0.009-0.3700	0.009-0.400	0.009-0.3700	0.009-0.3700	0.009-0.3700
Exposure time (sec)	9	9	9	9	9	9	9
Concentration range (mg ml ⁻¹)	4 - 8	4 - 8	4 - 8	4 - 8	4 - 8	4 - 8	4 - 8
Temperature (K)	291	291	291	291	291	291	291
Structural parameters [†]							
$I(0) (\text{cm}^{-1}) [\text{from P}(r)]$	0.232(4)	0.246(3)	0.237(4)	0.206(2)	0.259(3)	0.248(5)	0.269(5)
$R_{\rm g}$ (Å) [from P(r)]	29.3(5)	29.2(4)	29.6(3)	30.8(4)	31.1(4)		31.2(4)
						31.0(5)	
I(0) (cm ⁻¹) (from Guinier)	0.2317(3)	0.2462(3)	0.2404(4)	0.2113(3)	0.2651(5)	0.2523(5)	0.2619(7)
$R_{\rm g}$ (Å) (from Guinier)	29.5(2)	29.4(2)	29.5(2)	30.7(2)	31.2(3)	31.1(3)	31.2(4)
D_{\max} (Å)	100	100	100	113	109	108	108
Porod volume estimate ($Å^3$)	92,506	96,619	87,195	83,459	85,480	83,693	87,303
Dry volume calculated from	51,165	51,165	51,165	51,165	51,165	51,165	51,165
sequence (Å ³)							
Molecular-mass determination ^b							
Molecular mass [from Porod V]	54(10)	57(10)	51(10)	49(10)	50(10)	49(10)	51(10)
(kDa)							
Calculated monomeric from	42.3	42.3	42.3	42.3	42.3	42.3	42.3
sequence (kDa)							
Software employed							
Primary data reduction	GDA	GDA	GDA	GDA	GDA	GDA	GDA
Data processing	PRIMUS /	PRIMUS /	PRIMUS /	PRIMUS /	PRIMUS /	PRIMUS /	PRIMUS /
	ScÅtter	ScÅtter	ScÅtter	ScÅtter	ScÅtter	ScÅtter	ScÅtter

[†]Values in parenthesis are estimated errors approximated to the last decimal place ^{*a*} *q*-range used for calculation of *P*(r) function ^{*b*} Molecular mass evaluated with equation $ln(Q_R) = k * ln(Mass) + c$, where $Q_R = (V_c^2/R_g)$, and *k* and *c* are constants (50).

	I(0) (cm ⁻¹) (from	R_{g} (Å) (from Guinier)	$I(0) (cm^{-1})$ [from P(r)]	<i>R</i> _g (Å) (from Guinier)
	Guinier)			
MsPimA (4 mg/mL)	0.1258(2)	29.2(3)	0.127(2)	29.8(5)
MsPimA (6 mg/mL)	0.2113(3)	30.7(2)	0.206(2)	30.8(3)
MsPimA (8 mg/mL)	0.2923(5)	31.(5)	0.284(1)	31(1)
MsPimA GDP-Man (4 mg/mL)	0.1679(3)	28.8(5)	0.169(2)	28.8(5)
MsPimA GDP-Man (6 mg/mL)	0.2317(3)	29.5(2)	0.232(4)	29.9(5)
MsPimA GDP-Man (8 mg/mL)	0.3191(9)	29.5(3)	0.317(2)	29(1)
MsPimA GDP (4 mg/mL)	0.1741(2)	29.3(2)	0.174(2)	29.0(4)
MsPimA GDP (6 mg/mL)	0.2462(3)	29.4(2)	0.242(3)	29.2(4)
MsPimA GDP (8 mg/mL)	0.3209(5)	29.5(2)	0.317(4)	29.4(3)
MsPimA GMP (4 mg/mL)	0.1527(2)	28.9(2)	0.153(2)	29.1(5)
MsPimA GMP (6 mg/mL)	0.2404(4)	29.5(2)	0.237(2)	29.6(3)
MsPimA GMP (8 mg/mL)	0.2937(6)	29.8(3)	0.288(9)	30(1)
MsPimA PP-ribose (4 mg/mL)	0.1367(3)	29.7(3)	0.136(2)	29.9(5)
MsPimA PP-ribose (6 mg/mL)	0.2651(5)	31.2(3)	0.258(3)	31.1(4)
MsPimA PP-ribose (8 mg/mL)	0.2885(5)	31.2(3)	0.282(5)	31.3(4)
MsPimA Man-P (4 mg/mL)	0.1465(2)	29.9(2)	0.145(2)	29.9(5)
MsPimA Man-P (6 mg/mL)	0.252(5)	31.0(3)	0.248(5)	31.0(5)
MsPimA Man-P (8 mg/mL)	0.2864(7)	31.1(3)	0.278(5)	30.8(4)
MsPimA Man-PP-ribose (4 mg/mL)	0.1373(5)	29.5(5)	0.152(3)	30.3(6)
MsPimA Man-PP-ribose (6 mg/mL)	0.2619(7)	31.2(4)	0.269(4)	31.2(4)
MsPimA Man-PP-ribose (8 mg/mL)	0.2879(8)	31.3(4)	0.295(3)	31.3(3)

Table S3. Concentration-dependent variations of zero-angle scattering intensities (I(0)) and radii of gyration (R_g).

2. SUPPLEMENTARY FIGURES

Figure S1. Chemical structure of Ac₂PIM₆ and proposed catalytic mechanism for PimA. A. The PIM family of glycolipids comprises PI mono-, di-, tri-, tetra-, penta-, and hexamannosides with different degrees of acylation. PIM₂ and PIM₆ are the two most abundant classes found in *Mycobacterium bovis* bacillus Calmette-Guérin (BCG), M. tuberculosis H37Rv, and Mycobacterium smegmatis 607 (51). The complete chemical structures of the acylated native forms of PIM_2 and PIM_6 were unequivocally established in *M. bovis* BCG (53, 52). PIM₂ is composed of two Manp residues attached to positions 2 and 6 of the myoinositol ring of PI. PIM₆ is composed pentamannosyl of group, а $t-\alpha-Manp(1\rightarrow 2)-\alpha-Manp(1\rightarrow 2)-\alpha-Manp(1\rightarrow 6)-\alpha-Manp(1\rightarrow 6)-\alpha$ *myo* inositol ring, in addition to the Manp residue present at position 2. PIM_2 (53) was found to initially occurs in multiple acylated forms, where two fatty acids are attached to the glycerol moiety, and two additional fatty acids may esterify available hydroxyls on the Manp residue and/or the myo-inositol ring. The tri- and tetraacylated forms of PIM₂ and PIM₆ (Ac₁PIM₂/Ac₂PIM₂ and Ac₁PIM₆/Ac₂PIM₆) are the most abundant. Ac₁PIM₂ and Ac₁PIM₆ from *M. bovis* BCG show major acyl forms containing two palmitic acid residues (C16) and one tuberculostearic acid residue (10-methyloctadecanoate, C19), where one fatty acyl chain is linked to the Manp residue attached to position 2 of *myo*-inositol, and two fatty acyl chains are located on the glycerol moiety. The tetraacylated forms, Ac_2PIM_2 and Ac_2PIM_6 , are present predominantly as two populations bearing either three

C16/one C19 or two C16/two C19 (51, 52). Mass spectrometry analyses have led to the conclusion that the glicerol moiety is preferentially acylated with C16/C19. Other acylation positions are C3 of the *myo*-inositol unit and C6 of Manp linked to C2 of *myo*-inositol. *B*. PimA catalyzes the transfer of a mannose residue, from GDP-Man, to the 2-position of the inositol ring of PI. *C*. PimA is a retaining glycosyltransferase, proposed to follow an SNi-type reaction mechanism.

Figure S2. Final (2*Fo-Fc*) electron density map for MsPimA-GMP complex (contoured at 1σ). Final (2*Fo-Fc*) electron density map for the overall structure of the MsPimA-GMP complex (A and B) and GMP (C; contoured at 1σ) is shown.

3. SUPPLEMENTARY MATERIALS AND METHODS

3.1. Chemical synthesis of Man-PP-RIB.

Scheme S1. (i) Dowex 50WX8, MeOH, 18 h, rt, quant. (ii) Trityl chloride, Py, 50 °C, 9 h, then Ac₂O, 15 h, rt, 50%. (iii) AcOH, H₂O, 65 °C, 90 min, 72%. (iv) 1*H*-tetrazole, dibenzyl *N*,*N*-diisopropylphosphoramidite, DCM, 2 h, rt, then ^tBuOOH, 2 h, 0 °C to rt, 49%. (v) H₂, Pd(OH)₂/C, NEt₃, MeOH, 24 h, rt. Then, Imidazole, 2,2'-dithiopyridine, PPh₃, NEt₃, DMF, 15 h, rt. 66 %. (vi) α -D-Mannose-1-phosphate, MgCl₂, DMF, 24 h, rt. 45%.

Methyl 2,3-di-*O***-Acetyl-5-***O***-trityl-β-D-ribofuranoside (1).** Dowex 50WX8 (2.00 g) was added to a vigorously stirred suspension of D-Ribose (5.00 g, 33.33 mmol), in MeOH (100 mL) and stirred 18 h, at 30 °C. The mixture was filtered over a celite pad, then concentrated under reduced pressure to give the intermediate Methyl D-ribofuranoside (anomeric mixture: 5.50 g, quant.) as a transparent syrup. The residue was dissolved in pyridine (60 mL), treated with trityl chloride (10.2 g, 36.63 mmol) and stirred at 50 °C for 9 h. Then, Ac₂O (20 mL, 211.58 mmol) was added and stirred at rt for 15 h, then concentrated. The residue was dissolved in EtOAc (200 mL) and washed with 1M HCl aqueous solution (3 x 30 mL), then aqueous NaHCO₃ sat. solution (30 mL), and brine (30 mL). The organic layer was dried with anhydrous MgSO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexanes/EtOAc, 1:0 to 1:1, v/v) to give compound **1** (pure β anomer: 8.20 g, 50 %) as a white foam.

 $[\alpha]_D^{21} \cong -4 \ (c \ 1.4, \ CH_2Cl_2)$. ¹H NMR (300 MHz, CDCl₃) δ 7.53-7.46 (m, 6H; Ph); 7.36-7.23 (m, 9H; Ph); 5.41 (dd, $J = 6.6, 4.8 \ Hz, 1H; H-3$); 5.29 (dd, $J = 4.8, 1.2 \ Hz, 1H; H-2$); 4.95 (d, $J = 1.2 \ Hz, 1H; H-1$); 4.30 (ddd, $J = 6.6, 5.2, 4.6 \ Hz, 1H; H-4$); 3.37 (s, 3H, OCH₃); 3.31 (dd, $J = 10.0, 4.6 \ Hz, 1H; H-5$); 3.25 (dd, $J = 10.0, 5.2 \ Hz, 1H; H-5$); 2.12 (s, 3H; Ac); 2.03 (s, 3H; Ac). ¹³C NMR (75 MHz, CDCl₃) δ 169.8 (C_{Ac}); 169.7 (C_{Ac}); 143.9 (C_{Ph}); 128.9 (C_{Ph}); 127.9 (C_{Ph}); 127.2 (C_{Ph}); 106.3 (C-1); 86.8 (C_{Tr}); 79.9 (C-4); 74.9 (C-2); 72.2 (C-3); 64.5 (C-5); 55.5 (OCH₃); 20.8 (C_{Ac}); 20.7 (C_{Ac}). Elemental analysis calcd (%) for C₂₉H₃₀O₇: C 71.01, H 6.16, O 22.83; found: C 70.95, H 6.07.

Methyl 2,3-di-*O***-Acetyl-** β **-D-ribofuranoside (2).** A solution of compound **1** (8.20 g, 16.72 mmol) in glacial AcOH (150 mL) was treated with water (40 mL) and stirred for 90 min at 65 °C. The mixture was concentrated under reduced pressure and the residue dissolved in EtOAc (300 mL), washed with aqueous NaHCO₃ sat. solution until neutralization, and brine (50 mL). The organic layer was dried with anhydrous MgSO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexanes/EtOAc, 1:0 to 1:1, v/v) to give compound **2** (2.97 g, 72 %) as a yellow oil. The physical and spectroscopic properties of the product were found to be consistent to those reported in the literature. (54).

¹H NMR (400 MHz, CDCl₃) δ 5.30 (dd, J = 6.1, 5.2 Hz, 1H; H-3); 5.17 (dd, J = 5.2, 1.1 Hz, 1H; H-2) 4.85 (d, J = 1.1 Hz, 1H; H-1); 4.19-4.14 (ddd, J = 6.1, 4.2, 3.4 Hz; 1H; H-4); 3.74 (dd, J = 12.1, 3.4 Hz, 1H; H-5); 3.59 (dd, J = 12.1, 4.2 Hz, 1H; H-5); 3.36 (s, 3H; OCH₃); 2.05 (s, 3H; Ac); 2.00 (s, 3H; Ac).

Dibenzyl [1-O-methyl-2,3-(di-O-acetyl)-5-yl- β -D-ribofuranoside]phosphate (3). To a stirred solution compound 2 (1.00 g, 4.03 mmol) in dry CH₂Cl₂ (50 mL), a 0.45 M solution of 1*H*-Tetrazole in CH₃CN (16.8 mL, 7.55 mmol) and Dibenzyl *N*,*N*-diisopropylphosphoramidite (2.0 mL, 6.04 mmol) were added sequentially via syringe under Ar atmosphere. The reaction mixture was stirred vigorously under inert atmosphere rt for 2 h, at rt. Then, a 5.5 M solution of ^tBuOOH in decane (1.1 mL, 6.04 mmol) was added dropwise via syringe to the reaction mixture at 0 °C and stirred 2 h, at rt, then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (DCM/Et₂O, 1:0 to 9:1, v/v) to give compound **3** (1.00 g, 49 %) as a transparent oil.

 $[α]_D^{22}$ ≅ -10 (*c* 1.3, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.30 (m, 10H; Ph); 5.31 (dd, *J* = 6.8, 5.0 Hz, 1H; H-3); 5.23 (dd, *J* = 5.0, 0.8 Hz, 1H; H-2); 5.07 (dd, *J* = 8.0, 1.2 Hz, 4H; CH₂Ph); 4.90 (d, *J* = 0.8 Hz, 1H; H-1); 4.33-4.25 (m, 1H; H-4); 4.23-4.01 (m, 2H; H-5); 3.34 (s, 3H; OCH₃); 2.12 (s, 3H; Ac); 2.03 (s, 3H; Ac). ¹³C NMR (75 MHz, CDCl₃) δ 169.7 (2 C_{Ac}); 135.9 (C_{Ph}); 135.8 (C_{Ph}); 128.7 (C_{Ph}); 128.7 (C_{Ph}); 128.1 (C_{Ph}); 128.1 (C_{Ph}); 106.4 (C-1); 79.2 (d, *J* = 8.1 Hz; C-4); 74.7 (C-2), 71.5 (C-3); 69.6 (CH₂Ph); 69.5 (CH₂Ph); 67.9 (d, *J* = 5.6 Hz; C-5), 55.4 (OCH₃); 20.7 (C_{Ac}); 20.6 (C_{Ac}). ³¹P NMR (121 MHz, CDCl₃) δ -1.21 (s). Elemental analysis calcd (%) for C₂₄H₂₉O₁₀P: C 56.69, H 5.75, O 31.47, P 6.09; found: C 56.34, H 5.83, P 6.16.

[1-O-methyl- β -D-ribofuranoside-5-yl] imidazolyl phosphate (4). Compound 3 (420 mg, 0.82 mmol) is solved in MeOH (5 mL) and NEt₃ (2 mL, 7.5 mmol). Pd(OH)₂ (20 % on carbon, 50 mg, 0.07 mmol) was added and atmosphere is replaced by H₂ and purged 3 times prior to hydrogenate at 3 bar for 24 hours at rt. After filtration, solvent was removed under vacuum and the residue was solved in a small quantity of water and freeze-dried. It was resolved in anhydrous DMF (2 mL), with 2,2'-dithiopyridine (540 mg, 2.46 mmol, 3 eq.) and imidazole (557 mg, 8.2 mmol, 10 eq.) and was added trimethylamine (0.45 mL, 3.28 mmol, 4 eq.) and triphenylphosphine (645 mg, 2.46 mmol, 3 eq.) at room temperature under argon. The reaction was stirred for 15 h. The product was precipitated from the reaction mixture by the addition of an anhydrous solution of NaCLO₄ (800 mg, 6.5 mmol, 8 eq.) in dry acetone (50 mL). The heterogeneous mixture was cooled at 0°C under argon. The precipitate was filtered, washed twice with cold, dry acetone and dried *in vacuo* over P₂O₅ to yield 4 (160 mg, 66 %) as a white solid (55).

mp: 60-62 °C. $[\alpha]_D{}^{20} \cong -29$ (*c* 0.8, H₂O). ¹H NMR (400 MHz, D₂O) δ 7.86 (t, *J* = 1Hz, 1H; H-Im); 7.24 (c, *J* = 1.5 Hz, 1H; H-Im); 7.06-7.04 (m, 1H; H-Im); 4.78 (d, *J* = 1 Hz, 1H; H-1); 4.06 (ddd, *J* = 6.7, 4.7, 0.4 Hz, 1H; H-3); 3.98-3.90 (m, 3H; H-2, H-4, H-5); 3.73 (dt, *J* = 11.2, 5.4 Hz, 1H; H-5'); 3.20 (s, 3H; OCH₃). ¹³C NMR (100 MHz, D₂O) δ 136.5 (C_{Im}), 128.4 (C_{Im}); 119.9 (C_{Im}); 107.9 (C-1); 81.4 (C-4); 74.1 (C-2); 70.7 (C-3); 66.5 (C-5); 55.2 (OCH₃). ³¹P NMR (162 MHz, D₂O) δ -7.80. Elemental analysis calcd (%) for C₉H₁₅N₂O₇P: C 36.74; H 5.14; N 9.52; O 38.07; P 10.53; found: C 36.64; H 5. 11; N 9.48; P 10.50.

1-O-methyl-β-D-ribofuranose-diphosphate-1-α-D-mannose (Man-PP-RIB). α-D-mannose-1-phosphate free acid (52 mg, 0.2 mmol) was dissolved in water (2 mL) and NEt₃, and stirred for 30 minutes. Solvent was removed in vacuo and the resulting syrup was freeze-dried. The lyophilized solid was solved with MgCl₂ (38 mg, 0.4 mmol, 2 eq.) in anhydrous DMF (1.5 mL) and a solution of compound **4** (88 mg, 0.3 mmol, 1.5 eq) in anhydrous DMF (1.0 mL) was added under argon. This reaction was stirred for 24 h and the solvent was removed under vacuum. The mixture was purified by semi-preparative HPLC using a Waters Atlantis column eluting with water containing 0.5 % of NEt₃ to afford, after freeze-drying, **Man-PP-RIB** (62 mg, 45 %) as a hygroscopic solid.

 $[α]_D^{20}$ ≅ -48 (*c* 0.5, H₂O). ¹H NMR (500 MHz, D₂O) δ 5.25 (d, *J* = 7.0 Hz, 1H, H-1_{man}); 4.80 (s, 1H, H-1rib); 4.31 (t, *J* = 5.6 Hz, 1H, H-3_{rib}); 4.19 (c, *J* = 6.4 Hz, 1H, H-4_{rib}); 4.09-3.91 (m, 3H, H-2_{rib}, H-5_{rib}); 3.91-3.78 (m, 4H, H-2_{man}, H-4_{man}, H-5_{man}, H-6_{man}); 369-3.62 (m, 1H, H-6'_{man}); 3.53 (t, *J* = 7.7 Hz, 1H, H-3_{man}); 3.32 (s, 3H, OCH₃), 2.97 (c, *J* = 7.3 Hz, 12H, NCH₂); 1.27 (t, *J* = 7.3 Hz, 18H, NCH₂CH₃). ¹³C NMR (125 MHz, D₂O) δ 107.8 (C-1_{rib}); 94.9 (d, *J* = 5.0 Hz; C-1_{man}); 80.9 (d, *J* = 9.5 Hz; C-4_{rib}); 74.0 (C-2_{rib}); 72.8 (C-4_{man}); 71.1 (d, *J* = 7.2 Hz; C-2_{ma}n); 70.4 (C-3_{rib}); 70.1 (C-5_{man}); 67.1 (C-3_{man}); 66.6 (d, *J* = 5.5 Hz; C-5_{rib}); 61.2 (C-6_{man}); 54.9 (OCH₃): 46.7 (NCH₂); 8.4 (NCH₂CH₃). ³¹P NMR (162 MHz, D₂O) δ -11.3 (d, *J* = 18.8 Hz); -13.8 (d, *J* = 18.6 Hz). Elemental analysis calcd (%) for C₂₄H₅₄N₂O₁₆P₂: C 41.86, H 7.90, N 4.07 O 37.17, P 9.00; found: C 41.63, H 7.98, N 3.95 P 8.91.

3.2. Chemical synthesis PP-RIB.

Scheme S2. (i) 1*H*-Tetrazole, Dibenzyl *N*,*N*-diisopropylphosphoramidite, DCM, 2 h, rt, then ^tBuOOH, 2 h, 0 °C to rt, 47%. (ii) H₂, 35 Bar, Pd(OH)₂/C, MeOH, 20 h, rt, quant. (iii) Et₃N, 1*H*-Tetrazole, Dibenzyl *N*,*N*-diisopropylphosphoramidite, DMF, 8 h, rt, then ^tBuOOH, 15 h, 0 °C to rt, 68%. (iv) TFA, H₂O, 30 min, rt, 32%. (v) H₂, 30 Bar, Pd(OH)₂/C, MeOH/H₂O, NH₄HCO₃ 18 h, rt, 86%.

Dibenzyl [1-0-methyl-2,3-(di-0-isopropylidene)-5-yl-\beta-D-ribofuranoside]phosphate (6). Compound 5 was prepared according to methods reported in literature (56). The physical and spectroscopic proprieties were found to be identical to those reported. To a stirred solution of compound 5 (500 mg, 2.45 mmol) in dry DCM (30 mL), a 0.45 M solution of 1*H*-Tetrazole in CH₃CN (10.2 mL, 4.59 mmol) and Dibenzyl *N*,*N*-diisopropylphosphoramidite (1.2 mL, 3.67 mmol) were added sequentially via syringe under Ar atmosphere. The reaction mixture was stirred vigorously under inert atmosphere rt for 2 h, at rt. Then, a 5.5 M solution of ¹BuOOH in decane (670 µL, 3.75 mmol) was added dropwise via syringe to the reaction mixture at 0 °C and stirred 2 h, at rt, then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (DCM/Et₂O, 1:0 to 97:3, v/v) to give compound 6 (529 mg, 47 %) as a transparent oil.

 $[\alpha]_{D}^{21} \cong -31 \ (c \ 0.9, \ CH_{2}Cl_{2}). \ ^{1}H \ NMR \ (400 \ MHz, \ CDCl_{3}) \ \delta \ 7.32 - 7.23 \ (m, \ 10H; \ Ph); \ 4.98 \ (dd, \ J = 8.4, \ 3.8 \ Hz, \ 4H; \ CH_{2}Ph); \ 4.86 \ (s, \ 1H; \ H-1); \ 4.53 \ (d, \ J = 5.9 \ Hz, \ 1H; \ H-3); \ 4.44 \ (d, \ J = 5.9 \ Hz, \ 1H; \ H-2); \ 4.21 \ (ddd, \ J = 8.0, \ 5.9, \ 1.0 \ Hz, \ 1H; \ H-4); \ 3.87 \ (qdd, \ J = 10.3, \ 8.0, \ 6.5 \ Hz, \ 2H; \ H-5); \ 3.18 \ (s, \ 3H; \ OCH_{3}); \ 1.39 \ (s, \ 3H; \ CH_{3lsp}); \ 1.21 \ (s, \ 3H; \ CH_{3lsp}). \ ^{13}C \ NMR \ (100 \ MHz, \ CDCl_{3}) \ \delta \ 135.8 \ (C_{Ph}); \ 135.8 \ (C_{Ph}); \ 128.7 \ (C_{Ph}); \ 128.1 \ (C_{Ph}); \ 112.6 \ (C_{Isp}); \ 109.4 \ (C-1); \ 85.1 \ (C-2); \ 84.7 \ (d, \ J = 8.8 \ Hz; \ C-4); \ 81.6 \ (C-3); \ 69.6 \ (CH_{2}Ph); \ 69.6 \ (CH_{2}Ph); \ 67.2 \ (d, \ J = 5.9 \ Hz; \ C-5); \ 55.1 \ (OCH_{3}); \ 26.5 \ (C_{Isp}); \ 25.0 \ (C_{Isp}). \ ^{31}P \ NMR \ (162 \ MHz, \ CDCl_{3}) \ \delta \ 0.00 \ (s). \ Elemental analysis \ calcd \ (\%) \ for \ C_{23}H_{29}O_{8}P: \ C \ 59.48, \ H \ 6.29, \ O \ 27.56, \ P \ 6.67; \ found: \ C \ 60.66, \ H \ 6.06, \ P \ 6.74. \ \ 100$

Dihydrogen [1-*O*-methyl-2,3-(di-*O*-isopropylidene)-5-yl- β -D-ribofuranoside]phosphate (7). A stirred solution of compound 6 (529 mg, 1.14 mmol) in MeOH (25 mL), was bubbled with Ar for 15 minutes, and then Pd(OH)₂ (20 % on carbon, 80 mg, 0.14 mmol) was added under inert atmosphere. The Ar atmosphere was substituted with H₂ and purged 5 times prior to hydrogenate at 35 bar for 20 hours at rt. The mixture was filtered over a celite pad, and then concentrated under reduced pressure to give 7 (323 mg, quant.) as a transparent liquid, used in the next step without further purification.

 $[\alpha]_{D}^{24} \cong -46 \ (c \ 1.2, \ MeOH).$ ¹H NMR (300 MHz, Methanol- d_4) δ 4.94 (s, 1H; H-1); 4.78 (d, $J = 6.0 \ Hz$, 1H; H-3); 4.62 (d, $J = 6.0 \ Hz$, 1H; H-2); 4.33-4.26 (m, 1H; H-4), 3.99-3.87 (m, 2H; H-5); 3.34 (s, 3H; OCH₃); 1.45 (s, 3H; CH₃), 1.32 (s, 3H; CH₃). ¹³C NMR (75 MHz, Methanol- d_4) δ 113.5 (C_{1sp}); 110.7 (C-1); 86.3 (d, $J = 9.1 \ Hz$; C-4); 86.3 (C-2); 82.9 (C-3); 67.5 (d, $J = 5.5 \ Hz$; C-5); 55.3 (OCH₃); 26.7 (C_{1sp}); 25.0 (C_{1sp}). ³¹P NMR (121 MHz, Methanol- d_4) δ 0.13 (br). Elemental analysis calcd (%) for C₉H₁₇O₈P: C 38.04, H 6.03, O 45.04, P 10.90; found: C 38.69, H 6.19, P 10.76.

Dibenzyl [1-O-methyl-2,3-(di-O-isopropylidene)-5-yl-\beta-D-ribofuranoside] triethylammonium diphosphate (8). Compound 7 (320 mg, 1.13 mmol) was dissolved in dry DMF and concentrated under reduced pressure 3 times prior to use. The resulting dry residue was dissolved in anhydrous DMF (40 mL), and to the stirred solution, dry Et₃N (155 μ L, 1.13 mmol) and then a 0.45 M solution of 1*H*-Tetrazole in CH₃CN (6.2 mL, 2.79 mmol) were added sequentially via syringe under Ar atmosphere. To the resulting mixture Dibenzyl *N*,*N*-diisopropylphosphoramidite (760 μ L, 2.25 mmol) was added via syringe and stirred vigorously under inert atmosphere for 8 h, at rt. Then, a solution of ^tBuOOH in decane (400 μ L, 2.25 mmol) was added dropwise to the reaction mixture at 0 °C and stirred 15 h at rt, then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (DCM/MeOH, 1:0 to 95:5 containing 1 % Et₃N, v/v) to give compound 8 (493 mg, 68 %) as a transparent syrup.

 $[α]_D^{24}$ ≈ -28 (*c* 1.5, MeOH). ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.43-7.32 (m, 10H; Ph); 5.18-5.12 (m, 4H; CH₂Ph); 4.90 (s, 1H; H-1); 4.81 (d, *J* = 6.0 Hz, 1H; H-3); 4.57 (d, *J* = 6.0 Hz, 1H; H-2); 4.31 (dd, *J* = 8.8, 6.0 Hz, 1H; H-4); 4.01-3.92 (m, 2H; H-5), 3.28 (s, 3H; OCH₃); 3.17 (q, *J* = 7.3 Hz, 6H; NCH₂CH₃) 1.43 (s, 3H; CH_{3Isp}); 1.29 (t, *J* = 7.3 Hz, 9H; NCH₂CH₃); 1.28 (s, 3H; CH_{3Isp}). ¹³C NMR (75 MHz, Methanol-*d*₄) δ 136.0 (C_{Ph}); 135.9 (C_{Ph}); 128.2 (C_{Ph}); 127.7 (C_{Ph}); 127.7 (C_{Ph}); 112.0 (C_{Isp}); 109.3 (C-1); 85.1 (d, *J* = 9.6 Hz; C-4); 85.0 (C-2); 81.7 (C-3); 69.5 (d, *J* = 5.7 Hz; CH₂Ph); 69.5 (d, *J* = 5.7 Hz; CH₂Ph); 66.4 (d, *J* = 6.3 Hz; C-5); 53.8 (OCH₃); 46.3 (NCH₂CH₃); 24.3 (C_{Isp}); 23.6 (C_{Isp}); 7.8 (NCH₂CH₃). ³¹P NMR (162 MHz, Methanol-*d*₄) δ -11.96 (d, *J* = 20.0 Hz); -12.69 (d, *J* = 20.0 Hz). Elemental analysis calcd (%) for C₂₉H₄₅NO₁₁P₂: C 53.95, H 7.03, N 2.17, O 27.26, P 9.60; found: C 53.04, H 6.83, N 2.25, P 9.74.

Dibenzyl [1-O-methyl-5-yl-β-D-ribofuranoside] ammonium diphosphate (9). Compound **8** (250 mg, 0.39 mmol) was suspended in H₂O (7 mL), treated with TFA (7 mL) and stirred at rt for 30 min, then concentrated under reduced pressure. The residue was eluted trough Dowex 50W X8 (NH₄⁺ form) with H₂O/MeOH (70:30, v/v) solution. The elutant was concentrated under reduced pressure and the residue purified on a Sephadex LH-20 (1 x 70 cm) column, eluted with 100 mM NH₄HCO₃ in H₂O/MeOH (70:30, v/v) solution and concentrated under reduced pressure to give **9** (65 mg, 32 %) as a transparent syrup.

 $[\alpha]_D^{22} \cong -10 \ (c \ 1.0, \ MeOH).$ ¹H NMR (300 MHz, Methanol- d_4) δ 7.41-7.25 (m, 10H; Ph); 5.14 (d, $J = 8.0 \ Hz$, 4H; CH₂Ph); 4.74 (d, $J = 0.9 \ Hz$, 1H; H-1); 4.18-3.96 (m, 4H; H-3, H-4, H-5); 3.89 (dd, $J = 4.6, 0.9 \ Hz$, 1H; H-2); 3.30 (s, 3H; OCH₃). ¹³C NMR (75 MHz, Methanol- d_4) δ 137.4 (C_{Ph}); 137.3 (C_{Ph}); 129.5 (C_{Ph}); 129.5 (C_{Ph}); 129.1 (C_{Ph}); 109.8 (C-1); 83.1 (d, $J = 9.2 \ Hz$; C-4); 76.2 (C-2); 77.9 (C-3); 70.9 (CH₂Ph); 70.9 (CH₂Ph); 69.1 (d, $J = 6.0 \ Hz$; C-5); 55.3 (OCH₃). ³¹P NMR (121 MHz, Methanol- d_4) δ -11.51 (d, $J = 19.7 \ Hz$); -12.77 (d, $J = 19.7 \ Hz$). Elemental analysis calcd (%) for C₂₀H₂₉NO₁₁P₂: C 46.07, H 5.61, N 2.69, O 33.75, P 11.88; found: C 45.89, H 5.45, N 2.66, P 11.67.

Dihydrogen [1-0-methyl-5-yl-\beta-D-ribofuranoside] ammonium diphosphate (PP-RIB). To a stirred solution of **9** (31 mg, 0.06 mmol) in MeOH (3 mL), H₂O (1 mL) and NH₄HCO₃ (24 mg, 0.30 mmol) were added. The resulting solution was then bubbled with Ar for 15 minutes, and then Pd(OH)₂ (20 % on carbon, 21 mg, 0.03 mmol) was added under inert atmosphere. The Ar atmosphere was substituted with H₂ and purged 5 times prior to hydrogenate at 30 bar for 18 hours at rt. The mixture was filtered over a celite pad, and then concentrated under reduced pressure. The residue was purified on a Sephadex LH-20 (1 x 70 cm) column, eluted with 100 mM NH₄HCO₃ in H₂O solution and concentrated under reduced pressure to give **PP-RIB** (18 mg, 86 %) as a white solid.

mp: 73-75 °C. $[\alpha]_D^{22} \cong$ -13 (*c* 0.9, H₂O). ¹H NMR (500 MHz, D₂O^{25°C}) δ 4.90 (d, *J* = 1.3 Hz, 1H; H-1); 4.29 (dd, *J* = 6.7, 4.7 Hz, 1H; H-3); 4.13 (dd, *J* = 6.5, 3.8 Hz, 1H; H-4); 4.11-4.04 (m, 2H; H-2, H-5); 4.00 (dd, *J* = 11.0, 5.6 Hz, 1H; H-5); 3.40 (s, 3H; OCH₃). ¹³C NMR (125 MHz, D₂O^{25°C}) δ 107.9 (C-1); 81.3 (d, *J* = 7.9 Hz; C-4); 74.0 (C-2); 70.5 (C-3); 65.9 (d, *J* = 3.7 Hz; C-5); 55.3 (OCH₃). ³¹P NMR (121 MHz, D₂O^{25°C}) δ -6.30 (br); -10.35 (br). Elemental analysis calcd (%) for C₆H₁₇NO₁₁P₂: C 21.12, H 5.02, N 4.11, O 51.59, P 18.16; found: C 21.24, H 4.89, N 4.18, P 18.88.

3.3. ¹H and ¹³C NMR spectra of Man-PP-RIB, PP-RIB and precursors compounds.

4. SUPPLEMENTARY REFERENCES

- 50. Rambo RP, Tainer JA. (2013). Accurate assessment of mass, models and resolution by smallangle scattering. *Nature*. 496, 477-481.
- 51. Gilleron M, Ronet C, Mempel M, Monsarrat B, Gachelin G, Puzo G. (2001). Acylation state of the phosphatidylinositol mannosides from *Mycobacterium bovis* bacillus Calmette Guérin and ability to induce granuloma and recruit natural killer T cells. *J. Biol. Chem.* 276, 34896–34904.
- 52. Gilleron M, Quesniaux VF, Puzo G. (2003). Acylation state of the phosphatidylinositol hexamannosides from *Mycobacterium bovis* bacillus Calmette Guerin and *Mycobacterium tuberculosis* H37Rv and its implication in Toll-like receptor response. *J. Biol. Chem.* 278, 29880–29889.
- 53. Brennan P, Ballou CE. (1967). Biosynthesis of mannophosphoinositides by *Mycobacterium phlei*. The family of dimannophosphoinositides. *J. Biol. Chem.* 242, 3046–3056.
- 54. Taverna-Porroa M, Bouvier LA, Pereira CA, Montserrat JM, Iribarren AM. 2008. Chemoenzymatic preparation of nucleosides from furanoses. *Tetrahedron Lett.* 49, 2642–2645.
- 55. Li T, Tikad A, Pan W, Vincent SP. 2014. β-Stereoselective phosphorylations applied to the synthesis of ADP- and polyprenyl-β-mannopyranosides. *Org. Lett.* 16, 5628–5631.
- 56. Van derpoorten K, Migaud ME. 2004. Isopolar phosphonate analogue of adenosine diphosphate ribose. *Org. Lett.* 6, 3461–3464.