Supporting Information for: Influence of External NaCl Salt on Membrane Rigidity of Neutral DOPC Vesicles

Judith U. De Mel,¹ Sudipta Gupta,^{1*} Rasangi M. Perera,¹ Ly Ngo,¹ Piotr Zolnierczuk, ² Markus

Bleuel,³ Sai Venkatesh Pingali,⁴ and Gerald J. Schneider^{1,5*}

¹Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States

²Jülich Centre for Neutron Science (JCNS), Outstation at SNS, POB 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States

³NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8562, United States

⁴Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), POB 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States

⁵Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States

Table of Contents

Page S2: Figure S1. Steps for vesicle preparation.
Page S3: Figure S2. Viscosity of different DOPC suspensions in D₂O solutions as a function of temperature.
Page S4: Figure S3. Viscosity of 5 wt% DOPC vesicles in D₂O, in 150 mM NaCl and in 470 mM NaCl as a function of temperature.
Page S4: Figure S4. Cryo-TEM images for 470 mM NaCl in DOPC.
Page S5: Figure S5. SAXS diffraction data for 0, 150, and 470 mM samples.

Page S6: Figure S5. Zilman-Granek (ZG) decay rate as a function of momentum transfer. Vesicle Preparation

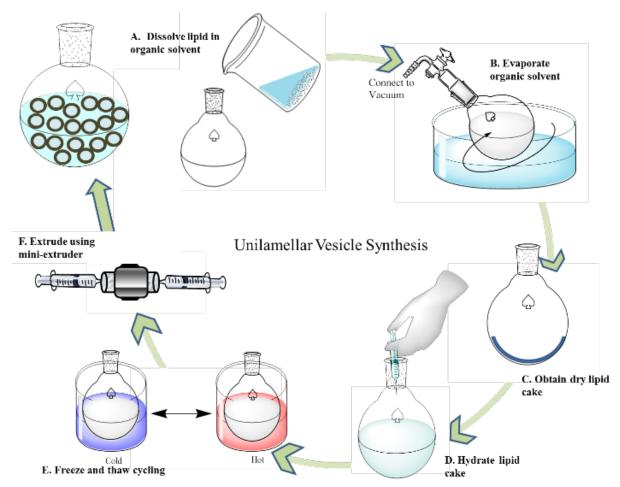


Figure S1. Schematic diagram depicting the steps for vesicle preparation

Macroscopic viscosity

Viscosity data of DOPC vesicles in D₂O with concentration and temperature variation

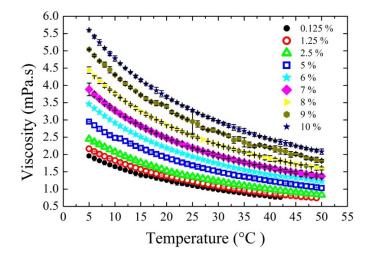


Figure S2. Viscosity of different DOPC vesicles in D_2O solutions as a function of temperature (DOPC concentrations are expressed in wt%)

The dynamic viscosities of the solutions were measured using a microviscometer (Anton Paar, Lovis 2000M) which employs the Höppler principle. H_2O was used as a reference standard. It can be observed that the viscosity of the DOPC vesicle solutions in D_2O increases with the concentration and decreases with temperature systematically.

Viscosity of DOPC vesicles in D₂O and NaCl

Dynamic viscosity was measured for a concentration series of DOPC vesicle and salt suspensions in D₂O by a microviscometer (Anton Paar, Lovis 2000M).

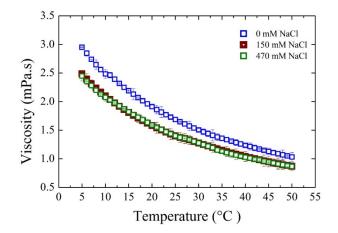


Figure S3. Viscosity of 5 wt% DOPC vesicles in D_2O (blue), in 150 mM NaCl (brown) and in 470 mM NaCl (green) as a function of temperature

Viscosity of the DOPC vesicle solution reduces in the presence of NaCl in comparison to pure D_2O . Viscosity decreases with temperature systematically.

Cryo-TEM images

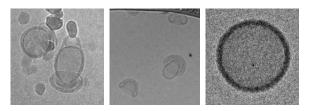


Figure S4. Cryo-TEM images for 470 mM NaCl in DOPC

The cryo-TEM images for 470 mM depict mixed or fused vesicle structures.

Caille analysis

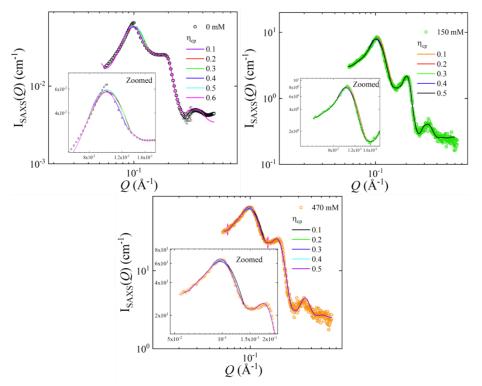


Figure S5. SAXS data for 0, 150, and 470 mM NaCl samples modeled with different Caille parameters as shown in the legends.

NSE analysis

The Zilman-Granek (ZG) decay rate as a function of momentum transfer, Q, is presented in Figure S6.

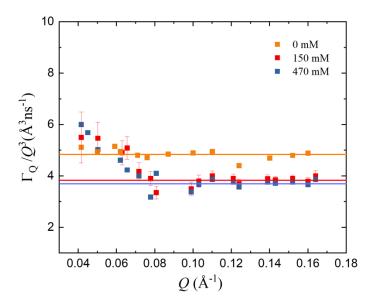


Figure S6. Variation of ZG decay rate, Γ_Q , as function of Q for different NaCl concentration. In presence of salt, Γ_Q/Q^3 is constant, for $Q \ge 0.1 \text{ Å}^{-1}$.