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S1. Water quality of FS and DS in FDFO system 21 

In 2016, a total of 6 and 131 million m3 of FPW was produced in China and USA, 22 

respectively and it is expected that this value will reach up to 50−55 and 499−3585 million m3 23 

in 2030 in China and USA, respectively.1,2 In fact, the water quality exhibits obvious spatial 24 

and temporal changes.3 The TDS of shale gas FPW varies significantly, ranging from 6906 to 25 

28,900 mg·L−1 in Sichuan Basin, and more than 300,000 mg·L−1 was also reported in Marcellus, 26 

USA.4 The goal of this study is to recycle or reuse the shale gas FPW to achieve the sustainable 27 

water reuse and shale gas development.  28 

The FDFO has been assessed in many fields, such as sewage, mine impaired water and 29 

coal seam gas (CSG) produced water. As summarized in Table S1, compared to other types of 30 

feedwater used as FS in FDFO systems, the shale gas FPW in Sichuan Basin in this study is 31 

more complicated with higher salinity and relative low organics. A low feed concentration is 32 

more favorable in FDFO system. Usually, the diluted fertilizer DS still required substantial 33 

dilution to meet the irrigation water quality standards in terms of nutrient concentration,5 and 34 

a large dilution factor may be required for final fertilizer solution when feedwater with a high 35 

TDS is used as FS. Some researchers have investigated hybrid processes for simultaneous 36 

wastewater treatment and the agricultural application, such as FDFO-nanofiltration,6,7 and 37 

reverse osmosis-FDFO for dilution of fertilizers.8 However, considering the utilization of 38 

solid/liquid fertilizer for agriculture irrigation, the nutrient concentrations obtained draw 39 

solution (DS) during FDFO operation are much lower than commercial solid/liquid fertilizers. 40 

Although a large amount of freshwater is needed during irrigation, a concentrated fertilizer 41 

solution is still beneficial to irrigation. Therefore, the salinity of shale gas FPW is not a limiting 42 
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factor for the utilization of FDFO for irrigation. 43 

Table S2 summarizes the characteristics of the selected fertilizers as DS in FDFO system. 44 

The water extraction capacity of each fertilizer depends on the TDS of the FS, the solubility 45 

and molecular weight of the fertilizer, as well as the molar concentration of the fertilizer 46 

solution at osmotic equilibrium with the bulk osmotic pressure of the FS.8  47 

 48 

Table S1 Characteristics of primary water quality parameters of feed solution (FS) used in this 49 

study and in literature using FDFO for irrigation 50 

Parameter Shale gas FPW Raw sewage9 Mine impaired water6 CSG reverse osmosis 
brine8 

Turbidity (NTU) 0.16±0.03 / 1.0±0.15 1 

DOC (mg·L−1) 13.84±0.35 72.6±1.2 2.1±0.53 / 

UV254 (cm−1) 0.053±0.005 / / / 

pH 7.39±0.08 7.13±0.2 7.8±0.3 9.07 

EC (mS·cm−1) 36.34±0.18 1.079±0.005 5.4±0.5 22.58±0.02 

TDS (mg·L−1) 22,530±120 / 2491±85 15,354±12 

Li+ (mg·L−1) 39.54±7.56 / / / 

Na+ (mg·L−1) 8350±205 / 812±67 6089±48 

K+ (mg·L−1) 139.6±4.1 18.2±1.1 7.0±1.1 28.7±0.6 

NH4
+ (mg·L−1) 124.2±15.7 38.5±5.8 12.0±4.0 / 

Ca2+ (mg·L−1) 429.4±19.0 / 48.0±3.8 36.3±0.6 

Mg2+ (mg·L−1) 50.69±7.32 / 22.0±2.1 14.7±0.6 

Mn2+ (mg·L−1) 54.18±5.62 / 0.01 / 

Sr2+ (mg·L−1) 71.13±7.98 / / / 

F− (mg·L−1) 7.37±1.96 / / / 

Cl− (mg·L−1) 13020±463 / 983±26 4793±87 

Br− (mg·L−1) 102.4±14.3 / / / 

NO3
− (mg·L−1) 29.94±6.67 / ＜0.005 / 

SO4
2− (mg·L−1) 19.71±3.64 / 607±27 23.3±3.1 

Si (mg·L−1) / 5.4 ±0.5 ＜0.009 5.21±0.17 

SAR 101.3±4.9 / / 215.3±1.2 

π (bar) 17.4 / / / 

Note: DOC, dissolved organic carbon; EC, electrical conductivity; TDS, total dissolved solid; SAR, sodium 51 

adsorption ration; π, osmotic pressure. 52 

 53 

Table S2 Characteristics of the selected fertilizers as DS in FDFO system 54 
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Fertilizers pH a EC 
(mS·cm−1) a 

Solubility 
(mol·L−1) b 

Osmotic 
pressure (bar) b 

CAS 
number 

Purity 
(%) 

Supplier 

KCl 5.15 204 4.6 89.3 7447-40-7 99.5 Kelong 

Chemical 

(Chengdu, 

China) 

SOA 5.20 226 5.7 92.1 7783-20-2 99.0 

MAP 3.75 83.65 3.7 86.3 7772-76-1 99.0 

DAP 8.33 102.8 6.5 95.0 7783-28-0 99.0 

KNO3 5.31 156.9 3.3 64.9 7757-79-1 99.0 

 MW 
(g·mol 

−1) 

Concentration 
at 17.4 bar 
(mol·L−1) 

Volume from 
FPW (L·kg−1) 
c 

Species (mol·L−1) b  

KCl 74.6 0.413 26.6 K+, 1.99; Cl−, 1.99; KCl (aq.), 0.01. 

SOA 132.1 0.361 18.5 NH4
+, 3.07; SO4

2−, 1.07; NH4SO4
−, 0.93. 

MAP 115.0 0.392 16.1 NH4
+, 2.0; H2PO4

−, 1.76; H2P2O7
2− (ion), 0.10; 

H3PO4 (aq.), 0.02; HP2O7
3− (ion), 0.004. 

DAP 132.1 0.316 21.7 NH4
+, 3.94; HPO4

2− (ion), 1.79; P2O7
4− (ion), 0.07; 

H2PO4
− (ion), 0.02; HP2O7

3− (ion), 0.02. 

KNO3 101.1 0.413 17.4 K+, 2.0; NO3
−, 2.0. 

Note: a. Values were measured using 2 mol·L−1 of DS at 25oC; b. Values were obtained at a temperature of 55 

25oC;10 c. Water extraction capacity was calculated using the equation modified with SRSF.8 56 
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S2. Feed concentration factor and characteristics of FO membranes after operation 57 

When shale gas FPW was used as FS, the variations of EC in FS with operation time using 58 

different fertilizer DS are illustrated in Figure S1. The EC increased fastest for DS using KCl, 59 

followed by KNO3, SOA and MAP, while the slowest increase was observed for DAP.  60 

 61 

Figure S1. Variation of electrical conductivity in FS with operation time: (A) under the AL-62 

DS mode and (B) under the AL-FS mode. 63 

 64 

The SEM images of virgin membranes, fouled membranes and membranes after osmotic 65 

backwashing using different types of fertilizers are presented in Figure S2. An energy 66 

dispersive spectrometer (EDS, X-Max Extreme, Oxford-Instruments) that was equipped with 67 

SEM was used to detect the elemental compounds of membrane surface at a magnification of 68 

2000. The EDS analysis for virgin and fouled FO membranes using different types of fertilizers 69 

as DS is summarized in Figure S3. Scaling powder in fouled membrane using DAP as DS under 70 

AL-DS mode was collected and was analyzed by PANalytical Empyrean X-ray diffraction 71 

(XRD) with 2θ ranging from 10° to 70° (Cu Kα, λ=1.540598 Å), as shown in Figure S4. 72 

 73 
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Figure S2. Comparison of SEM images of (A)(B) virgin membranes, (C-U) membranes after 75 

fouling and after osmotic backwashing for FDFO using different types of fertilizers under AL-76 

DS and under AL-FS. 77 

 78 

 79 

Figure S3. Element composition of virgin and fouled FO membranes by EDS analysis using 80 

different types of fertilizers (A) under the AL-DS mode and (B) under the AL-FS mode. 81 

 82 

 83 

Figure S4. XRD pattern of fouled membrane using DAP as DS under AL-DS mode. The XRD 84 

peaks agree well with those of commercial struvite.11 85 
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 86 

Figure S5. Variation in permeate flux with time in long-term operation of FDFO using mixed 87 

fertilizers as DS. The pH of feed solution (FS), rejections of DOC and Na+ are labeled in the 88 

figure. Experimental conditions: Shale gas FPW as FS, mixed fertilizers of KNO3 (1 mol·L−1) 89 

and MAP (1 mol·L−1) as DS; crossflow velocity of 8.3 cm·s−1; temperature of 25 ± 0.5 °C; 90 

water recovery of 35%.   91 
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S3. Culture of Chinese cabbage in soil  92 

To further investigate the effect of irrigation water on the physiological characteristics of 93 

plants, the Chinese cabbages were also cultivated in soil for 8 weeks. The seeds were grown in 94 

rectangle tabletop planters with the effective height, width and length of 14, 20 and 60 cm, 95 

respectively. Five groups were cultivated for each type of irrigation water, with 5 seeds for each 96 

group, and an apart distance of approximately 10 cm was kept for each group. All groups were 97 

subjected to irrigation every day by different types of irrigation water.  98 

 99 

 100 

Figure S6. (A) Photos of Chinese cabbage and (B) variation of the weight of each Chinese 101 

cabbage with time using different types of irrigation water. In chart B, the increase in weight 102 

(i.e., the difference of final weight and seed weight) was used as y-axis.   103 
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S4. RNA extraction and gene expression  104 

RNA extraction. The total RNA of whole plant was extracted using TRIzol® Reagent 105 

(Invitrogen) following the manufacturer’s guidelines and genomic DNA was removed using 106 

DNase I (TaKara). Then RNA quality was determined by 2100 Bioanalyser (Agilent) and 107 

quantified using a NanoDrop2000 (Vernon Hills, IL, USA) spectrophotometer at wavelengths 108 

of 230, 260 and 280 nm. Only high-quality RNA sample (OD260/280 = 1.8~2.2, OD260/230 ≥ 2.0, 109 

RIN ≥ 6.5, 28S/18S ≥ 1.0, content > 2 μg) was used to construct sequencing library. 110 

Library preparation, and Illumina Hiseq novaseq6000 Sequencing. RNA-seq 111 

transcriptome librariy was prepared following TruSeqTM RNA sample preparation Kit from 112 

Illumina (San Diego, CA) using 1 μg of total RNA. Shortly, messenger RNA was isolated 113 

according to polyA selection method by oligo(dT) beads and then fragmented by fragmentation 114 

buffer firstly. Secondly double-stranded cDNA was synthesized using a SuperScript double-115 

stranded cDNA synthesis kit (Invitrogen, CA) with random hexamer primers (Illumina). Then 116 

the synthesized cDNA was subjected to end-repair, phosphorylation and ‘A’ base addition 117 

according to Illumina’s library construction protocol. Libraries were size selected for cDNA 118 

target fragments of 200–300 bp on 2% Low Range Ultra Agarose followed by PCR amplified 119 

using Phusion DNA polymerase (NEB) for 15 PCR cycles. After quantified by TBS380, paired-120 

end RNA-seq sequencing library was sequenced with the Illumina HiSeq xten (2 × 150 bp read 121 

length). 122 

Read mapping. The raw paired end reads were trimmed and quality controlled by 123 

SeqPrep (https://github.com/jstjohn/SeqPrep) and Sickle (https://github.com/najoshi/sickle) 124 

with default parameters. Then clean reads were separately aligned to reference genome with 125 
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orientation mode using TopHat (http://tophat.cbcb.umd.edu/, version 2.0.0) software.12 The 126 

mapping criteria of bowtie was as follows: sequencing reads should be uniquely matched to 127 

the genome allowing up to 2 mismatches, without insertions or deletions. Then the region of 128 

gene was expanded following depths of sites and the operon was obtained. In addition, the 129 

whole genome was split into multiple 15 kbp windows that share 5 kbp. New transcribed 130 

regions were defined as more than 2 consecutive windows without overlapped region of gene, 131 

where at least 2 reads mapped per window in the same orientation. 132 

Differential expression analysis and Functional enrichment. To identify DEGs 133 

(differently expressed genes) between two different samples, the expression level of each 134 

transcript was calculated according to the fragments per kilobase of exon per million mapped 135 

reads (FRKM) method. RSEM (http://deweylab.biostat.wisc.edu/rsem/)13 was used to quantify 136 

gene abundances. R statistical package software EdgeR (Empirical analysis of Digital Gene 137 

Expression in R, (http://www.bioconductor.org/packages/2.12/bioc/html/edgeR.html)14 was 138 

utilized for differential expression analysis. In addition, functional-enrichment analysis 139 

including GO and KEGG were performed to identify which DEGs were significantly enriched 140 

in GO terms and metabolic pathways at Bonferroni-corrected P-value ≤0.05 compared with the 141 

whole-transcriptome background. GO functional enrichment and KEGG pathway analysis 142 

were carried out by Goatools (https://github.com/tanghaibao/Goatools) and KOBAS 143 

(http://kobas.cbi.pku.edu.cn/home.do).15  144 

 145 

Table S3 Quality of RNA samples for Cherry radish and Chinese cabbage using different types 146 

of irrigation water 147 
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Irrigation 

water 

Concentration 

(ng·μL−1) 

Content 

(μg) 

OD260/OD280 OD260/OD230 28S/18S RNA Integrity 

Number 

Cherry radish 

DI water 2479.9 86.80 2.11 2.29 1.6 8.6 

FPW5000 2319.5 81.18 2.13 2.27 1.6 8.9 

FPW1000 1999.7 69.99 2.17 2.18 1.9 8.9 

DS350 2386.0 83.51 2.11 2.25 1.6 9.0 

Chinese cabbage 

DI water 1808.0 63.28 2.17 2.31 1.7 8.7 

FPW5000 758.3 26.54 2.19 2.3 1.9 8.2 

FPW1000 801.8 28.06 2.21 2.29 1.7 8.0 

DS350 1069.1 37.42 2.20 2.32 1.6 8.2 

 148 

Table S4 The detailed information of sequenced data for Cherry radish and Chinese cabbage 149 

Irrigation water Raw reads Clean reads %≥Q30 Mapped reads Multiple mapped Uniquely mapped 

Cherry radish 

DI water 44,338,788 43,917,464 94.11% 35,254,734 (80.27%) 7.91% 72.36% 

FPW5000 49,561,634 48,986,252 92.38% 39,349,305 (80.33%) 8.00% 72.33% 

FPW1000 44,565,520 44,165,076 93.80% 35,832,188 (81.13%) 8.60% 72.53% 

DS350 52,143,180 51,664,242 93.84% 41,884,443 (81.07%) 8.33% 72.74% 

Chinese cabbage 

DI water 53,426,728 52,831,954 92.27% 47,034,412 (89.03%) 2.58% 86.44% 

FPW5000 51,374,066 50,875,756 93.14% 45,276,031 (88.99%) 2.94% 86.06% 

FPW1000 52,298,708 51,734,182 93.12% 45,876,940 (88.68%) 3.05% 85.63% 

DS350 43,824,200 43,317,844 92.60% 38,453,195 (88.77%) 2.67% 86.10% 

 150 

Table S5 Derivation distribution of the mapped reads for Cherry radish and Chinese cabbage 151 

Irrigation water Introns 3'UTR CDS 5'UTR Intergenic 

Cherry radish 

DI water 504324.0 (0.94%) 2129100.0 (3.96%) 48691498.0 (90.60%) 2085154.0 (3.88%) 333732.0 (0.62%) 

FPW5000 446233.0 (0.74%) 2002980.0 (3.3%) 55705550.0 (91.90%) 2135714.0 (3.52%) 327411.0 (0.54%) 

FPW1000 441516.0 (0.81%) 1914922.0 (3.52%) 49541618.0 (91.09%) 2113513.0 (3.89%) 376152.0 (0.69%) 

DS350 519022.0 (0.8%) 2092957.0 (3.24%) 59140808.0 (91.53%) 2508165.0 (3.88%) 355181.0 (0.55%) 

Chinese cabbage 

DI water 1527386.0 (2.31%) 0.0 (0.0%) 63175059.0 (95.55%) 0.0 (0.0%) 1411948.0 (2.14%) 

FPW5000 1360634.0 (2.13%) 0.0 (0.0%) 61184407.0 (95.70%) 0.0 (0.0%) 1387399.0 (2.17%) 

FPW1000 1391722.0 (2.17%) 0.0 (0.0%) 61257325.0 (95.67%) 0.0 (0.0%) 1381645.0 (2.16%) 

DS350 1184041.0 (2.18%) 0.0 (0.0%) 51976003.0 (95.65%) 0.0 (0.0%) 1179426.0 (2.17%) 

Note: CSD, coding sequence; UTR, untranslated region. 152 

 153 
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 154 

Figure S7. The chromosome distribution of the mapped reads (top 10) using different types of 155 

irrigation water: (A) Cherry radish and (B) Chinese cabbage. 156 

 157 

Table S6 Correlation between expressed genes of samples for Cherry radish and Chinese 158 

cabbage 159 

Irrigation water DI water FPW3000 FPW1000 DS350 

Cherry radish     

DI water 1.000  0.945  0.941  0.945  

FPW3000 0.945  1.000  0.950  0.949  

FPW1000 0.941  0.950  1.000  0.945  

DS350 0.945  0.949  0.945  1.000  

Chinese cabbage     

DI water 1.000  0.925  0.942  0.912  

FPW3000 0.925  1.000  0.967  0.940  

FPW1000 0.942  0.967  1.000  0.959  

DS350 0.912  0.940  0.959  1.000  

 160 
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  161 

Figure S8. Principal component analysis (PCA) for expressed genes of (A) Cherry radish and 162 

(B) Chinese radish using different types of irrigation water resources. 163 

 164 

 165 

Figure S9. Function analysis of the intersection DEGs: (A),(B) GO annotation analysis and 166 
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(C),(D) KEGG annotation analysis of the DEGs between (A),(C) cherry radish and (B),(D) 167 

Chinese cabbage irrigated with DI water and FPW5000.  168 

 169 

 170 

Figure S10. Function analysis of the intersection DEGs: (A),(B) GO annotation analysis and 171 

(C),(D) KEGG annotation analysis of the DEGs between (A),(C) cherry radish and (B),(D) 172 

Chinese cabbage irrigated with DI water and FPW1000. 173 
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