SUPPORTING INFORMATION

Targeted Delivery of Antibiotic Therapy to Inhibit *Pseudomonas aeruginosa* using Lipid Coated Mesoporous Silica Core-Shell Nanoassembly

Kavini Rathnayake, Unnati Patel, Chi Pham, Anna McAlpin, Travis Budisalich, Surangi N. Jayawardena*

Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL 35899

Synthesis of Col@MSN@LL-(PAB)

PAB was conjugated to the liposomes by EDC activation chemistry. Liposomes containing DSPE-PEG (2000) CA (2.25 x 10-1 mmol) were activated with EDC (2.25 mmol) and sulfo-NHS (5.6 mmol) for 2 h at 37 °C. Thereafter, PAB (1 mg) was added to the activated liposomes in a molar ratio of 1:10. The mixture was incubated for 24 h at 37 °C. At the end of the incubation period, PAB-modified liposomes (LL-(PAB) were purified by centrifugation at 12000 rpm for 30 min at 4 °C and resuspended in PBS (pH 7.4). The purified product was lyophilized and stored at -20 °C until further use. To prepare PAB tagged liposome coated Col@MSN (Col@MSN@LL-(PAB), 50 mg of Col@MSN was resuspended in PAB modified liposomes (LL-(PAB)) (2 mL) in PBS and mixed for 20 min on an ice bath. Col@MSN@LL-(PAB) particles were separated from empty liposomes by centrifugation at 12000 rpm for 5 min and repeated (3x) washing in PBS. The resultant Col@MSN@LL-(PAB) was lyophilized and dried at -20 °C until further use.

Material	Hydrodynami c diameter (nm) from DLS	Diameter from TEM (nm)	Zeta potential (mV)
SNP	98 ± 4 (PDI 0.1)	N/A	-38 ± 2.3
Col@SNP	101 ± 2.1 (PDI 0.2)	N/A	-8 ± 0.8
MSN	300 ± 9 (PDI 0.4)	80 ± 9	-30 ± 1.5
Col@MSN	380 ± 7.9 (PDI 0.5)	85 ± 5	$\begin{array}{c} +5.0 \pm \\ 1.1 \end{array}$
Col@MSN@LL	500 ± 9.6 (PDI 0.5)	98 ± 1.6	$^{+2.5\pm}_{1.2}$
Col@MSN@LL- (LL37)	620 ± 10.6 (PDI 0.7)	125 ± 3.4	+10.2 ± 2.9
Colistin (Col)	N/A	N/A	+10 ± 0.9

Table S1. Hydrodynamic size, dried size distribution and the zeta potential of nanoassemblies

Table S2. Table of surface area, pore volume and pore size data of MSN and Col@MSN from BET analysis

	MSN	Col@MSN
Surface area (MultiPoint BET)	8.808e+02 m ² /g	6.464e+02 m ² /g
Pore volume (BJH method)	2.416e+00 cm ₃ /g	1.372e+00 cm3/g
Pore size (BJH method)	1.809e+01 Å	1.181e+01 Å

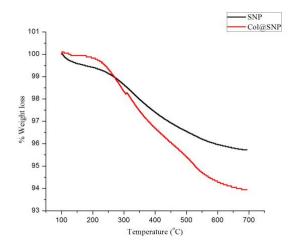


Figure S1. TGA curve for SNP and Col@SNP

Equation S1. Equations used for the calculations of EE% and LC%.

$$EE\% = \frac{\text{total mass of drug added-mass of unencapsulated drug}}{\text{total mass of drug added}} \times 100$$

$$LC\% = \frac{\text{total mass of drug added-mass of unencapsulated drug}}{\text{total mass of MSNs}} \times 100$$

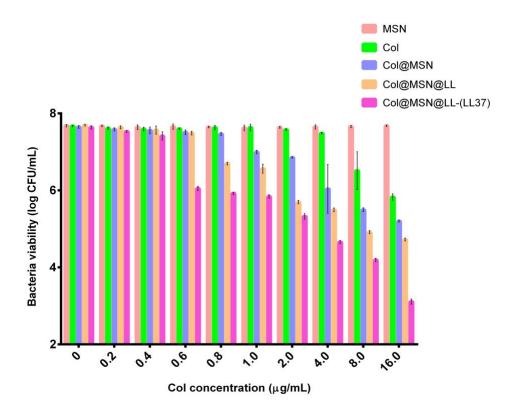


Figure S2. Quantitative antibacterial tests were performed against the PA14 on 96-well plates containing a standard Col concentration in each and every nanoassembly.