Supporting Information

for

Probing the Limits of Oxidative Addition of C(sp³)-X Bonds Toward Selected *N,C,N*-Chelated Bismuth(I) Compounds.

Martin Hejda,^a Robert Jirásko,^b Aleš Růžička,^a Roman Jambor^a and Libor Dostál^a

^a Department of General and Inorganic Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic.

^b Department of Analytical Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic.

Contents

NMR spectra of isolated compounds.

NMR spectra of relevant reaction mixtures mentioned in the discussion and description of other experiment performed.

Crystals and refinement details of studied compounds and molecular structure of 2a.

Mass spectrometry details for compounds 1a-g and 2a-h.

NMR spectra of isolated compounds.

Figure S2. ¹³C{¹H} NMR spectrum of 1a (125.76 MHz, CD₃CN, 298 K). *denotes traces of hexane.

Figure S3. ¹H NMR spectrum of 1b (500 MHz, CD₃CN, 298 K). *denotes traces of residual moisture in CD₃CN.

Figure S4. ¹³C{¹H} NMR spectrum of 1b (125.76 MHz, CD₃CN, 298 K).

Figure S6. ¹H NMR spectrum of 1c (400 MHz, CD₃CN, 298 K).

Figure S7. ${}^{13}C{}^{1}H$ NMR spectrum of 1c (101.61 MHz, CD₃CN, 298 K).

Figure S8. ¹⁹F{¹H} NMR spectrum of 1c (376.5 MHz, CD₃CN, 298 K).

Figure S9. ¹H NMR spectrum of **1d** (400 MHz, CD₃CN, 298 K).

Figure S10. ¹³C{¹H} NMR spectrum of 1d (125.76 MHz, CD₃CN, 298 K).

Figure S11. ${}^{19}F{}^{1}H$ NMR spectrum of 1d (376.5 MHz, CD₃CN, 298 K).

Figure S12. ¹H NMR spectrum of 1e (500 MHz, CD₃CN, 298 K).

Figure S13. ${}^{13}C{}^{1}H{}$ NMR spectrum of 1e (125.76 MHz, CD₃CN, 298 K).

Figure S14. ${}^{19}F{}^{1}H{}$ NMR spectrum of 1e (376.5 MHz, CD₃CN, 298 K).

Figure S15. ¹H NMR spectrum of 1f (500 MHz, CD₃CN, 298 K).

S7

Figure S17. ¹H NMR spectrum of **1g** (500 MHz, CD₃CN, 298 K).

Figure S18. ${}^{13}C{}^{1}H{}$ NMR spectrum of 1g (125.76 MHz, CD₃CN, 298 K).

Figure S19. ¹⁹F{¹H} NMR spectrum of 1g (376.5 MHz, CD₃CN, 298 K).

Figure S21. ¹³C{¹H} NMR spectrum of 1g.thf (single crystals) (125.76 MHz, CD₃CN, 298 K).

Figure S22. ¹⁹F{¹H} NMR spectrum of **1g.thf** (single crystals) (376.5 MHz, CD₃CN, 298 K).

Figure S23. ¹H NMR spectrum of 2a (500 MHz, CD₃CN, 298 K)

Figure S24. ¹³C{¹H} NMR spectrum of 2a (125.76 MHz, CD₃CN, 298 K).

Figure S25. ¹H NMR spectrum of 2b (400 MHz, CD₃CN, 298 K),

Figure S26. ¹³C{¹H} NMR spectrum of 2b (100.61 MHz, CD₃CN, 298 K).

Figure S27. ¹⁹F{¹H} NMR spectrum of 2b (376.5 MHz, CD₃CN, 298 K).

Figure S28. ¹H NMR spectrum of **2c** (500 MHz, CD₃CN, 298 K). *denotes traces CH₃CN used for crystallization.

Figure S29. ¹³C{¹H} NMR spectrum of 2c (125.76 MHz, CD₃CN, 298 K).

Figure S30. ¹⁹F{¹H} NMR spectrum of 2c (376.5 MHz, CD₃CN, 298 K).

Figure S31. ¹H NMR spectrum of **2d** (400 MHz, CD₃CN, 298 K).

Figure S34. ¹H NMR spectrum of 2e (500 MHz, CD₃CN, 298 K).

Figure S35. ¹³C{¹H} NMR spectrum of 2e (125.76 MHz, CD₃CN, 298 K).

Figure S37. ¹H NMR spectrum of **2f** (500 MHz, CD₃CN, 298 K).

Figure S38. $^{13}C{^{1}H}$ NMR spectrum of 2f (125.76 MHz, CD₃CN, 298 K).

Figure S39. ¹H NMR spectrum of 2g (400 MHz, CD₃CN, 298 K).

Figure S40. ¹³C{¹H}-APT NMR spectrum of 2g (125.76 MHz, CD₃CN, 298 K).

Figure S41. ¹³C{¹H} NMR spectrum of 2g (100.61 MHz, CD₃CN, 298 K).

Figure S42. ¹⁹F $\{^{1}H\}$ NMR spectrum of 2g (376.5 MHz, CD₃CN, 298 K).

Figure S43. ¹H NMR spectrum of **2h** (500 MHz, CD₃CN, 298 K).

NMR spectra of relevant reaction mixtures mentioned in the discussion and description of other experiment performed.

Synthesis of [2,6-(tBuNCH)₂C₆H₃]BiI₂

To a solution of [2,6-(*t*BuNCH)₂C₆H₃]Bi 255 mg (0.56 mmol) in thf (10 mL) a solution of I₂ 142 mg (0.56 mmol) was added at r.t. The reaction turned to yellow colour and was stirred for additional 30 min. The solution was evaporated and the residue was washed with hexane (5 mL). The yellow precipitate was crystallized from hot acetonitrile to give [2,6-(*t*BuNCH)₂C₆H₃]BiI₂, 304 mg, (77 %), m. p. 285°C(dec.). ¹H NMR (500 MHz, CDCI₃) δ (ppm): 1.64 [18H, s, (CH₃)₃C]; 7.91 [1H, t, ³J(¹H,¹H) = 7.6 Hz, Ar-H4]; 8.15 [2H, d, ³J(¹H,¹H) = 7.6 Hz, Ar-H3,5]; 9.44 [2H, s, CH=N]. ¹³C{¹H} NMR (125.76 MHz, CD₃CN) δ (ppm): 32.0 [(CH₃)₃C]; 62.2 [(CH₃)₃C]; 129.6 [Ar-C4]; 136.7 [Ar-C3,5]; 149.1 [Ar-C2,6]; 168.7 [CH=N]; [Ar-C1] not detected. **Positive-ion ESI-MS**: m/z 579.0692 [C₁₆H₂₃N₂BiI]⁺ (100%), mass error -2.1 ppm. Negative-ion ESI-MS: m/z 126.9045 [I]⁻ (100%), mass error -3.9 ppm.

Figure S45. ¹H NMR spectrum of [2,6-(tBuNCH)₂C₆H₃]BiI₂ (500 MHz, CDCl₃, 298 K).

Figure S46. ¹³C{¹H} NMR spectrum of [2,6-(tBuNCH)₂C₆H₃]BiI₂ (100.61 MHz, CDCl₃, 298 K).

Figure S47. ¹H NMR spectrum of mixture of products after reaction of **2** and CF₃(CF₂)₃I (500 MHz, CDCl₃, 298 K). The signals of [2,6-(Me₂NCH₂)₂C₆H₃]BiI₂ are marked with *.

Figure S48. ¹H NMR spectrum of mixture of **1** and *t*BuI after five minutes (500 MHz, thf-d8, 298 K).

Figure S49. ¹H NMR spectrum of mixture of **1** and *t*BuI after three days showing complex mixture (500 MHz, thf-d8, 298 K).

Figure S50. ¹H NMR spectrum of insoluble material in thf after reaction of 1 and *t*BuI after three days (400 MHz, CDCl₃, 298 K).

Crystals and refinement details of studied compounds.

	1c	1d	1g.thf	
Formula	$C_{18}H_{25}BiF_3IN_2$	$C_{19}H_{27}BiF_3IN_2$	$C_{25}H_{42}BiF_3N_2O_4SSi$	
Formula weight, g mol ⁻¹	662.28	676.30	760.73	
Crystal system	Monoclinic	Monoclinic	Orthorhombic	
Crystal size, mm	$0.27 \times 0.15 \times 0.11$	$0.22 \times 0.17 \times 0.17$	$0.44 \times 0.29 \times 0.13$	
Space group	$P2_1/c$	$P2_1/n$	Pca2 ₁	
<i>a</i> , Å	8.5041(6)	10.1675(4)	18.2488(10)	
<i>b</i> , Å	24.5334(17)	16.7465(5)	10.8220(5)	
<i>c</i> , Å	10.3325(7)	13.4279(5)	15.7321(9)	
α, °	90	90	90	
<i>β</i> , °	95.472(2)	97.668(2)	90	
γ, ^o	90	90	90	
$V, Å^3$	2145.9(3)	2265.92(14)	3106.9(3)	
Ζ	4	4	4	
$ ho_{ m calcd},{ m Mg}~{ m m}^{-3}$	2.050	1.982	1.626	
μ (Mo K α), mm ⁻¹	9.683	9.172	5.830	
<i>F</i> (000)	1240	976	1512	
θ range, deg	1 to 27.5	1 to 27.5	2.24 to 30.07	
Index ranges	$-11 \leq h \leq 12$	$-13 \leq h \leq 13$	$-23 \leq h \leq 23$	
	$-35 \leq k \leq 36$	$-21 \leq k \leq 21$	$-14 \leq k \leq 12$	
	$-14 \leq l \leq 14$	$-17 \leq l \leq 17$	$-19 \leq l \leq 20$	
No. of reflns collected	55430	38886	26740	
No. indep. Reflns	6635	5239	7303	
No. obsd reflns with $(I \ge 2\sigma(I))$	4519	4509	5571	
No. refined params	242	241	344	
GooF (F^2)	1.139	1.243	1.050	
$R_1(F)(I > 2\sigma(I))$	0.0618	0.0457	0.0439	
$wR_2(F^2)$ (all data)	0.0804	0.0860	0.0880	
Largest diff peak/hole, e Å ⁻³	1.432 / -3.594	1.531 / -2.842	9.639 / -9.111	
CCDC	1990145	1990144	1990140	

Table S1.Crystal data and structure refinement of 1c – 1g.thf.

 $\overline{R_{\text{int}}} = \sum |F_o^2 - F_{\text{o,mean}}| / \sum F_o^2, \text{ S} = [\sum (w(F_o^2 - F_c^2)^2) / (N_{\text{diffrs}} - N_{\text{params}})]^{\frac{1}{2}} \text{ for all data, } R(F) = \sum |F_o| - |F_c| | / \sum |F_o| \text{ for observed data, } wR(F^2) = [\sum (w(F_o^2 - F_c^2)^2) / (\sum w(F_o^2)^2)]^{\frac{1}{2}} \text{ for all data, } data.$

	2a 2b		2c	
Formula	$C_{13}H_{22}BiIN_2$	$C_{14}H_{22}BiF_3N_2O_3S$	$\frac{2(C_{14}H_{21}BiF_{3}N_{2})I_{2}}{1.5(C_{2}H_{3}N)}$	
Formula weight, g mol ⁻¹	542.20	564.37	1281.99	
Crystal system	Orthorhombic	Monoclinic	Triclinic	
Crystal size, mm	$0.53 \times 0.53 \times 0.25$	$0.27 \times 0.26 \times 0.17$	$0.59 \times 0.35 \times 0.11$	
Space group	Pbca C2/c		P-1	
<i>a</i> , Å	11.9179(3)	20.4831(4)	10.5569(8)	
<i>b</i> , Å	13.2973(5)	9.6035(3)	11.9145(8)	
<i>c</i> , Å	20.3677(7)	19.3496(7)	16.7549(12)	
α, °	90	90	75.682(3)	
<i>β</i> , °	90	103.9250(10)	87.046(4)	
γ, °	90	90	86.095(4)	
$V, Å^3$	3227.79(18)	3694.4(2)	2035.9(3)	
Ζ	8	8	2	
$ ho_{ m calcd},{ m Mg}~{ m m}^{-3}$	2.232	2.029	2.091	
μ (Mo $K\alpha$), mm ⁻¹	12.822	9.701	10.203	
<i>F</i> (000)	2000	2160	1194	
θ range, deg	1 to 27.5	1 to 27.5	2.24 to 30.07	
Index ranges	$-16 \leq h \leq 16$	$-26 \leq h \leq 26$	$-13 \leq h \leq 13$	
	$-18 \leq k \leq 18$	$-12 \leq k \leq 12$	$-15 \leq k \leq 15$	
	$-27 \leq l \leq 29$	$-25 {\leq} 1 {\leq} 25$	$-21 \le l \le 21$	
No. of reflns collected	32045	47265	61645	
No. indep. Reflns	5029	4254	9461	
No. obsd reflns with $(I \ge 2\sigma(I))$	3423	3726	6422	
No. refined params	112	222	415	
GooF (F^2)	1.051	1.118	1.043	
$R_1(F)(I > 2\sigma(I))$	0.0631	0.0286	0.0697	
$wR_2(F^2)$ (all data)	0.1255	0.0590	0.176	
Largest diff peak/hole, e Å-3	4.815 / -6.026	1.952 / -1.537	9.035 / -3.568	
CCDC	1990147	1990141	1990146	

Table S1 (continu	e). Crystal	data and stru	ucture refinemen	t of 2a – 2c .
-------------------	-------------	---------------	------------------	-----------------------

 $\frac{R_{\text{int}} = \sum |F_o^2 - F_{\text{o,mean}}| / \sum F_o^2, \text{ S} = \left[\sum (w(F_o^2 - F_c^2)^2) / (N_{\text{diffrs}} - N_{\text{params}}) \right]^{\frac{1}{2}} \text{ for all data, } R(F) = \sum |F_o| - |F_c| | / \sum |F_o| \text{ for observed data, } wR(F^2) = \left[\sum (w(F_o^2 - F_c^2)^2) / (\sum w(F_o^2)^2) \right]^{\frac{1}{2}} \text{ for all data, } data.$

	2f	2h
Formula	$C_{17}H_{30}BiIN_2$	C ₁₆ H ₂₈ BiIN ₂
Formula weight, g mol ⁻¹	598.31	584.28
Crystal system	Orthorhombic	Monoclinic
Crystal size, mm	$0.44 \times 0.32 \times 0.24$	$0.59\times0.58\times0.22$
Space group	Pccn	$P2_1/c$
<i>a</i> , Å	16.9500(4)	13.4106(6)
b, Å	25.1810(7)	9.8275(5)
<i>c</i> , Å	9.4023(3)	14.9631(8)
α , °	90	90
<i>β</i> , °	90	107.896(2)
γ, °	90	90
$V, Å^3$	4013.07(19)	1876.61(16)
Ζ	8	4
$ ho_{ m calcd},{ m Mg}~{ m m}^{-3}$	1.981	2.068
μ (Mo $K\alpha$), mm ⁻¹	10.323	11.035
<i>F</i> (000)	2256	1096
θ range, deg	1 to 27.5	1 to 27.5
Index ranges	$-22 \leq h \leq 21$	$-17 \leq h \leq 17$
	$-32 \leq k \leq 32$	$-13 \leq k \leq 13$
	$-12 \le l \le 12$	$-20 \le l \le 19$
No. of reflns collected	34887	49833
No. indep. Reflns	4613	4662
No. obsd reflns with $(I \ge 2\sigma(I))$	3966	4117
No. refined params	197	189
GooF (F^2)	1.080	1.116
$R_1(F)(I > 2\sigma(I))$	0.0293	0.0536
$wR_2(F^2)$ (all data)	0.0605	0.1435
Largest diff peak/hole, e Å $^{-3}$	1.366 / -2.178	7.592 / -5.853
CCDC	1990148	1990142

Table S1 (continue). Crystal data and structure refinement of 2f and 2h.

 $\frac{R_{\text{int}} = \sum |F_o^2 - F_{\text{o,mean}}| / \sum F_o^2, \text{ S} = [\sum (w(F_o^2 - F_c^2)^2) / (N_{\text{diffrs}} - N_{\text{params}})]^{\frac{1}{2}} \text{ for all data, } R(F) = \sum |F_o| - |F_c| | / \sum |F_o| \text{ for observed data, } wR(F^2) = [\sum (w(F_o^2 - F_c^2)^2) / (\sum w(F_o^2)^2)]^{\frac{1}{2}} \text{ for all data, } data.$

Figure S51. Molecular structure of 2a.

	Positively charged ions (cationic parts)			Negatively charged ions (anionic parts)				
No.	Elemental composition	m/z exper.	m/z theor.	Mass error [ppm]	Elemental composition	m/z exper.	m/z theor.	Mass error [ppm]
1a	$C_{17}H_{26}N_2Bi^+$	467.1895	467.1894	0.2	I-	126.9051	126.9050	0.8
1b	$C_{17}H_{26}N_2Bi^+$	467.1896	467.1894	0.4	CF ₃ SO ₃ -	148.9526	148.9526	0.0
1c	$C_{18}H_{25}N_2F_3Bi^+$	535.1760	535.1768	-1.5	I-	126.9048	126.9050	-1.6
1d	$C_{19}H_{27}N_2F_3Bi^+$	549.1930	549.1925	0.9	I-	126.9052	126.9050	1.6
1e	$C_{22}H_{27}N_2F_9Bi^+$	699.1814	699.1829	-2.1	I-	126.9051	126.9050	0.8
1f	$C_{21}H_{34}N_2Bi^+$	523.2510	523.2520	-1.9	I-	126.9054	126.9050	3.1
1g	$C_{20}H_{34}N_2SiBi^+$	539.2294	539.2290	0.7	CF ₃ SO ₃ -	148.9524	148.9526	-1.3
2a	$C_{13}H_{22}N_2Bi^+$	415.1584	415.1581	0.7	I-	126.9052	126.9050	1.6
2b	$C_{13}H_{22}N_2Bi^+$	415.1593	415.1581	2.9	CF ₃ SO ₃ -	148.9522	148.9526	-2.7
2c	$C_{14}H_{21}N_2F_3Bi^+ \\$	483.1449	483.1455	-1.2	I-	126.9048	126.9050	-1.6
2d	$C_{15}H_{23}N_2F_3Bi^+$	497.1610	497.1612	-0.4	I-	126.9049	126.9050	-0.8
2e	$C_{18}H_{23}N_2F_9Bi^+$	647.1524	647.1516	1.2	I-	126.9055	126.9050	3.9
2f	$C_{17}H_{30}N_2Bi^+$	471.2219	471.2207	2.5	I-	126.9047	126.9050	-2.4
2g	$C_{16}H_{30}N_2SiBi^+$	487.1984	487.1977	1.4	CF ₃ SO ₃ -	148.9529	148.9526	2.0
2h	$C_{16}H_{28}N_2Bi^+$	457.2041	457.2051	-2.2	I-	126.9055	126.9050	3.9

Table S2. List of elemental compositions, experimental and theoretical m/z values together with calculated mass errors of particular ions observed in positive-ion and negative-ion mass spectra for studied compounds **1a-g** and **2a-h**.