Supporting Information

Enzyme-directed Functionalization of Designed, Two-Dimensional Protein Lattices

Rohit H. Subramanian¹, Yuta Suzuki^{1,4}, Lorillee Tallorin¹, Swagat Sahu¹, Matthew Thompson^{1,2}, Nathan C. Gianneschi^{1,2}, Michael D. Burkart¹, F. Akif Tezcan^{1,3,*}

¹Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.

²Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering, Chemistry

of Life Processes Institute, International Institute for Nanotechnology, Simpson Querrey Institute,

Northwestern University, Evanston, Illinois 60208, USA.

³Materials Science and Engineering, University of California, San Diego, La Jolla, CA, USA.

⁴Current address: Hakubi Center for Advanced Research, Kyoto University, Yoshida-honmachi,

Sakyo-ku, Kyoto, Japan, 606-8501

^{*}Correspondence to: tezcan@ucsd.edu

Figure S1. Scheme for enzymatic labeling of ybbR. (a) Chemical structures of coenzyme A (CoA) with enzymatically transferred moiety shaded in cyan. 3', 5'-PAP is 3',5'-phosphoadenosine phosphate (b) Reaction scheme illustrating the site-specific transfer of a modified CoA substrate onto a serine residue on ybbR.

Figure S2. Characterization of synthesized ybbR-N₃ peptide. (a) HPLC chromatogram showing elution profile of ybbR-N₃ purification. (b) MALDI spectra of boxed region in (a) shows the expected mass for pure ybbR-N₃.

Figure S3. TEM characterization and quantification of modified RIDC3 crystals. Cartoon representation and TEM micrographs for (a) RIDC3 crystals modified with DBCO and (b) RIDC3-ybbR chemically modified crystals. FFT inserts show that lattice crystallinity is retained throughout the process. (c) Calculations for quantifying DBCO and ybbR incorporation onto RIDC3 arrays.

а

Figure S4. Identification of lysines on the RIDC3 crystal surface. (a) A single layer of the RIDC3 2D crystal packing is shown with (b) zoomed-in insets of the asymmetric unit. Lysine resides are shown as sticks colored in purple. Lysine residues identified as ybbR-modified via MS/MS analysis are colored in blue.

a 1 11 21 31 41 51 ADLEDNMETLNDNLKVIEKADNAAQVEKALEKMLAAAADALKATPPKLEDKSP

61 71 81 91 101 DSPEMRDFRHGFAILMGQIHDAAHLANEGKVKEAQAAAEQLKTTCNACHQKYR

RIDC3 sequence

Figure S5. MS/MS analysis of ybbR conjugation onto RIDC3 arrays. (a) RIDC3 sequence with lysines identified as modified with ybbR colored red. (b), (c), (d) MS/MS spectra with y ions identified for each peptide fragment. Expected masses for b and y ions are shown on the right. The major peak in all three spectra correspond to the $(M+3H)^{3+}$ ionization of the peptide fragment.

RIDC3-ybbR crystals +TAMRA-CoA treatment

RIDC3-ybbR crystals +GFP-CoA treatment

RIDC3-ybbR crystals +co-labeling

Figure S6. TEM characterization of enzymatically labeled RIDC3-ybbR arrays. A cartoon representation of enzymatically modified RIDC3-ybbR array is shown above with representative TEM micrographs after TAMRA-CoA, GFP-CoA, and co-labeling treatments.

Figure S7. Generation and characterization of GFP-CoA. (a) Scheme for generation of GFP-CoA. (b) UV-vis characterization of GFP and GFP-CoA, shown normalized to the absorption maximum of GFP at 485 nm. The increase in absorbance at 259 nm is indicative of CoA conjugation onto GFP.

Figure S8. UV-vis characterization of RIDC3-ybbR monomers. (a) UV-vis characterization of RIDC3 with absorption maxima for GFP (green, 485 nm) and TAMRA (red, 554 nm) shown as dashed lines. (b) UV-vis characterization of RIDC3-ybbR monomers and TAMRA-CoA in the presence and absence of Sfp.

Average height (from 46 crystals): 133 ± 40 nm

Average height (from 24 crystals): 133 ± 51 nm

	+TAMRA label	+GFP label	+both labels	control
Protein concentration (µM)	16.5	22	24	21
Surface-accessible proteins (nM)	623.7	831.6	907.2	793.8
Dye concentration (nM)				
TAMRA fluorescence	63	0.06	84.8	5.4
GFP fluorescence	1.3	30.1	32.1	3.03
% labeling				
Total protein				
TAMRA fluorescence	0.38	0	0.35	0.03
GFP fluorescence	0	0.14	0.13	0.01
Surface-accessible proteins				
TAMRA fluorescence	10.1	0	9.3	0.68
GFP fluorescence	0.2	3.6	3.5	0.38

Figure S9. Quantification of fluorescent labeling of RIDC3-ybbR crystals. (a)Standard curves plotting dye concentration vs. fluorescence. (b) Representative AFM images of RIDC3-ybbR crystals before and after enzymatic labeling with TAMRA-CoA. The average heights of measured crystals are listed below. (c) Table showing protein and dye concentrations calculated based on UV-vis (for protein) or using the standard curves in (a) for the dye. Percentage of surface labeling is calculated based off the concentration of surface-accessible proteins available for modification. Labeling values calculated for the control sample represent background fluorescence and/or non-specific binding of dye molecules to the protein arrays.

	Α	В	С
Protein concentration (µM)	22.6	23.7	25.3
Surface-accessible proteins (nM)	854	896	956
Dye concentration (nM)			
GFP fluorescence	68.42	2.99	2.12
% labeling			
Total protein			
GFP fluorescence	0.3	0.013	0.0084
Surface-accessible proteins			
GFP fluorescence	8	0.33	0.22

Figure S10. Quantification of enzymatically labeled RIDC3-CoA arrays. A table for quantification of GFP labeling using fluorescence data. Labeling values calculated for control samples (B and C) represent background fluorescence or non-specific binding of GFP to the protein arrays. Ex/Em = 485/510 nm, n=3 for fluorescence measurements.

Figure S11. Characterization of genetically modified ^{ybbR}RIDC3. (a) FPLC chromatogram showing separation of intact and truncated ^{ybbR}RIDC3 protein during purification. (b) Mass spectra of intact and truncated ^{ybbR}RIDC3 observed during purification. (c) TEM micrographs of 2D ^{ybbR}RIDC3 arrays formed at pH 7.5. FFT inset shows the same diffraction pattern as RIDC3 crystals. (d) SDS PAGE gels of ^{ybbR}RIDC3 and truncated ^{ybbR}RIDC3 proteins incubated with TAMRA-CoA and Sfp PPTase. Fluorescence imaging of the gel confirms that the truncated protein cannot be enzymatically modified. Ex/Em: 532/580 nm

Figure S12. Characterization of genetically modified ^{ybbR}RhuA. (a) ESI-MS characterization of ^{ybbR}RhuA after purification. No peptide degradation is observed. (b) Confocal microscopy and TEM characterization of ^{ybbR}RhuA control samples. In the absence of Sfp, no fluorescence is observed. ^{ybbR}RhuA crystals remain intact in the labeling conditions. (c) Fluorescence profiles for ^{ybbR}RhuA arrays after enzymatic modification with TAMRA-CoA or GFP-CoA. Control experiments were incubated with both modified-CoA substrates in the absence of Sfp. A table is shown on the right for quantification of enzymatic labeling using fluorescence data. Labeling values calculated for the control sample represent background fluorescence and/or non-specific binding of dye molecules to the protein arrays.