Supporting Information

Selective C-5 Oxidative Radical Silylation of Imidazopyridines Promoted by Lewis Acid

Yifan Li, Kaichen Shu, Ping Liu* and Peipei Sun*

School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China pingliu@njnu.edu.cn; sunpeipei@njnu.edu.cn

Contents

1. General Information	S2
2. Experimental Procedures	S2
3. The Control Experiment	
4. Experimental Data for the Products 3 , 4 and 6	
5. ¹ H and ¹³ C NMR Spectra of the Products	.\$18-\$51
6. The X-ray Single-Crystal Diffraction Analysis of 3k	.\$52-\$54

1 General Information

All reagents were obtained from commercial suppliers and used without further purification. Reactions were monitored by thin layer chromatography. Column chromatography was performed using silica gel (300–400 mesh). The NMR spectra were recorded on a Bruker Avance 400 spectrometer at 400 MHz (¹H) and 100 MHz (¹³C) in CDCl₃ using tetramethylsilane as the internal standard. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, dd = doublet of doublet, t = triplet, m = multiplet, hept = heptet. High-resolution mass spectra were obtained with an AB Triple 5600 mass spectrometer by ESI on a TOF mass analyzer. Melting points are uncorrected.

2 Experimental Procedures

2.1 General Procedure for the Preparation of 3 and 4

To a sealed tube were added imidazo[1,2-*a*]pyridines **1** (0.2 mmol, 1.0 equiv), silanes (1.0 mmol, 5.0 equiv), DTBP (110 μ L, 0.6 mmol, 3.0 equiv), Zn(OTf)₂ (29.1 mg, 0.08 mmol, 40 mol %) and PhCF₃ (2 mL). The reaction mixture was stirred at 120 °C for 36 h in oil bath under Ar. After being cooled to room temperature, the resulting solution was diluted with EtOAc (10 mL). The organic layer was washed with water (10 mL). The aqueous phase was re-extracted with EtOAc (5 mL). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography to afford the desired products **3** or **4**.

2.2 General Procedure for the Preparation of 6

To a sealed tube were added the product **3d** (0.5 mmol, 1.0 equiv), 1-iodo-4-methoxybenzene (1.0 mmol, 2 equiv), Pd(PPh₃)₄ (0.025 mmol, 5 mol %) and Ag₂O (0.5 mmol, 1.0 equiv). Then anhydrous DMF (5 mL) and TBAF (1.0 mol/L in THF, 0.25 mL, 0.5 equiv) were added under Ar. The reaction mixture was heated at 90 °C for 5 h. After being cooled to room temperature, the reaction mixture was diluted with H₂O, extracted with EtOAc (4 × 15 mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na₂SO₄ and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography to afford the desired product **6**.

3 The Control Experiment

To a sealed tube were added **1a** (41.6 mg, 0.2 mmol, 1.0 equiv), **2a** (165 μ L, 1.0 mmol, 5.0 equiv), DTBP (110 μ L, 0.6 mmol, 3.0 equiv), TEMPO (94.5 mg, 0.6 mmol, 3.0 equiv) and PhCF₃ (2 mL). The reaction mixture was stirred at 120 °C for 36 h under Ar. After the reaction was stopped, no desired product **3a** was detected by TLC and LC-MS, indicating that the reaction was completely inhibited. Meanwhile, a trapping product **7** was observed through the LC-MS analysis from the reaction solution (Figure S1).

Figure S1. LC-MS analysis of the radical-trapping product 7.

4 Experimental Data for the Products 3, 4 and 6

5-(*tert*-Butyldimethylsilyl)-8-methyl-2-phenylimidazo[1,2-*a*]pyridine (3a). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (40:1, v/v) as eluent. Yellow oil (48.9 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.02–7.99 (m, 3H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.4 Hz, 1H), 6.95 (dd, *J* = 6.9, 1.1 Hz, 1H), 6.85 (d, *J* = 6.8 Hz, 1H), 2.71 (s, 3H), 1.02 (s, 9H), 0.52 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 146.6, 144.6, 135.8, 134.4, 128.7, 128.4, 127.7, 126.2, 122.6, 122.4, 110.8, 27.1, 18.4, 17.4, -4.8. IR (KBr) v 2954, 2844,

1608, 1472, 1255, 1184, 818, 770, 690 cm⁻¹. HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{20}H_{27}N_2Si$ 323.1938; Found 323.1938.

5-(*tert*-Butyldimethylsilyl)-8-chloro-2-phenylimidazo[1,2-*a*]pyridine (3b). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (20:1, v/v) as eluent. Yellow solid (39.0 mg, 57% yield). mp 78–80 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.06 (s, 1H), 8.00 (dd, J = 8.3, 1.3 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.39–7.35 (m, 1H), 7.23 (d, J = 7.4 Hz, 1H), 6.85 (d, J = 7.4 Hz, 1H), 1.02 (s, 9H), 0.54 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 145.8, 143.4, 137.6, 133.5, 128.7, 128.2, 126.4, 124.3, 122.7, 121.6, 111.8, 27.0, 18.4, -4.9. IR (KBr) v 2933, 2857, 1611, 1465, 1252, 925, 808, 774, 692 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₄ClN₂Si 343.1392; Found 343.1393.

5-(*tert*-Butyldimethylsilyl)-2-phenylimidazo[1,2-*a*]pyridine-8-carboxamide (3c). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1, v/v) as eluent. Yellow solid (42.1 mg, 60% yield). mp 259–261 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 10.39 (s, 1H), 8.15 (d, *J* = 7.2 Hz, 1H), 8.08 (s, 1H), 7.96 (d, *J* = 7.6 Hz, 2H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 1H), 7.09 (d, *J* = 7.1 Hz, 1H), 6.33 (s, 1H), 1.03 (s, 9H), 0.57 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 165.7, 144.5, 144.0, 143.4, 133.1, 128.8, 128.4, 126.8, 126.2, 121.8, 120.8, 110.5, 27.0, 18.4, -4.8. IR (KBr) v 3308, 3169, 2929, 2852, 1677, 1619, 1489, 1256, 815, 776, 693 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₆N₃OSi 352.1840; Found 352.1838.

5-(*tert*-Butyldimethylsilyl)-7-methyl-2-phenylimidazo[1,2-*a*]pyridine (3d). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (40:1, v/v) as eluent. Yellow solid (50.4 mg, 78% yield). mp 95–96 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.95 (d, J = 8.9 Hz, 3H), 7.47–7.41 (m, 3H), 7.32 (t, J = 7.4 Hz, 1H), 6.73 (s, 1H), 2.39 (s, 3H), 1.01 (s, 9H), 0.51 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 146.5, 144.8, 137.7, 134.2, 134.2, 128.7, 127.7, 126.0, 125.0, 116.8, 109.7, 27.0, 21.3, 18.3, -4.8. IR (KBr) v 2930, 2860, 1627, 1474, 1254, 840, 776, 706 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₇N₂Si 323.1938; Found 323.1939.

5-(*tert*-Butyldimethylsilyl)-7-methoxy-2-phenylimidazo[1,2-*a*]pyridine (3e). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1, v/v) as eluent. Yellow oil (52.1 mg, 77% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.93 (d, J = 7.3 Hz, 2H), 7.83 (s, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.34 (t, J = 7.3 Hz, 1H), 7.03 (s, 1H), 6.67 (d, J = 2.3 Hz, 1H), 3.89 (s, 3H), 1.02 (s, 9H), 0.52 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 157.1, 147.4, 144.0, 139.7, 133.5, 128.7, 127.8, 125.8, 117.3, 109.0, 95.2, 55.4, 27.0, 18.20, -4.9. IR (KBr) v 2929, 2857, 1618, 1467, 1402, 1215, 873, 775, 707 cm⁻¹. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₂₆N₂OSiNa 361.1707; Found 361.1701.

5-(*tert*-Butyldimethylsilyl)-7-fluoro-2-phenylimidazo[1,2-*a*]pyridine (3f). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (20:1, v/v) as eluent. Yellow solid (42.4 mg, 65% yield). mp 56–58 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.96 (s, 1H), 7.93 (d, J = 7.3 Hz, 2H), 7.46 (t, J = 7.7 Hz, 2H), 7.36 (t, J = 7.3 Hz, 1H), 7.31–7.29 (m, 1H), 6.80 (dd, J = 7.7, 2.6 Hz, 1H), 1.03 (s, 9H), 0.55 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 159.4 (d, J = 253.1 Hz), 146.6 (d, J = 13.0 Hz), 146.1, 141.5 (d, J = 6.1 Hz), 133.6, 128.8, 128.1, 126.0, 113.8 (d, J = 26.2 Hz), 109.8, 101.6 (d, J = 22.9 Hz), 27.0, 18.3, -5.0. HRMS (ESI) m/z calcd for C₁₉H₂₄FN₂Si⁺ [M+H]⁺ 327.1687, found 327.1689. IR (KBr) v 2927, 2856, 1624, 1470, 1253, 1182,

839, 775, 711 cm⁻¹. HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₉H₂₄FN₂Si 327.1687; Found 327.1689.

5-(*tert*-butyldimethylsilyl)-7-chloro-2-phenylimidazo[1,2-*a*]pyridine (3g). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (20:1, v/v) as eluent. Yellow solid (43.8 mg, 64% yield). mp 91–93 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.97 (d, J = 0.7 Hz, 1H), 7.93 (dd, J = 8.3, 1.3 Hz, 2H), 7.67 (d, J = 1.8 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 7.39–7.35 (m, 1H), 6.87 (d, J = 2.1 Hz, 1H), 1.04 (s, 9H), 0.55 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 146.0, 145.9, 140.0, 133.5, 130.4, 128.8, 128.2, 126.1, 123.1, 116.9, 110.3, 27.0, 18.4, -4.9. IR (KBr) v 2925, 2852, 1604, 1464, 1250, 1072, 850, 774, 715 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₄ClN₂Si 343.1392; Found 343.1397.

5-(*tert*-Butyldimethylsilyl)-2-phenyl-7-(trifluoromethyl)imidazo[1,2-*a*]pyridine (3h). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (30:1, v/v) as eluent. Yellow solid (45.9 mg, 61% yield). mp 75–77 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.12 (s, 1H), 7.97 (d, J = 7.5 Hz, 3H), 7.49 (t, J = 7.0 Hz, 2H), 7.39 (t, J = 6.9 Hz, 1H), 7.05 (s, 1H), 1.04 (s, 9H), 0.58 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 147.3, 144.0, 140.4, 133.2, 128.9, 128.5, 126.2, 125.4 (q, J = 33.5 Hz), 123.6 (q, J = 272.1 Hz), 117.3 (q, J = 2.9 Hz), 115.9 (q, J = 4.9 Hz), 111.5, 27.0, 18.4, -5.0. IR (KBr) v 2956, 2861, 1630, 1416, 1340, 1244, 1125, 886, 767, 724, 681 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₄F₃N₂Si 377.1655; Found 377.1657.

5-(*tert*-Butyldimethylsilyl)-6-fluoro-2-phenylimidazo[1,2-*a*]pyridine (3i). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (30:1, v/v) as eluent. Yellow solid

(37.8 mg, 58% yield). mp 85–87 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.05 (s, 1H), 7.93 (d, J = 7.3 Hz, 2H), 7.68 (dd, J = 9.7, 5.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.37 (d, J = 7.4 Hz, 1H), 7.05 (t, J = 9.2 Hz, 1H), 1.05 (s, 9H), 0.60 (d, J = 3.0 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 160.3 (d, J = 231.9 Hz), 146.0, 143.9, 133.6, 128.8, 128.1, 126.0, 123.7 (d, J = 49.3 Hz), 119.1 (d, J = 10.8 Hz), 116.3 (d, J = 32.0 Hz), 111.7, 26.6, 19.0, -3.3 (d, J = 6.5 Hz). IR (KBr) v 2928, 2857, 1688, 1470, 1256, 1166, 840, 824, 771, 711 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₄FN₂Si 327.1687; Found 327.1689.

5-(*tert*-**Butyldimethylsilyl**)-**8**-methyl-**2**-(*p*-tolyl)imidazo[**1**,**2**-*a*]pyridine (**3j**). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (40:1, v/v) as eluent. Yellow solid (52.6 mg, 78% yield). mp 93–95 °C.¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.99 (s, 1H), 7.89 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 7.9 Hz, 2H), 6.94 (dd, *J* = 6.9, 1.1 Hz, 1H), 6.84 (d, *J* = 6.9 Hz, 1H), 2.71 (s, 3H), 2.42 (s, 3H), 1.02 (s, 9H), 0.52 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 146.5, 144.7, 137.4, 135.7, 131.6, 129.4, 128.3, 126.1, 122.5, 122.3, 110.5, 27.1, 21.4, 18.4, 17.4, -4.8. IR (KBr) v 2925, 2851, 1649, 1472, 1247, 822, 775, 728, 687 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₉N₂Si 337.2095; Found 337.2094.

5-(*tert*-Butyldimethylsilyl)-2-(4-methoxyphenyl)-8-methylimidazo[1,2-*a*]pyridine (3k). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1, v/v) as eluent. Red solid (56.3 mg, 80% yield). mp 123–125 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.92 (dd, J = 6.2, 2.6 Hz, 3H), 7.02–7.00 (m, 2H), 6.93 (dd, J = 6.9, 1.3 Hz, 1H), 6.83 (d, J = 6.9 Hz, 1H), 3.86 (s, 3H), 2.69 (s, 3H), 1.01 (s, 9H), 0.50 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 159.4, 146.4, 144.4, 135.7, 128.1, 127.5, 127.1, 122.5, 122.3, 114.1, 110.0, 55.3, 27.0, 18.4, 17.4, -4.8. IR (KBr) v 2954, 2849, 1611, 1486, 1239, 1031, 838, 802, 766 cm⁻¹. HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₁H₂₉N₂OSi 353.2044; Found 353.2045.

5-(*tert*-Butyldimethylsilyl)-2-(4-fluorophenyl)imidazo[1,2-*a*]pyridine (3l). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (30:1, v/v) as eluent. Light yellow solid (49.6 mg, 73% yield). mp 50–51 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.96–7.93 (m, 3H), 7.15 (t, *J* = 8.7 Hz, 2H), 6.95 (dd, *J* = 6.8, 1.2 Hz, 1H), 6.85 (d, *J* = 6.9 Hz, 1H), 2.68 (s, 3H), 1.01 (s, 9H), 0.51 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 162.6 (d, *J* = 246.2 Hz), 146.5, 143.6, 135.9, 130.5 (d, *J* = 3.1 Hz), 128.3, 127.8 (d, *J* = 8.0 Hz), 122.8, 122.5, 115.6 (d, *J* = 21.6 Hz), 110.4, 27.0, 18.4, 17.3, -4.8. IR (KBr) v 2954, 2853, 1609, 1483, 1227, 1146, 831, 806, 777 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₆FN₂Si 341.1844; Found 341.1842.

5-(*tert*-Butyldimethylsilyl)-2-(4-chlorophenyl)imidazo[1,2-*a*]pyridine (3m). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (30:1, v/v) as eluent. White solid (41.3 mg, 58% yield). mp 106–108 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.98 (s, 1H), 7.93–7.91 (m, 2H), 7.43–7.41 (m, 2H), 6.95 (dd, J = 6.8, 1.3 Hz, 1H), 6.85 (d, J = 6.8 Hz, 1H), 2.68 (s, 3H), 1.01 (s, 9H), 0.51 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 146.6, 143.4, 136.0, 133.3, 132.9, 128.8, 128.4, 127.4, 122.8, 122.6, 110.8, 27.0, 18.4, 17.3, -4.8. IR (KBr) v 2959, 2853, 1607, 1472, 1242, 1082, 835, 799, 734 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₆ClN₂Si 357.1548; Found 357.1549.

5-(tert-Butyldimethylsilyl)-2-(2-fluorophenyl)imidazo[1,2-a]pyridine (3n). Purified by silica

gel column chromatography with petroleum ether/ethyl acetate (30:1, v/v) as eluent. Yellow solid (47.6 mg, 70% yield). mp 52–54 °C . ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.48–8.44 (m, 1H), 8.26 (d, J = 3.7 Hz, 1H), 7.31–7.28 (m, 2H), 7.18–7.13 (m, 1H), 6.97–6.95 (m, 1H), 6.85 (d, J = 6.8 Hz, 1H), 2.70 (s, 3H), 1.01 (s, 9H), 0.51 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 160.3 (d, J = 248.5 Hz), 145.6, 137.8 (d, J = 2.3 Hz), 136.2, 129.0 (d, J = 4.0 Hz), 128.5 (d, J = 8.6 Hz), 128.2, 124.5 (d, J = 3.3 Hz), 122.8, 122.4, 122.0 (d, J = 12.5 Hz), 115.5 (d, J = 22.2 Hz), 115.0 (d, J = 15.4 Hz), 27.0, 18.3, 17.3, -5.0. IR (KBr) v 2966, 2853, 1613, 1489, 1253, 811, 779, 741, 680 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₆FN₂Si 341.1844; Found 341.1847.

5-(tert-Butyldimethylsilyl)-8-methyl-2-(4-(trifluoromethyl)phenyl)imidazo[1,2-a]pyridine

(30). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (30:1, v/v) as eluent. Yellow solid (48.4 mg, 62% yield). mp 86–88 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.09 (d, *J* = 7.8 Hz, 2H), 8.07 (s, 1H), 7.70 (d, *J* = 8.2 Hz, 2H), 6.97 (dd, *J* = 6.8, 1.2 Hz, 1H), 6.87 (d, *J* = 6.9 Hz, 1H), 2.69 (s, 3H), 1.02 (s, 9H), 0.52 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 146.8, 143.0, 137.9, 136.1, 129.4 (q, *J* = 32.4 Hz), 128.6, 126.2, 125.7, 125.6 (q, *J* = 3.8 Hz), 123.0, 122.8, 111.5, 27.0, 18.4, 17.3, -4.9. IR (KBr) v 2959, 2859, 1620, 1330, 1250, 1168, 1122, 1066, 816, 775, 717 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₆F₃N₂Si 391.1812; Found 391.1810.

4-(5-(*tert***-Butyldimethylsilyl)-8-methylimidazo[1,2-***a***]pyridin-2-yl)benzonitrile (3p). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1, v/v) as eluent. Yellow solid (37.5 mg, 54% yield). mp 119–121 °C. ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 8.10 (s, 1H), 8.07 (d, J = 3.7 Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H), 6.99 (dd, J = 6.8, 1.3 Hz, 1H), 6.89 (d, J = 6.9 Hz, 1H), 2.68 (s, 3H), 1.01 (s, 9H), 0.52 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) \delta (ppm)**

146.9, 142.3, 138.7, 136.3, 132.5, 128.6, 126.5, 123.5, 123.1, 119.2, 112.0, 110.7, 27.0, 18.4, 17.3, -4.8. IR (KBr) v 2924, 2847, 2222, 1607, 1472, 1242, 940, 840, 805, 775, 745 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₆N₃Si 348.1891; Found 348.1890.

5-(*tert*-Butyldimethylsilyl)-8-methyl-2-(4-(methylsulfonyl)phenyl)imidazo[1,2-*a*]pyridine (3q). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (3:1, v/v) as eluent. White solid (48.8 mg, 61% yield). mp 160–162 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.19 (d, *J* = 8.0 Hz, 2H), 8.09 (s, 1H), 8.01 (d, *J* = 8.0 Hz, 2H), 7.04 (d, *J* = 6.9 Hz, 1H), 6.93 (d, *J* = 6.9 Hz, 1H), 3.10 (s, 3H), 2.72 (s, 3H), 1.01 (s, 9H), 0.53 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 146.5, 141.7, 139.2, 139.0, 136.6, 128.5, 127.9, 126.9, 124.2, 123.4, 112.1, 44.7, 27.0, 18.4, 17.4, -4.8. IR (KBr) v 2930, 2859, 1602, 1468, 1309, 1256, 1151, 951, 840, 805, 775 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₂₉N₂O₂SSi 401.1714; Found 401.1711.

2-([1,1'-biphenyl]-4-yl)-5-(*tert*-Butyldimethylsilyl)-8-methylimidazo[1,2-*a*]pyridine (3r). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (30:1, v/v) as eluent. Orange oil (58.9 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.10–8.06 (m, 3H), 7.74–7.69 (m, 4H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 1H), 6.99 (d, *J* = 6.8 Hz, 1H), 6.88 (d, *J* = 6.9 Hz, 1H), 2.74 (s, 3H), 1.04 (s, 9H), 0.54 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 146.4, 144.0, 140.9, 140.5, 135.9, 133.1, 128.8, 128.3, 127.4, 127.3, 127.0, 126.7, 123.0, 122.6, 110.9, 27.1, 18.4, 17.4, -4.8. IR (KBr) v 2924, 2847, 1649, 1602, 1478, 1247, 822, 805, 745, 693 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₃₁N₂Si 399.2251; Found 399.2255.

5-(*tert*-Butyldimethylsilyl)-8-methyl-2-(naphthalen-2-yl)imidazo[1,2-*a*]pyridine (3s). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (30:1, v/v) as eluent. Brown oil (46.2 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.55 (s, 1H), 8.14 (s, 1H), 8.06 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.99 (d, *J* = 7.8 Hz, 1H), 7.93 (d, *J* = 8.5 Hz, 1H), 7.88 (d, *J* = 7.6 Hz, 1H), 7.55–7.46 (m, 2H), 6.98 (dd, *J* = 6.8, 1.3 Hz, 1H), 6.88 (d, *J* = 6.8 Hz, 1H), 2.75 (s, 3H), 1.05 (s, 9H), 0.55 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 146.7, 144.5, 135.9, 133.8, 133.1, 131.6, 128.4, 128.4, 128.3, 127.7, 126.2, 125.8, 124.7, 124.5, 122.8, 122.5, 111.3, 27.1, 18.4, 17.4, -4.8. IR (KBr) v 2959, 2853, 1607, 1472, 1242, 1082, 835, 799, 734, 684 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₉N₂Si 373.2095; Found 373.2096.

5-(*tert*-Butyldimethylsilyl)-7-methyl-2-(thiophen-2-yl)imidazo[1,2-*a*]pyridine (3t). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (25:1, v/v) as eluent. Brown oil (38.7 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.89 (s, 1H), 7.53 (d, J = 3.1 Hz, 1H), 7.33–7.31 (m, 1H), 7.12 (dd, J = 5.0, 3.6 Hz, 1H), 6.96 (d, J = 6.8 Hz, 1H), 6.85 (d, J = 6.9 Hz, 1H), 2.68 (s, 3H), 1.00 (s, 9H), 0.50 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 146.2, 139.3, 135.8, 128.1, 127.8, 124.8, 123.9, 123.1, 122.7, 110.32, 27.0, 18.4, 17.4, -4.8. IR (KBr) v 2930, 2847, 1643, 1465, 1296, 1260, 835, 820, 806, 778, 735, 689 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₅N₂SSi 329.1502; Found 329.1501.

5-(tert-butyldimethylsilyl)-2-phenylimidazo[1,2-a]pyridine (3u). Purified by silica gel column

chromatography with petroleum ether/ethyl acetate (8:1, v/v) as eluent. Yellow oil (38.2 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.03 (s, 1H), 7.97 (d, *J* = 7.3 Hz, 2H), 7.68 (d, *J* = 9.0 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.36 (d, *J* = 7.4 Hz, 1H), 7.14 (dd, *J* = 9.0, 6.8 Hz, 1H), 6.93 (d, *J* = 6.7 Hz, 1H), 1.02 (s, 9H), 0.53 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 145.9, 145.1, 138.7, 134.0, 128.7, 127.9, 126.1, 123.7, 122.3, 118.3, 110.3, 27.0, 18.4, -4.8. IR (KBr) v 2924, 2853, 1613, 1472, 1247, 1182, 835, 769, 717, 692 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₅N₂Si 309.1782; Found 309.1782.

5-(*tert*-**Butyldimethylsilyl**)-2-(*p*-tolyl)imidazo[1,2-*a*]pyridine (3v). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1, v/v) as eluent. Yellow oil (41.9 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.99 (s, 1H), 7.86 (d, *J* = 8.1 Hz, 2H), 7.66 (d, *J* = 8.9 Hz, 1H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.12 (dd, *J* = 9.0, 6.7 Hz, 1H), 6.91 (dd, *J* = 6.7, 1.3 Hz, 1H), 2.41 (s, 3H), 1.01 (s, 9H), 0.52 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 145.84, 145.2, 138.6, 137.7, 131.2, 129.4, 126.0, 123.5, 122.2, 118.2, 110.0, 27.0, 21.3, 18.4, -4.8. IR (KBr) v 2930, 2853, 1615, 1490, 1325, 1250, 829, 780, 740, 693 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₇N₂Si 323.1938; Found 323.1939.

5-(*tert*-Butyldimethylsilyl)-2-(4-methoxyphenyl)imidazo[1,2-*a*]pyridine (3w). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (4:1, v/v) as eluent. Yellow solid (47.3 mg, 70% yield). mp 89–91 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.93 (s, 1H), 7.89 (d, *J* = 8.8 Hz, 2H), 7.65 (d, *J* = 8.9 Hz, 1H), 7.12 (dd, *J* = 9.0, 6.8 Hz, 1H), 7.00 (d, *J* = 8.8 Hz, 2H), 6.92–6.90 (m, 1H), 3.87 (s, 3H), 1.01 (s, 9H), 0.52 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 159.5, 145.8, 145.0, 138.5, 127.3, 126.7, 123.5, 122.2, 118.0, 114.1, 109.5, 55.3, 27.0, 18.4, -4.8. IR (KBr) v 2929, 2851, 1614, 1485, 1250, 1162, 1030, 836, 778, 740 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₇N₂OSi 339.1887; Found 339.1889.

5-(*tert*-Butyldimethylsilyl)-2-(4-fluorophenyl)imidazo[1,2-*a*]pyridine (3x). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1, v/v) as eluent. Light yellow solid (39.8 mg, 61% yield). mp 66–68 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.96 (s, 1H), 7.93 (dd, J = 8.5, 5.5 Hz, 2H), 7.66 (d, J = 9.0 Hz, 1H), 7.17–7.13 (m, 3H), 6.94 (d, J = 6.7 Hz, 1H), 1.02 (s, 9H), 0.53 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 162.7 (d, J = 246.6 Hz), 145.9, 144.2, 138.8, 130.2 (d, J = 3.2 Hz), 127.7 (d, J = 8.1 Hz), 123.8, 122.4, 118.2, 115.7 (d, J = 21.6 Hz), 109.9, 27.0, 18.4, -4.8. IR (KBr) v 2924, 2853, 1607, 1484, 1218, 1148, 840,787, 741, 687 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₄FN₂Si 327.1687; Found 327.1686.

5-(*tert*-Butyldimethylsilyl)-2-(4-(trifluoromethyl)phenyl)imidazo[1,2-*a*]pyridine (3y). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1, v/v) as eluent. Yellow solid (41.4 mg, 55% yield). mp 95–97 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.07 (d, *J* = 7.4 Hz, 3H), 7.71–7.66 (m, 3H), 7.17 (dd, *J* = 9.0, 6.7 Hz, 1H), 6.96 (dd, *J* = 6.8, 1.2 Hz, 1H), 1.02 (s, 9H), 0.54 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 146.1, 143.5, 139.1, 137.5, 129.6 (q, *J* = 32.4 Hz), 126.1, 125.7 (q, *J* = 3.8 Hz), 124.2, 123.0, 122.7, 118.4, 111.1, 27.0, 18.4, -4.9. IR (KBr) v 2925, 2860, 1617, 1468, 1334, 1249, 1164, 1105, 836, 772, 732 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₄F₃N₂Si 377.1655; Found 377.1657.

5-(*tert*-Butyldimethylsilyl)imidazo[1,2-*a*]pyridine (3z). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1, v/v) as eluent. Yellow oil (27.7 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.74 (s, 1H), 7.64 (d, J = 6.7 Hz, 2H), 7.12 (dd, J = 9.0, 6.7 Hz, 1H), 6.92 (d, J = 6.6 Hz, 1H), 0.97 (s, 9H), 0.48 (s, 6H). ¹³C{¹H} NMR (100 MHz,

CDCl₃) δ (ppm) 145.5, 138.8, 132.9, 123.3, 122.3, 118.6, 114.5, 27.0, 18.3, -4.9. IR (KBr) v 2930, 2859, 1613, 1472, 1283, 1148, 829, 775 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₂₁N₂Si 233.1469; Found 233.1470.

5-(*tert*-Butyldimethylsilyl)-2-methylimidazo[1,2-*a*]pyridine (3aa). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1, v/v) as eluent. Brown oil (26.1 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.52 (d, J = 8.9 Hz, 1H), 7.46 (s, 1H), 7.06 (dd, J = 8.9, 6.8 Hz, 1H), 6.86 (dd, J = 6.7, 1.0 Hz, 1H), 2.46 (s, 3H), 0.96 (s, 9H), 0.46 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 145.2, 142.5, 138.1, 122.9, 121.7, 117.5, 111.6, 27.0, 18.3, 14.5, -4.9. IR (KBr) v 2928, 2852, 1611, 1482, 1263, 840, 776, 691 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₂₁N₂Si 247.1625; Found 247.1623.

8-Methyl-2-phenyl-5-(triethylsilyl)imidazo[1,2-*a***]pyridine** (**4a**). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (40:1, v/v) as eluent. Yellow oil (45.1 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.02 (dd, J = 8.2, 1.3 Hz, 2H), 7.96 (s, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.35 (t, J = 7.4 Hz, 1H), 6.95 (dd, J = 6.8, 1.2 Hz, 1H), 6.84 (d, J = 6.8 Hz, 1H), 2.71 (s, 3H), 1.03 (s, 15H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 146.4, 144.9, 134.9, 134.3, 128.7, 128.3, 127.7, 126.3, 122.8, 121.88, 109.4, 17.4, 7.3, 2.6. IR (KBr) v 2948, 2871, 1602, 1448, 1182, 1017, 714 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₇N₂Si 323.1938; Found 323.1942.

8-Methyl-2-phenyl-5-(triisopropylsilyl)imidazo[1,2-a]pyridine (4b). Purified by silica gel

column chromatography with petroleum ether/ethyl acetate (40:1, v/v) as eluent. Yellow solid (43.7 mg, 60% yield). mp 141–142 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.01–7.99 (m, 2H), 7.97 (s, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.35 (t, J = 7.4 Hz, 1H), 6.96 (t, J = 5.9 Hz, 2H), 2.72 (s, 3H), 1.63 (hept, J = 7.5 Hz, 3H), 1.20 (d, J = 7.5 Hz, 18H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 146.6, 144.4, 134.6, 134.0, 128.7, 128.0, 127.8, 126.3, 123.0, 122.9, 110.5, 18.8, 17.4, 12.0. IR (KBr) v 2953, 2865, 1620, 1461, 1395, 1189, 887, 717, 679, 651 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₃₃N₂Si 365.2408; Found 365.2408.

8-Methyl-2-phenyl-5-(trihexylsilyl)imidazo[1,2-*a***]pyridine** (**4c**). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (40:1, v/v) as eluent. Yellow solid (61.8 mg, 63% yield). mp 48–50 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.02–8.00 (m, 2H), 7.94 (s, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.37 (d, *J* = 7.4 Hz, 1H), 6.95 (d, *J* = 7.4 Hz, 1H), 6.82 (d, *J* = 6.8 Hz, 1H), 2.70 (s, 3H), 1.36–1.26 (m, 26H), 1.02–0.98 (m, 5H), 0.89–0.86 (m, 8H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 146.3, 144.8, 135.7, 134.3, 128.7, 128.1, 127.7, 126.3, 122.9, 121.6, 109.4, 33.2, 31.4, 23.6, 22.6, 17.4, 14.1, 11.4. IR (KBr) v 2924, 2847, 1602, 1461, 1377, 1247, 1182, 740, 698 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₂H₅₁N₂Si 491.3816; Found 491.3817.

5-(Dimethyl(phenyl)silyl)-8-methyl-2-phenylimidazo[1,2-*a*]pyridine (4d). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (40:1, v/v) as eluent. Yellow oil (46.5 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.88–7.86 (m, 2H), 7.71 (s, 1H), 7.60 (dd, *J* = 7.7, 1.6 Hz, 2H), 7.47–7.40 (m, 5H), 7.32 (t, *J* = 7.4 Hz, 1H), 6.99 (dd, *J* = 6.8, 1.2 Hz, 1H),

6.92 (d, J = 6.8 Hz, 1H), 2.73 (s, 3H), 0.75 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 146.1, 144.7, 135.3, 134.7, 134.1, 134.1, 130.2, 128.8, 128.6, 128.5, 127.7, 126.2, 122.8, 122.0, 109.9, 17.5, -3.3. IR (KBr) v 3065, 2953, 2841, 1602, 1484, 1247, 1106, 816, 717, 690, 504, 475 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₃N₂Si 343.1625; Found 343.1623.

8-Methyl-5-(methyldiphenylsilyl)-2-phenylimidazo[1,2-*a***]pyridine (4e). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (40:1, v/v) as eluent. White solid (44.5 mg, 55% yield). mp 158–159 °C. ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 7.80 (d, J = 7.3 Hz, 2H), 7.64 (s, 1H), 7.60 (d, J = 7.7 Hz, 4H), 7.51 (t, J = 7.3 Hz, 2H), 7.46–7.37 (m, 6H), 7.32–7.29 (m, 1H), 6.95 (d, J = 6.8 Hz, 1H), 6.78 (d, J = 6.8 Hz, 1H), 2.74 (s, 3H), 1.02 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) \delta (ppm) 146.1, 144.5, 135.1, 134.0, 133.9, 132.7, 130.4, 129.1, 128.6, 128.5, 127.7, 126.2, 124.1, 122.9, 110.5, 17.5, -4.4. IR (KBr) v 3054, 2966, 2918, 1478, 1431, 1100, 793, 740, 721, 698, 563, 468 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₇H₂₅N₂Si 405.1782; Found 405.1781.**

8-Methyl-2-phenyl-5-(triphenylsilyl)imidazo[1,2-*a***]pyridine** (**4f**). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (40:1, v/v) as eluent. White solid (60.6 mg, 65% yield). mp 240–242 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.71 (d, *J* = 7.4 Hz, 2H), 7.63 (d, *J* = 6.8 Hz, 6H), 7.53–7.50 (m, 4H), 7.44 (t, *J* = 7.3 Hz, 6H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.25 (d, *J* = 7.3 Hz, 1H), 6.96 (d, *J* = 6.8 Hz, 1H), 6.77 (d, *J* = 6.8 Hz, 1H), 2.77 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 146.0, 144.1, 136.1, 132.8, 131.3, 130.6, 129.3, 128.6, 128.5, 127.9, 127.7, 126.2, 125.8, 123.1, 111.5, 17.6. IR (KBr) v 3072, 2946, 2917, 1652, 1478, 1106, 747, 709, 699, 511,

493 cm⁻¹. HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₂H₂₇N₂Si 467.1938; Found 467.1938.

5-(4-Methoxyphenyl)-7-methyl-2-phenylimidazo[1,2-*a***]pyridine** (6). Purified by silica gel column chromatography with petroleum ether/ethyl acetate (2:1, v/v) as eluent. Yellow solid (106.8 mg, 68% yield). mp 159–161 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.82 (d, J = 7.0 Hz, 1H), 7.70 (dd, J = 8.2, 1.3 Hz, 2H), 7.46 (s, 1H), 7.38–7.36 (m, 2H), 7.32–7.23 (m, 3H), 7.08–7.06 (m, 2H), 6.59 (dd, J = 7.0, 1.5 Hz, 1H), 3.91 (s, 3H), 2.43 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) 159.9, 145.0, 141.5, 135.7, 134.2, 132.1, 128.3, 127.9, 127.3, 122.6, 121.9, 120.3, 115.7, 115.0, 114.9, 55.4, 21.4. IR (KBr) v 2966, 2846, 1649, 1513, 1253, 1176, 1023, 775, 698 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₁₉N₂O 315.1492; Found 315.1496.

6 ¹H and ¹³C NMR Spectra of the Products

C8.064 -8.011 -8.011 -8.011 -7.9308 (-7.385 -7.448 (-7.385<

3b (¹H NMR) (400 MHz, CDCl₃)

3b (¹³C NMR) (100 MHz, CDCl₃)

-1.017

-26.973

---4.861

3f (¹H NMR) (400 MHz, CDCl₃)

-1.035

-0.547

-0.548

-1.037

8.118 7.982 7.982 7.963 7.1963 7.1490 7.1410 7.394 7.334 7.336

150

140

130

120

110

100

90

-1.045 -0.582

70 f1 (ppm)

60

50

40

30

20

10

0

-10

80

7,941 77,923 77,695 77,681 77,681 77,681 77,681 7,687 7,748 7,765 7,749 7,749 17,379 17,379 17,379 17,047 7,047 7,047 7,023

-1.046 <0.607

--3.865

-2.690

--1.006

7,364 7,359 7,350 7,350 7,350 7,350 7,350 7,350 7,125 7,125 7,125 7,125 7,125 7,125 7,125 7,125 7,125 7,125 7,125 7,125 7,125 7,147 7,125 7,164 7,125 7,1647

-2.682

-0.512

-1.009

8.104 -8.085 -8.085 -8.067 -7.715 -7.715 -7.694 6.984 6.981 6.967 6.964 6.883 6.866

8.097 8.067 8.067 8.067 7.736 7.715

3x (¹H NMR) (400 MHz, CDCI₃)

-1.019

-0.531

-2.702 -2.702 -1.353 -1.353 -1.353 -1.353 -1.3333 -1.3333 -1.3333 -1.3333 -1.3333 -1.3333 -1.3333-1.333

8.020 8.017 7.999 7.944 7.497 7.497 7.374 7.374 7.374 7.374 7.374 6.944 6.944 6.831

4d (¹H NMR) (400 MHz, CDCl₃)

-0.748

-2.727

-2.739

-1.024

-2.428

6. The X-ray Single-crystal Diffraction Analysis of 3k

Single crystal suitable for X-ray diffraction was obtained by slow evaporation of dichloromethane and *n*-hexane (1:1) solution of **3k** at ambient temperature.

The ellipsoid contour percent probability levels of the thermal ellipsoid plot is 50%.

Figure S2. Crystal structures of 3k (CCDC: 2011379).

Identification code	3k
Empirical formula	$C_{21}H_{29}N_2OSi$
Formula weight	353.55
Temperature/K	296.15
Crystal system	orthorhombic
Space group	Pbca
a/Å	10.7466(15)
b/Å	15.132(2)
c/Å	25.050(3)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	4073.7(10)
Z	8
$\rho_{calc}g/cm^3$	1.153
μ/mm ⁻¹	0.126
F(000)	1528
Crystal size/mm ³	0.03 imes 0.02 imes 0.01
Radiation	MoKa ($\lambda = 0.71073$)

2Θ range for data collection/°	3.252 to 55.104
Index ranges	$\text{-13} \le h \le \text{13}, \text{-19} \le k \le \text{18}, \text{-32} \le \text{l} \le \text{32}$
Reflections collected	43785
Independent reflections	$4689 \; [R_{int} = 0.0516, R_{sigma} = 0.0283]$
Data/restraints/parameters	4689/0/233
Goodness-of-fit on F ²	1.021
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0478, wR_2 = 0.1246$
Final R indexes [all data]	$R_1 = 0.0816$, $wR_2 = 0.1452$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.52

Table S2. Bond lengths (Å) and angles (°) for compound 3k.

Si1—C15	1.896 (2)	C4—C5	1.379 (3)
Si1-C17	1.865 (2)	C5—C6	1.390 (2)
Si1—C18	1.871 (2)	C6—C7	1.389 (3)
Si1—C20	1.894 (2)	C6—C8	1.466 (3)
N1-C8	1.364 (2)	С8—С9	1.374 (3)
N1-C10	1.320 (2)	C10-C12	1.418 (3)
N2—C9	1.381 (2)	C11-C12	1.504 (3)
N2-C10	1.397 (2)	C12—C13	1.350 (3)
N2-C15	1.396 (2)	C13-C14	1.419 (3)
01—C1	1.410 (3)	C14—C15	1.365 (3)
01—C3	1.367 (2)	C16-C20	1.517 (3)
С2—С3	1.385 (3)	C19—C20	1.537 (3)
C2—C7	1.383 (3)	C20-C21	1.535 (3)
C3—C4	1.386 (3)		
C20—Si1—C15	109.58 (9)	N1-C8-C6	121.72 (16)
C17—Si1—C15	111.42 (10)	N1-C8-C9	110.22 (17)
C17—Si1—C20	112.17 (11)	C9—C8—C6	128.01 (17)
C17—Si1—C18	107.84 (12)	C8-C9-N2	106.78 (16)
C18—Si1—C15	106.27 (11)	N2-C10-C12	119.50 (17)
C18—Si1—C20	109.37 (12)	N1-C10-N2	111.34 (16)
C10-N1-C8	106.28 (15)	N1-C10-C12	129.16 (17)
C9-N2-C10	105.37 (15)	C10-C12-C11	118.3 (2)
C9—N2—C15	130.86 (16)	C13-C12-C10	117.18 (18)
C15-N2-C10	123.76 (16)	C13-C12-C11	124.5 (2)
C3-01-C1	117.80 (17)	C12-C13-C14	121.83 (19)
С7—С2—С3	119.73 (19)	C15-C14-C13	122.9 (2)
01C2	125.19 (19)	N2-C15-Si1	123.89 (14)
01-C3-C4	115.58 (17)	C14-C15-Si1	121.24 (15)

C2—C3—C4	119.24 (19)	C14—C15—N2	114.87 (17)
C5-C4-C3	120.39 (18)	C19—C20—Si1	109.62 (17)
C4—C5—C6	121.33 (19)	C16-C20-Si1	111.76 (16)
C7—C6—C8	121.99 (16)	C16-C20-C19	108.3 (2)
C7—C6—C5	117.48 (18)	C16-C20-C21	109.2 (2)
C5-C6-C8	120.50 (17)	C21—C20—Si1	109.81 (17)
C2—C7—C6	121.84 (17)	C21-C20-C19	108.0 (2)