Supplementary information

Unexpected findings in a simple metathesis reaction of europium and ytterbium diiodides with perfluorinated mercaptobenzothiazolates of alkali metals

Liubov I. Silantyeva,^a Vasily A. Ilichev,^{*a} Andrey S. Shavyrin,^a Artem N. Yablonskiy,^b Roman V. Rumyantcev,^a Georgy K. Fukin,^a and Mikhail N. Bochkarev^{*a}

G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation.

а

b Institute for Physics of Microstructures of Russian Academy of Sciences, 7 ul. Akademicheskaya, 603950 Nizhny Novgorod, Russian Federation.

Figure 1S. ¹⁹F NMR spectra of compounds 1 (a), 2 (b), 3 (c) and solution A (d). Solvent – DME.

Figure 2S. PL spectrum of crystalline Eul₂(DME)₃. Excitation – 365 nm UV LED.

Figure 3S. Fragment of crystal packing of complex 1.

Bond **1**, Å 1_{inv}, Å 1_{isol}, Å **2**, Å **2**_{inv}, Å 2_{isol}, Å 2.99460(16) 2.945(2) Ln(1)-S(1)2.9944(9)3.0940 2.9465(19) 3.0671 3.0439(8) 3.0411(9) 3.0456 2.9483(18) 2.9503(19) 3.0470 Ln(1)-S(3)2.7477(4) 2.608(6) 2.4751 Ln(1)-N(1) 2.739(3)2.7003 2.595(6)Ln(1)-N(2) 2.679(3) 2.6856(5)2.7348 2.673(5) 2.673(5)2.5022 Ln(1)-O(1)2.5914(4)2.4438 2.61(2)2.6219 2.487(5)2.493(5)Ln(1)-O(2)2.678(2)2.6864(4)2.6944 2.499(5)2.505(5)2.5155 2.7039(4) 2.570(5) 2.4826 Ln(1)-O(3) 2.705(2) 2.6145 2.566(5)2.5261(11)2.4854 Ln(1)-O(4)2.537(2)2.6219 2.464(5)2.468(5)1.6974(9)S(1)-C(1) 1.697(3)1.7095 1.691(7)1.680(7)1.7061 S(2)-C(1) 1.771(3) 1.7718(9) 1.778(7) 1.773(7) 1.7968 1.7971 S(2)-C(2) 1.725(3)1.7205(9) 1.7478 1.748(8) 1.743(8) 1.7521 S(3)-C(8) 1.690(3)1.6881(10)1.7064 1.665(8) 1.652(8) 1.7074 S(4)-C(8) 1.769(3)1.7645(9) 1.7984 1.784(7)1.777(7) 1.7958 S(4)-C(9) 1.727(3)1.7232(10)1.7470 1.740(7)1.739(8) 1.7504 N(1)-C(1)1.324(4)1.3228(14) 1.3286 1.325(9) 1.329(8) 1.3279 N(1)-C(3) 1.391(4)1.3799(13)1.3809 1.379(9)1.369(8) 1.3772 N(2)-C(8) 1.327(4)1.3296(14) 1.333(9) 1.346(8) 1.3280 1.3319 N(2)-C(10) 1.370(4) 1.3619(14) 1.377(9) 1.382(8) 1.3787 1.3814 1.3238(13) ÷ 1.335(8) ÷ 1.324(8) ÷ $1.331(4) \div$ 1.3387÷ 1.3405÷ F-C 1.346(4) 1.3479(13) 1.353(9) 1.341(8) 1.3525 1.3501

Table 1S. The main distances [Å] in complexes $\mathbf{1}$, $\mathbf{1}_{inv}$, $\mathbf{1}_{isol}$ (Ln = Eu) and $\mathbf{2}$, $\mathbf{2}_{inv}$, $\mathbf{2}_{isol}$ (Ln = Yb).

Bonds	1 _{isol}	1 _{inv}	2 _{isol}	2 _{inv} (Yb)	Bonds	1 _{isol} (Eu)	1 _{inv}	2 _{isol}	2 _{inv}
<i>v</i> (r), a.e.				$\nabla^2 o(\mathbf{r})$, a.e.				(15)	
Ln(1)-S(1)	-0.012	-0.026	-0.012	-0.020	Ln(1)-S(1)	0.072	0.054	0.063	0.078
Ln(1)-S(3)	-0.014	_	-0.012	-0.019	Ln(1)-S(3)	0.078	_	0.066	0.076
Ln(1)-N(1)	-0.021	-0.020	-0.036	-0.027	Ln(1)-N(1)	0.116	0.088	0.180	0.120
Ln(1)-N(2)	-0.019	-0.026	-0.033	-0.023	Ln(1)-N(2)	0.107	0.113	0.167	0.103
Ln(1)-O(1)	-0.024	-0.037	-0.035	-0.034	Ln(1)-O(1)	0.133	0.160	0.188	0.160
Ln(1)-O(2)	-0.020	-0.023	-0.028	-0.033	Ln(1)-O(2)	0.110	0.109	0.152	0.154
Ln(1)-O(3)	-0.025	-0.020	-0.031	-0.027	Ln(1)-O(3)	0.137	0.098	0.168	0.130
Ln(1)-O(4)	-0.022	-0.041	-0.030	-0.037	Ln(1)-O(4)	0.122	0.174	0.165	0.169
ρ(r), a.e.				h _e (r), a.e.					
Ln(1)-S(1)	0.020	0.035	0.019	0.027	Ln(1)-S(1)	0.003	-0.006	0.002	0.000
Ln(1)-S(3)	0.023	-	0.019	0.026	Ln(1)-S(3)	0.003	-	0.002	0.000
Ln(1)-N(1)	0.028	0.026	0.040	0.031	Ln(1)-N(1)	0.004	0.001	0.005	0.001
Ln(1)-N(2)	0.026	0.030	0.038	0.027	Ln(1)-N(2)	0.004	0.001	0.005	0.001
Ln(1)-O(1)	0.029	0.037	0.037	0.034	Ln(1)-O(1)	0.005	0.001	0.006	0.003
Ln(1)-O(2)	0.025	0.027	0.032	0.033	Ln(1)-O(2)	0.004	0.002	0.005	0.003
Ln(1)-O(3)	0.031	0.025	0.035	0.029	Ln(1)-O(3)	0.004	0.002	0.005	0.003
Ln(1)-O(4)	0.027	0.040	0.033	0.036	Ln(1)-O(4)	0.004	0.001	0.005	0.003

Table 2S. The main topological characteristics in the coordination sphere of the Ln atoms in complexes $\mathbf{1}_{isol}$, $\mathbf{2}_{isol}$ (DFT data) and $\mathbf{1}_{inv}$, $\mathbf{2}_{inv}$ (molecular invariom data).

Figure 4S. Fragment of crystal packing of complex 3.

Figure 5S. Fragment of molecular chain (a) and fragment of crystal packing along *a* crystal axes(b) of complex 4. The probability ellipsoids are drawn at the 30% level. The hydrogen atoms are omitted for clarity.

Selected distances [Å] and angles [°]: Li(1)-O(2) 1.964(15), Li(1)-O(1) 1.998(15), Li(1)-I(1) 2.674(14), Li(1)-I(1A) 2.750(13); O(2)-Li(1)-O(1) 83.1(6), O(2)-Li(1)-I(1) 113.6(6), O(1)-Li(1)-I(1) 125.8(6), O(2)-Li(1)-I(1A) 113.8(5), O(1)-Li(1)-I(1A) 104.5(6), I(1)-Li(1)-I(1A) 112.8(5), Li(1)-I(1)-Li(1A) 112.8(5).

				/][].	
Complex	1	2	3	[LiI(DME)] _n	
Empirical formula	$C_{22}H_{20}EuF_8N_2O_4S_4$	$C_{22}H_{20}F_8N_2O_4S_4Yb$	$C_{22}H_{20}F_8Li_2N_2O_4S_4$	C ₄ H ₁₀ ILiO ₂	
Formula weight	808.60	829.68	670.52	223.96	
Т (К)	100(2)	100(2)	100(2)	100(2)	
Crystal system	Orthorhombic	Monoclinic	Triclinic	Triclinic	
Space group	P2 ₁ 2 ₁ 2 ₁	P2 ₁ /n	P-1	P-1	
Unit cell dimensions					
a (Å)	8.2564(2)	10.1065(5)	7.2026(2)	4.5176(7)	
b (Å)	16.2975(4)	22.7024(10)	8.1457(3)	7.5494(11)	
c (Å)	20.7578(5)	12.4265(6)	12.7563(4)	11.7399(17)	
α(°)	90	90	72.3210(10)	99.678(3)	
$\beta(9)$	90	91.9246(14)	85.3310(10)	92.977(3)	
γ(⁹)	90	90	72.2750(10)	90.010(3)	
V (Å ³)	2793.14(12)	2849.6(2)	679.17(4)	394.14(10)	
Ζ	4	4	1	2	
D _{calc.} (g·cm ⁻³)	1.923	1.934	1.639	1.887	
Absorption coefficient,	2 621	2 660	0 420	3.983	
μ (mm ⁻¹)	2.031	5.000	0.439		
F (000)	1588	1616	340	212	
Crystal size (mm ³)	$0.41 \times 0.28 \times 0.26$	0.28 × 0.08 × 0.03	0.21 × 0.11 × 0.03	0.28 × 0.07 × 0.06	
Range for data	2 226 ± 20 046	2 131 ÷ 26 500	2 7/6 ± 20 000	2 996 ÷ 25 991	
collection, θ (°)	2.320 . 33.040	2.431 . 20.300	2.740 . 29.999	2.550 . 25.554	
	-14 ≤ h ≤ 14,	-12 ≤ h ≤ 12,	-10 ≤ h ≤ 10,	-5 ≤ h ≤ 5,	
Limiting indices	-28 ≤ k ≤ 28,	-28 ≤ k ≤ 27,	-11 ≤ k ≤ 11,	-9 ≤ k ≤ 9,	
	-36 ≤ l ≤ 36	-15 ≤ ≤ 15	-17 ≤ ≤ 17	-14 ≤ ≤ 14	
Reflections collected/unique	65554 / 16176	22352 / 5903	9191 / 3949	3614 / 1553	
R _(int)	0.0312	0.0660	0.0133	0.0594	
Data/restraints/parame ters	16176 / 55 / 415	5903 / 0 / 374	3949 / 0 / 192	1553 / 6 / 75	
S	1.045	1.068	1.050	1.058	
Final R indices [I >	$R_1 = 0.0305,$	$R_1 = 0.0517,$	$R_1 = 0.0233,$	R ₁ = 0.0663,	
2σ(I)]	wR ₂ = 0.0654	wR ₂ = 0.0916	wR ₂ = 0.0609	wR ₂ = 0.1753	
Dindiana (all data)	$R_1 = 0.0320,$	$R_1 = 0.0780,$	$R_1 = 0.0261,$	$R_1 = 0.0699,$	
K indices (all data)	wR ₂ = 0.0659	wR ₂ = 0.0968	wR ₂ = 0.0622	wR ₂ = 0.1782	
Largest diff. peak/hole (e Å ⁻³)	1.312 / -3.283	1.519 / -2.649	0.357 / -0.345	4.796 / -4.383	

Table 1x. X-ray data collection and refinement parameters for 1-3 and [LiI(DME)]_n.

d)

Figure 6S. Time-resolved PL spectra of Eul₂(THF)₂ in THF solution (a), solid state (b) and DME solution (c); time-resolved PL spectra of solution **A** (d) and solid **B** (e). Excitation – Nd:YAG laser at 355 nm (pulse duration ~ 5 ns).