Supporting Information

For

Ligand-Accelerated Palladium(II)-Catalyzed Enantioselective Amination of $\mathbf{C}\left(\mathbf{s p}^{2}\right)-\mathbf{H}$ Bonds

Xiu-Fen Cheng, ${ }^{\S, \uparrow, \dagger}$ Fan Fei, ${ }^{\S, \dagger}$ Yan Li, ${ }^{*, \dagger}$ Yi-Ming Hou, ${ }^{\dagger}$ Xin Zhou, ${ }^{\dagger}$ and Xi-Sheng Wang*, ${ }^{\prime}$
${ }^{*}$ Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
${ }^{\ddagger}$ College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014 P. R. China.
*liyan08@ustc.edu.cn; xswang77@ustc.edu.cn.

Contents

General Information
 S2

Tables of the Optimization of Reaction Conditions S3
Experimental Procedures S6
General Procedure for Preparation of Ligands S6
General Procedure for Preparation of Substrates S10
Pd(II)-Catalyzed enantioselective $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ amination S18
Derivatizations of Product 2a S26
Determination of the Absolute Configuration of Product 2n S27
References S34
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S35
Chiral HPLC Data S85

General Information:

NMR spectra were recorded on Bruker-400 (400 MHz for ${ }^{1} \mathrm{H} ; 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$) instruments internally referenced to SiMe_{4} signal. High resolution mass spectra were recorded on P-SIMS-Gly of Bruker Daltonics Inc. using ESI-TOF (electrospray ioniza-tion-time of flight). Optical rotations were determined at 589 nm (sodium D line) by using an Anton-Paar MCP 200 polarimeter. HPLC analysis was performed on Shimadzu LC-20AT. Chiral column AD-H, OD-H, and ID were purchased from Daicel Chemical Industries, LTD. Trifluoroethanol and pentafluoropropanol were purchased from Qinba Chemie and used as received. Sliver oxide was obtained from Sinopharm and used as received. Cbz-Phe-OH was obtained from Darui Finechemical and used as received. Zinc acetate was purchased from Alfa and used as received. Palladium diacetate and palladium hexafluoroacetylacetonate were purchased from Strem and used as received. Dibenzyl phosphate was obtained from Meryer and used as received.

Tables of the Optimization of Reaction Conditions
Table S1. Enantioselective $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ activation/C-N formation: Solvent Screening ${ }^{a}$

entry	solvent	yield (\%) ${ }^{\text {b }}$	$e e(\%)^{c}$	entry	solvent	yield (\%) ${ }^{\text {b }}$	$e e(\%)^{\text {c }}$
1	t-BuOH	42	0	11	$\mathrm{Et}_{2} \mathrm{O}$	23	0
2	t-AmOH	39	0	12	toluene	54	0
3	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	97	14	13	PhCl	70	0
4	MeOH	99	4	14	DMSO	31	16
5	dioxane	32	13	15	$n-\mathrm{BuOH}$	58	0
6	DMF	24	0	16	2-Methoxyethanol	45	18
7	THF	24	0	17	EA	26	0
8	DCE	54	0	18	acetone	26	7
9	MeCN	-	0	19	Ethylene glycol	trace	0
10	MeNO_{2}	42	5	$20^{\text {d }}$	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	88	14

${ }^{a}$ Reaction conditions: 1a (0.15 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.015 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Boc}-\mathrm{Ile}-\mathrm{OH}(0.045 \mathrm{mmol}$, $30 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}\left(0.3 \mathrm{mmol}, 2.0\right.$ equiv.), solvent $(1.5 \mathrm{~mL}), \mathrm{N}_{2}, 100^{\circ} \mathrm{C}, 24 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{\mathrm{c}}$ The ee value was determined by chiral HPLC analysis. ${ }^{d} 80^{\circ} \mathrm{C}$.

Table S2. Enantioselective $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ activation/C-N formation: Oxidant Screening ${ }^{a}$

		$\left.\begin{array}{c}\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%) \\ \mathrm{Boc-lle-OH}(30 \mathrm{~mol} \%)\end{array}\right)$					
entry	oxidant	yield (\%) ${ }^{\text {b }}$	$e e(\%)^{\text {c }}$	entry	oxidant	yield (\%) ${ }^{\text {b }}$	$e e(\%)^{\text {c }}$
1	AgOAc	71	13	8	PIDA	95	0
2	$\mathrm{Ag}_{2} \mathrm{O}$	69	28	9	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	27	2
3	AgOTFA	13	17	10	NFSI	19	7
4	Agotf	0	0	11	FTB	16	0
5	AgF	42	19	12	BPO	68	9
6	AgClO_{4}	0	0	13	NCS	42	0
7	$\mathrm{Cu}(\mathrm{OAc})_{2}$	trace	-	14^{d}	$\mathrm{Ag}_{2} \mathrm{O}$	61	29

[^0]Table S3. Enantioselective C $\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ activation/C-N formation: Ligand Screening ${ }^{a}$

			$\begin{aligned} & \mathrm{d}(\mathrm{OAc})_{2} \\ & \text { ligand }(30 \\ & \hline \mathrm{Ag}_{2} \mathrm{O}(2.0 \\ & \mathrm{FE}, \mathrm{~N}_{2}, 80 \end{aligned}$	mol\%) ol\%) quiv.) 12 h	\longrightarrow		
entry	ligand	yield (\%) ${ }^{\text {b }}$	$e e(\%)^{c}$	entry	ligand	yield (\%) ${ }^{\text {b }}$	$e e(\%)^{\text {c }}$
1	$\mathrm{Ac}-\mathrm{lle}-\mathrm{OH}$	56	17	23	Boc-Asp(Bn)-OH	49	41
2	Fmoc-lle-OH	32	16	24	Boc-Met-OH	48	12
3	Cbz-Ile-OH	66	28	25	Boc-Nle-OH	53	36
4	piv-lle-OH	44	10	26	$\mathrm{Boc}-\mathrm{Ser}(\mathrm{Bn})-\mathrm{OH}$	62	29
5	Bz -lle-OH	48	3	27	Boc-Thr(tBu)-OH	49	35
6	Boc-lle-OH	61	29	28	Boc-Thr-OH	50	12
7	Boc-Ala-OH	45	40	29	Boc-Trp-OH	33	13
8	Boc-Leu-OH	44	33	30	Boc-Nva-OH	50	33
9	Boc-Val-OH	45	26	31	Boc-Trp(Boc)-OH	51	44
10	Boc-Tle-OH	42	34	32	Boc-Asp(Me)-OH	47	37
11	Boc-Phe-OH	47	45	33	Boc-Thr(Bn)-OH	58	30
12	Boc-CyGly-OH	40	27	34	Cbz-Ala-OH	51	40
13	Boc-Nal-OH	48	45	35	Cbz-Phe-OH	64	57
14	Boc-HPhe-OH	48	32	36	Cbz-Ser-OH	57	13
15	$\mathrm{Boc}-\mathrm{Tyr}(t \mathrm{Bu})-\mathrm{OH}$	47	41	37	Cbz-Arg-OH	32	8
16	Boc-Tyr(Bn)-OH	50	36	38	Cbz-Trp-OH	32	8
17	Boc-Tyr-OH	45	17	39	Cbz-Pro-OH	55	10
18	Boc-Asp(Cy)-OH	58	42	40	Cbz-PhGly-OH	58	17
19	Boc-Asp(tBu)-OH	48	36	41	Cbz-Leu-OH	55	27
20	Boc-Glu(tBu)-OH	54	37	42	Cbz-Nva-OH	62	38
21	Boc-Glu(Cy)-OH	55	34	43	Cbz-Val-OH	54	28
22	Boc-Glu(Bn)-OH	47	34				

${ }^{a}$ Reaction conditions: 1a (0.15 mmol$), \mathrm{Pd}(\mathrm{OAc})_{2}(0.015 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, ligand $(0.045 \mathrm{mmol}, 30$ $\mathrm{mol} \%), \mathrm{Ag}_{2} \mathrm{O}\left(0.3 \mathrm{mmol}, 2.0\right.$ equiv.), TFE (1.5 mL), $\mathrm{N}_{2}, 80^{\circ} \mathrm{C}, 12 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ The ee value was determined by chiral HPLC analysis.

Table S4. Enantioselective $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ activation/ $\mathrm{C}-\mathrm{N}$ formation: Palladium Salt and Additive Screening ${ }^{a}$

entry	[Pd]		additive	time (h)	yield (\%) ${ }^{\text {b }}$	$e(\%)^{\text {c }}$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$			12	85	86
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$		$\mathrm{Cu}(\mathrm{acac})_{2}(10 \mathrm{~mol} \%)$	12	78	91
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$		$\mathrm{Cu}(\mathrm{hfacac})_{2}(10 \mathrm{~mol} \%)$	12	72	91
4	$\mathrm{Pd}(\mathrm{acac})_{2}$			12	69	89
5	$\mathrm{Pd}(\mathrm{hfacac})_{2}$			12	43	92
6	$\mathrm{Pd}(\mathrm{acac})_{2}$		$\mathrm{Cu}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$	12	67	92
7	$\mathrm{Pd}(\mathrm{hfacac})_{2}$		$\mathrm{Cu}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$	12	70	92
8	$\mathrm{Pd}(\mathrm{hfacac})_{2}$		$\mathrm{Zn}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$	12	77	94
9	$\mathrm{Pd}(\mathrm{hfacac})_{2}$		$\mathrm{Zn}(\mathrm{OAc})_{2}(15 \mathrm{~mol} \%)$	12	80	94
10	$\mathrm{Pd}(\text { hfacac })_{2}$		$\mathrm{Zn}(\mathrm{OAc})_{2}$ ($\left.15 \mathrm{~mol} \%\right)$	24	86	92
11	$\mathrm{Pd}(\mathrm{hfacac})_{2}$	$\mathrm{Zn}(\mathrm{O}$	Ac) 2 ($15 \mathrm{~mol} \%$)/DPP ($10 \mathrm{~mol} \%$)	24	93	93
12	$\mathrm{Pd}(\mathrm{hfacac})_{2}$	$\mathrm{Zn}(\mathrm{O}$	$\mathrm{Ac}_{2}(15 \mathrm{~mol} \%) / \mathrm{DBP}(10 \mathrm{~mol} \%)$	24	93	94
13	$\mathrm{Pd}(\text { hfacac })_{2}$		DBP (10 mol\%)	24	60	92
14	$\mathrm{Pd}(\mathrm{hfacac})_{2}$	$\mathrm{Zn}(\mathrm{O}$	Ac_{2} ($15 \mathrm{~mol} \%$)/DBP (30 mol\%)	24	90	95
$15^{\text {d }}$	$\mathrm{Pd}(\mathrm{hfacac})_{2}$	$\mathrm{Zn}(\mathrm{OA}$	Ac) 2 ($15 \mathrm{~mol} \%$ //DBP (30 mol\%)	24	95	95
$16^{\text {d }}$	$\mathrm{Pd}(\mathrm{acac})_{2}$	$\mathrm{Zn}(\mathrm{OA}$	$\mathrm{Ac}_{2}(15 \mathrm{~mol} \%) / \mathrm{DBP}(30 \mathrm{~mol} \%)$	24	92	95

${ }^{a}$ Reaction conditions: $1 \mathbf{a}(0.15 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.015 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{pNz}-\mathrm{Phe}-$ NHOMe ($0.045 \mathrm{mmol}, 30 \mathrm{~mol} \%$), additive, $\mathrm{Ag}_{2} \mathrm{O}(0.3 \mathrm{mmol}, 2.0$ equiv.), TFE (2.5 mL), $\mathrm{N}_{2}, 60^{\circ} \mathrm{C}, 12 \mathrm{~h}$. ${ }^{\text {b }}$ Isolated yield. ${ }^{\mathrm{c}}$ The ee value was determined by chiral HPLC analysis. ${ }^{d}$ PFP was used as solvent.

Experimental procedure

All of the substrates were prepared through amidations of diarylacetic acids. The acid, which was used for preparation of $\mathbf{1 a}, \mathbf{1 r}$ and $\mathbf{1 s}$ was purchased from Fluorochem and used as received. The acids, which was used for preparation of $\mathbf{1 b},{ }^{1} \mathbf{1},{ }^{2} \mathbf{1 g},{ }^{1} \mathbf{1 i},{ }^{1} \mathbf{1},{ }^{2}$ $\mathbf{1 k},{ }^{1} \mathbf{1 n},{ }^{1}$ were prepared according to the reported procedures.

General procedure of preparation of ligands (L15-17) ${ }^{3}$

To a DCM (40 mL) solution of mono-protected phenylalanine (10 mmol), HOBt (1.49 $\mathrm{g}, 11 \mathrm{mmol}, 1.1$ equiv.) and $\operatorname{EDCI}(2.1 \mathrm{~g}, 11 \mathrm{mmol}, 1.1$ equiv.), O-alkyl hydroxylamine hydrochloride ($15 \mathrm{mmol}, 1.5$ equiv.) and DIPEA ($2.6 \mathrm{~mL}, 15 \mathrm{mmol}, 1.5$ equiv.) were added in an ice-bath. After stirring at room temperature overnight, the reaction mixture was quenched by water. The mixture was extracted by DCM for three times. The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography $(\mathrm{DCM} / \mathrm{MeOH}=100: 1$ to $50: 1)$, and the ligand was obtained after recrystallization as white solid.

Benzyl (S)-(1-(methoxyamino)-1-oxo-3-phenylpropan-2-yl)carbamate (Cbz-Phe-

 NHOMe, L15)
$1.45 \mathrm{~g}\left(44 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.05(\mathrm{~s}, 1 \mathrm{H})$, $7.39-7.20(\mathrm{~m}, 8 \mathrm{H}), 7.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31(\mathrm{dd}, J=15.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.5,156.2,136.1,129.5,128.8,128.7,128.4,128.1,127.3,67.4,64.4$, 54.1, 38.5. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N}_{2}$ 329.1496; Found 329.1497. $[\alpha]_{\mathrm{D}}{ }^{20}=-11.6^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

Benzyl (S)-(1-(ethoxyamino)-1-oxo-3-phenylpropan-2-yl)carbamate (Cbz-Phe-

NHOEt, L16)

$1.37 \mathrm{~g}\left(40 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.11(\mathrm{~s}, 1 \mathrm{H})$, $7.40-7.21(\mathrm{~m}, 8 \mathrm{H}), 7.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.66(\mathrm{~d}, J=8.0$
$\mathrm{Hz}, 1 \mathrm{H}), 5.01(\mathrm{q}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{dd}, J=15.4,7.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.86-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6,156.3,136.2,136.0,129.5,128.8,128.7,128.4,128.1$, 127.2, 72.2, 67.3, 54.2, 38.6, 13.4. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~N}_{2}$ 343.1652; Found 343.1653. [$\alpha]_{D}{ }^{20}=-10.6^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

Benzyl (S)-(1-((benzyloxy)amino)-1-oxo-3-phenylpropan-2-yl)carbamate (Cbz-

Phe-NHOBn, L17)

$1.77 \mathrm{~g}\left(44 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.94(\mathrm{~s}, 1 \mathrm{H})$, $7.42-7.18$ (m, 13H), 7.15 (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.53$ (d, $J=8.1$
$\mathrm{Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.77(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.12-2.94$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.5,156.1,136.1,136.0,135.0,129.5,129.4$, 128.8, 128.7, 128.6, 128.4, 128.1, 127.2, 78.4, 67.3, 54.1, 38.5. HRMS (ESI) m/z: [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~N}_{2}$ 405.1809; Found 405.1811. $[\alpha]_{\mathrm{D}}{ }^{20}=-15.3^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

4-Methoxybenzyl (S)-(1-(methoxyamino)-1-oxo-3-phenylpropan-2-yl)carbamate

(pMz-Phe-NHOMe, L20)
0.47 g (13% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 5 \mathrm{H})$, $7.19(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 5.35-5.21(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}$, $3 \mathrm{H}), 3.14-2.97(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6,159.8,136.1,130.1$, 129.5, 129.0, 128.1, 127.4, 114.1, 67.3, 64.5, 55.4, 54.2, 38.3. HRMS (ESI) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{~N}_{2}$ 359.1601; Found 359.1615. $[\alpha]_{\mathrm{D}}{ }^{20}=-10.0^{\circ}\left(c 0.5, \mathrm{CHCl}_{3}\right)$.

General procedure of preparation of ligands (L18-19)

To a solution of Cbz-Phe-OH ($670.4 \mathrm{mg}, 2.24 \mathrm{mmol}$) and NMM ($0.25 \mathrm{~mL}, 2.24 \mathrm{mmol}$, 1.0 equiv.) in THF (2 mL), isopropyl chloroformate ($246 \mu \mathrm{~L}, 2.24 \mathrm{mmol}, 1.0$ equiv.) was added dropwise at $-15^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 5 min , a solution of arylamine ($2.24 \mathrm{mmol}, 1.0$ equiv.) in THF (2 mL) was added at $-15^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , and then at room temperature overnight. After the reaction was completed, solvent was removed under reduced pressure. The residue was dissolved in EtOAc,
washed with 2 N HCl (aq.), $0.5 \mathrm{~N} \mathrm{NaHCO}_{3}$ (aq.), and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. After purifying by column chromatography ($\mathrm{DCM} / \mathrm{MeOH}=100: 1$ to $50: 1$), ligand was obtained through recrystallization as white solid.

Benzyl (S)-(1-oxo-1-((perfluorophenyl)amino)-3-phenylpropan-2-yl)carbamate

 (Cbz-Phe-NHPh ${ }^{\text {F }}$, L18)
$0.23 \mathrm{~g}\left(22 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73$ (s, $1 \mathrm{H}), 7.37-7.25(\mathrm{~m}, 8 \mathrm{H}), 7.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{~s}$, $1 \mathrm{H}), 5.12(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.67(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.3,156.7$ (m), 144.2 (m), 141.7 (m), 139.1 (m), 136.5 (m), $135.8(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 129.4,128.9,128.6,128.4,127.9,127.4,111.4$ (m), 67.5, 56.3, 38.5. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~F}_{5}$ 465.1232; Found 465.1230. $[\alpha]_{\mathrm{D}}{ }^{20}=+9.7^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

Benzyl (S)-(1-((4-nitrophenyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate

(Cbz-Phe-NHpNP, L19)

$0.31 \mathrm{~g}\left(31 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39$ $(\mathrm{s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.38-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.19(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.43$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.9,143.9,143.1,136.0,135.8,129.3,129.2,128.8,128.6$, 128.2, 127.6, 125.0, 119.4, 67.8, 57.4, 38.1. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}_{3} 420.1554$; Found 420.1550. $[\alpha]_{\mathrm{D}}{ }^{20}=+2.2^{\circ}\left(c 0.5, \mathrm{CHCl}_{3}\right)$.

Preparation of $\mathbf{L 2 1}{ }^{4}$

To an aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(620 \mathrm{mg}, 5.81 \mathrm{mmol}, 3.0$ equiv.) and L-phenylalanine ($320 \mathrm{mg}, 1.94 \mathrm{mmol}$), p-nitrobenzyl chloroformate ($460 \mathrm{mg}, 2.14 \mathrm{mmol}, 1.1$ equiv.) in 1,4-dioxane (2 mL) was added dropwise at $0{ }^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 1.5 h , the reaction mixture was stirred at room temperature for another 20 h . The mixture was separated by $\mathrm{Et}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$. The aqueous phase was acidified by 3 N HCl (aq.) at $0{ }^{\circ} \mathrm{C}$ to $\mathrm{pH}=1$, extracted with EtOAc for three times. The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was used directly without purification. Then, the similar amidation according to L15 was carried out to give $\mathbf{L} 21$ ($0.25 \mathrm{~g}, 34 \%$ overall yield) as white solid.

4-Nitrobenzyl (S)-(1-(methoxyamino)-1-oxo-3-phenylpropan-2-yl)carbamate

 (pNz-Phe-NHOMe, L21)
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) $\delta 10.39$ (s, $1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.19$ (m, $1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{q}, ~ J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{dd}, J=15.0,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.59(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{dd}, J=13.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=13.5,8.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, Acetone-d ${ }^{6}$) $\delta 168.7,156.4,148.3,145.9,138.3,130.3,129.2,128.8,127.4$, 124.3, 65.4, 63.9, 55.3, 39.0. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{~N}_{3}$ 374.1347; Found 374.1347. $[\alpha]_{\mathrm{D}}{ }^{20}=-9.2^{\circ}\left(c 0.5, \mathrm{CHCl}_{3}\right)$.

Preparation of $\mathbf{L 2 2}^{5}$

In a sealed flask, triphosgene ($2.5 \mathrm{~g}, 8.75 \mathrm{mmol}, 1.75$ equiv.) was dissolved in pentane $(12.5 \mathrm{~mL})$ at $-15{ }^{\circ} \mathrm{C}$. Pyridine (0.4 mL , $5 \mathrm{mmol}, 1.0$ equiv.) was added dropwise via syringe. After stirring for 1 h , a solution of 4-trifluoromethylbenzyl alcohol ($881 \mathrm{mg}, 5$ mmol) in pentane (if the alcohol cannot be dissolved completely, acetone should be
added as little as possible) was added to the reaction mixture dropwise via syringe, and the released gas was aspirated via syringe simultaneously, which was quenched by saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (aq.). The reaction mixture was stirred until arylmethanol cannot be detected by TLC (6 h usually). After that, the mixture was washed with 3 N HCl (aq.) and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was used directly without purification. Then, the similar procedure according to $\mathbf{L 2 1}$ was carried out to give $\mathbf{L 2 2}(0.18 \mathrm{~g}, 9 \%$ overall yield) as white solid.

4-(Trifluoromethyl)benzyl (S)-(1-(methoxyamino)-1-oxo-3-phenylpropan-2-

 yl)carbamate (Tfz-Phe-NHOMe, L22)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.77$ ($\mathrm{s}, 1 \mathrm{H}$), $7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=$ $15.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Acetoned_{6}) $\delta 168.7,156.5,142.9,138.3,130.3,130.0(\mathrm{q}, ~ J=32.3 \mathrm{~Hz}), 129.1,128.6,127.4$, $126.1(\mathrm{q}, J=3.9 \mathrm{~Hz}), 125.3(\mathrm{q}, J=347.9 \mathrm{~Hz}), 65.7,63.9,55.2,38.9$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~F}_{3}$ 397.1370; Found 397.1386. $[\alpha]_{\mathrm{D}}{ }^{20}=-9.6^{\circ}(c 1.0$, $\left.\mathrm{CHCl}_{3}\right)$.

General procedure of synthesis of substrates $(\mathbf{1 a}, \mathbf{1 b}, 1 \mathrm{e}, 1 \mathrm{~g}, 1 \mathrm{i}-\mathrm{k}, \mathbf{1 n}, \mathbf{1 r}, 1 \mathrm{~s})^{6}$

To a solution of diarylacetic acid (10 mmol) in dry DCM (20 mL), DMF ($150 \mu \mathrm{~L}, 2$ mmol, 0.2 equiv.) and oxalyl dichloride ($1.7 \mathrm{~mL}, 20 \mathrm{mmol}, 2.0$ equiv.) was added successively in an ice-bath. The reaction mixture was stirred at room temperature for 3 h , and then concentrated in vacuo. The residue was dissolved in toluene (15 mL), O-alkyl hydroxylamine hydrochloride ($11 \mathrm{mmol}, 1.1$ equiv.), which was added to a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(2.12 \mathrm{~g}, 20 \mathrm{mmol}, 2.0\right.$ equiv.) in toluene $/ \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=1: 1)$ slowly at 0 ${ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at room temperature overnight. The mixture was extracted with EtOAc for three times, and the combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure.

The residue was purified by column chromatography on silica gel (petroleum ether/acetone $=4: 1$ to $5: 2$) to give the N-alkoxy amide as white to pale yellow solid.

N-methoxy-2,2-diphenylpropanamide (1a)

Found 256.1335. $2.40 \mathrm{~g}\left(94 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~s}, 1 \mathrm{H})$, $7.38-7.20(\mathrm{~m}, 10 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.9,144.0,128.8,128.1,127.4,64.5,55.6,27.0$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}$ 256.1332;
N-methoxy-2,2-di-p-tolylpropanamide(1b)

$2.57 \mathrm{~g}\left(91 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~s}$, $1 \mathrm{H}), 7.12(\mathrm{~s}, 8 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.3, 141.2, 137.0, 129.4, 128.0, 64.4, 54.9, 27.0, 21.1. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N} 284.1645$; Found 284.1645.

2,2-Bis(4-methoxyphenyl)- N -methoxypropanamide (1e)

$2.74 \mathrm{~g}\left(87 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94$ (s, 1H), 7.15 (d, $J=8.7 \mathrm{~Hz}, 4 \mathrm{H}$), 6.85 (d, $J=8.8 \mathrm{~Hz}, 4 \mathrm{H}$), 3.80 (s, 6H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 173.5,158.7,136.3,129.2,114.0,64.4,55.4,27.2$. HRMS (ESI) m/z: [M + H $]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N} 316.1543$;

Found 316.1545.
N-methoxy-2,2-di-m-tolylpropanamide(1g)

$2.32 \mathrm{~g}\left(82 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96$ (s, 1 H), 7.21 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.09 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.06 (s, 2H), 7.00 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.75 (s, 3H), 2.32 (s, 6H), $1.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2,144.1$, 138.3, 128.7, 128.6, 128.1, 125.3, 64.4, 55.4, 27.0, 21.8.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}$ 284.1645; Found 284.1646.
2,2-Bis(3,4-dimethylphenyl)- N -methoxypropanamide (1i)

$2.76 \mathrm{~g}\left(89 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98$ (s , $1 \mathrm{H}), 7.07$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 2 \mathrm{H}), 6.93$ (d, $J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.75 ($\mathrm{s}, 3 \mathrm{H}$), 2.25 ($\mathrm{s}, 6 \mathrm{H}$), 2.23 ($\mathrm{s}, 6 \mathrm{H}$), 1.95 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,141.6,136.8,135.6$,
129.9, 129.2, 125.6, 64.4, 54.8, 27.1, 20.2, 19.5. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~N} 312.1958$; Found 312.1963.

2,2-Bis(4-methoxy-3-methylphenyl)- N-methoxypropanamide (1j)

$2.88 \mathrm{~g}\left(84 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97$ (s, $1 \mathrm{H}), 7.04-6.96(\mathrm{~m}, 4 \mathrm{H}), 6.79-6.72(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H})$, $3.75(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 6 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8,156.8,135.9,130.3,126.7,126.5$, 109.8, 64.4, 55.5, 54.2, 27.2, 16.6. HRMS (ESI) m/z: [M
$+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}$ 344.1856; Found 344.1870.

2,2-Bis(3-chloro-4-methoxyphenyl)- \boldsymbol{N}-methoxypropanamide (1k)

$2.98 \mathrm{~g}(78 \%$ yield $) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~s}$, 1 H), 7.23 (d, $J=2.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.08 (dd, $J=8.6,2.4 \mathrm{~Hz}$, 2H), 6.89 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.91 (s, 6H), 3.76 (s, 3H), $1.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,154.3$, 136.6, 129.8, 127.5, 122.8, 112.1, 64.5, 56.3, 54.0, 27.1.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{NCl}_{2}$ 384.0764; Found 384.0779.

N -methoxy-2,2-diphenylbutanamide (1n)

$2.47 \mathrm{~g}\left(92 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~s}, 1 \mathrm{H})$, $7.38-7.21(\mathrm{~m}, 10 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.88$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,142.3$, 129.0, 128.5, 127.2, 64.2, 59.5, 31.7, 10.0. HRMS (ESI) m/z: [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}$ 270.1489; Found 270.1489.
N-ethoxy-2,2-diphenylpropanamide (1r)

$2.42 \mathrm{~g}\left(90 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~s}, 1 \mathrm{H})$,
7.36 - 7.21 (m, 10H), 3.95 ($\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.01 ($\mathrm{s}, 3 \mathrm{H}$), 1.21
$(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,144.1$, 128.7, 128.1, 127.3, 72.2, 55.7, 27.1, 13.5. HRMS (ESI) m/z: [M
$+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}$ 270.1489; Found 270.1490.
\boldsymbol{N}-(benzyloxy)-2,2-diphenylpropanamide (1s)

$1.81 \mathrm{~g}\left(74 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77$ ($\mathrm{s}, 1 \mathrm{H}$), $7.34-7.22(\mathrm{~m}, 11 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 4 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 1.98(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,144.0,135.1,129.5$, 128.9, 128.7 (2C), 128.1, 127.3, 78.2, 55.7, 27.0. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N} 332.1645$; Found 332.1647.

General procedure of synthesis of substrates $(\mathbf{1 c}, \mathbf{1 d}, \mathbf{1 l})^{1}$

At $-10{ }^{\circ} \mathrm{C}$, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(15.4 \mathrm{~mL})$ was added to pyruvic acid ($1.34 \mathrm{~mL}, 19.3 \mathrm{mmol}$) slowly. Arene ($60 \mathrm{mmol}, 3.0$ equiv.) was added in one pot. The solution was stirred vigorously for 3 h ., quenched with ice, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude acid was purified by flash column chromatography (petroleum ether/EtOAc $=10: 1$ to petroleum ether/acetone $=4: 1$). Then, the similar amidations according to $\mathbf{1 a}$ was carried out to give the corresponding substrates.

2,2-Bis(4-ethylphenyl)-N-methoxypropanamide (1c)

$1.62 \mathrm{~g}\left(27 \%\right.$ overall yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.97 (d, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 8 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{q}, J$ $=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.4,143.2,141.4,128.2,128.0,64.4$, 55.0, 28.5, 27.0, 15.5. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~N} 312.1958$; Found 312.1971.

2,2-Bis(4-butylphenyl)- N-methoxypropanamide (1d)

$1.20 \mathrm{~g}\left(17 \%\right.$ overall yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.94 (s, 1H), 7.13 (s, 8H), 3.75 (s, 3H), 2.75 - 2.49 (m, 4H), $1.98(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.93$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.4$, $142.0,141.3,128.7,127.9,64.4,55.0,35.3,33.6,27.0,22.6$,
14.1. HRMS (ESI) m/z: [M + H] Calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{~N} 368.2584$; Found 368.2597.

2,2-Bis(2,3-dihydro-1 H -inden-5-yl)- N -methoxypropanamide (11)

2.13 g (33% overall yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.00(\mathrm{~s}, 1 \mathrm{H}), 7.16$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ ($\mathrm{s}, 2 \mathrm{H}), 6.99$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{q}, J=7.7 \mathrm{~Hz}, 8 \mathrm{H}), 2.16$ $-2.02(\mathrm{~m}, 4 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 173.7, 144.8, 143.2, 142.3, 126.1, 124.4, 124.0, 64.4, 55.3, 33.1, 32.6, 27.4, 25.6. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~N} 336.1958$; Found 336.1971.

General procedure of synthesis of substrate (1 m$)^{\mathbf{2}}$

To a mixture of $\operatorname{TMSCl}(13.0 \mathrm{~mL}, 100 \mathrm{mmol}, 2.0$ equiv. $)$, dihydrobenzofuran $(16.9 \mathrm{~mL}$, $150 \mathrm{mmol}, 3,0$ equiv.), ethyl pyruvate ($6.1 \mathrm{~mL}, 50 \mathrm{mmol}$), $\mathrm{Bi}_{2}\left(\mathrm{SO}_{4}\right)_{3}(3.5 \mathrm{~g}, 5 \mathrm{mmol}$, $10 \mathrm{~mol} \%$) was added in portions. The mixture was stirred at room temperature overnight vigorously. Silica gel was added after completing the reaction, and the volatile was evaporated, then the residue was purified by flash column chromatography (petroleum ether/EtOAc $=15: 1$ to $4: 1$). The ester $(20 \mathrm{mmol})$ was dissolved in MeOH (11.2 mL), and was added $11.2 \mathrm{~mL} 20 \% \mathrm{KOH}$ (aq.). The resulting solution was refluxed in an oil bath for 24 h . After that, the mixture was cooled to $0^{\circ} \mathrm{C}$, acidified using 4 N HCl , and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the acid, without further purification, was used in the similar amidation according to $\mathbf{1 a}$ to give $\mathbf{1 m}(2.44 \mathrm{~g}, 36 \%$ overall yield) as white solid.

2,2-Bis(2,3-dihydrobenzofuran-5-yl)- N -methoxypropanamide (1m)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01$ (s, 1H), $7.06(\mathrm{~s}, 2 \mathrm{H}), 6.96$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{t}, J=8.7$ $\mathrm{Hz}, 4 \mathrm{H}$), 3.76 (s, 3H), 3.18 (t, $J=8.7 \mathrm{~Hz}, 4 \mathrm{H}$), 1.94 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.9,159.2,136.5,127.9$, 127.5, 124.7, 109.2, 71.6, 64.4, 54.6, 29.9, 27.5. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N} 340.1543$; Found 340.1559.

General procedure of synthesis of substrates (1f, 10-q) ${ }^{7}$

To a solution of diphenylacetic acid ($2.12 \mathrm{~g}, 10 \mathrm{mmol}$) (2.48 g of bis(4-fluorophenyl)acetic acid 8 for $\mathbf{1 f}$) in dried THF (10 mL) was added LDA (2.0 M in THF, 11 $\mathrm{mL}, 22 \mathrm{mmol}$) under N_{2} atmosphere in an ice-bath. The solution was stirred at room temperature for 4 h . After cooling the reaction mixture again to $0^{\circ} \mathrm{C}$, alkyl halide (15 $\mathrm{mmol})$ was added dropwise. The reaction was stirred overnight at room temperature, quenched by 4 N HCl at $0^{\circ} \mathrm{C}$ and then diluted with $\mathrm{Et}_{2} \mathrm{O}$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 times). The organic layers were combined, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the crude acid was purified by flash column chromatography (petroleum ether $/ \operatorname{EtOAc}=10: 1$ to petroleum ether/acetone $=4: 1$). Then, the similar amidations according to 1a was carried out to give the corresponding substrates as white solid.

2,2-Bis(4-fluorophenyl)- N -methoxypropanamide(1f)

$1.80 \mathrm{~g}\left(62 \%\right.$ overall yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96$ (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=8.7,5.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.03(\mathrm{t}, J=$ $8.6 \mathrm{~Hz}, 4 \mathrm{H}$), 3.75 ($\mathrm{s}, 3 \mathrm{H}$), 1.98 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.6,162.0(\mathrm{~d}, J=247.6 \mathrm{~Hz}), 139.6(\mathrm{~d}, J=3.3 \mathrm{~Hz})$, $129.8(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 64.5,54.5,27.4$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{NF}_{2}$ 292.1144; Found 292.1145.

N -methoxy-5-methyl-2,2-diphenylhexanamide (10)

1.99 g (64% overall yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97$ (s, 1H), $7.39-7.15$ (m, 10H), 3.69 (s, 3H), $2.45-2.34(m, 2 H)$, $1.57-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,142.6,128.9,128.6$, 127.2, 64.3, 59.2, 37.0, 34.0, 28.8, 22.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~N} 312.1958$; Found 312.1960.

N -methoxy-4-methyl-2,2-diphenylpentanamide (1p)

$1.25 \mathrm{~g}\left(42 \%\right.$ overall yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05$ (s, 1H), $7.41-7.22(\mathrm{~m}, 10 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, 2 H), $1.68-1.58(\mathrm{~m}, 1 \mathrm{H}), 0.70(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7,142.8,129.1,128.4,127.2,64.1,59.5,47.3$, 25.1, 24.7. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}$ 298.1802; Found 298.1803 .

3-Ethoxy- N-methoxy-2,2-diphenylpropanamide (1q)

$2.12 \mathrm{~g}\left(71 \%\right.$ overall yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.52$ (s, $1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.21(\mathrm{~m}$, $5 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,140.9$, 128.9, 128.4, 127.4, 74.9, 67.4, 64.2, 60.2, 15.1. HRMS (ESI) m/z: [M + H] Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N} 300.1594$; Found 300.1596.

Synthesis of $\mathbf{1 h}^{7}$

HI, TFA

To a solution of diethyl oxalate ($8.13 \mathrm{~mL}, 60 \mathrm{mmol}$) in dried THF (60 mL) was added 3-trifluoromethylphenylmagnesium bromide ($132 \mathrm{mmol}, 2.2$ equiv., synthesized from 18.48 mL 3-trifluoromethylphenyl bromide and 3.35 g magnesium in 90 mL dried THF) dropwise at $-78^{\circ} \mathrm{C}$, and then warmed to room temperature. After stirring overnight, the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) at $-10^{\circ} \mathrm{C}$, and stirred for another 10 min. The mixture was extracted with DCM for three times, and the combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash column chromatography (petroleum ether/EtOAc $=5: 1$) to give the ethyl benzilate ($22.57 \mathrm{~g}, 57.5 \mathrm{mmol}, 96 \%$ yield). The ester was dissolved in MeOH (57 mL), and the solution refluxed in an oil bath overnight after $2.5 \mathrm{M} \mathrm{KOH}(57 \mathrm{~mL})$ was added. The reaction was cooled to $0^{\circ} \mathrm{C}$ and then acidified using 4 N HCl . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After
filtration and concentration, the crude acid was purified by flash column chromatography $(\mathrm{DCM} / \mathrm{MeOH}=50: 1)$ to give the pure acid $(20.04 \mathrm{~g}, 96 \%$ yield $)$. The benzilic acid ($12 \mathrm{~g}, 33 \mathrm{mmol}$) was dissolved in TFA (110 mL), and heated to reflux in an oil bath, then $57 \% \mathrm{HI}$ (aq., 48 mL) was added dropwise. The solution was cooled to room temperature 5 h later, and most of the volatile was evaporated. The residue was diluted with water, added $30 \% \mathrm{NaOH}$ (aq.) to adjust $\mathrm{pH}<3$ in an ice bath, extracted with EtOAc for three times. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated. The crude acid was purified by flash column chromatography (petroleum ether/acetone $=6: 1,7.04 \mathrm{~g}, 61 \%$ yield).
To a solution of diarylacetic acid ($6.96 \mathrm{~g}, 20 \mathrm{mmol}$) in $\mathrm{MeOH}(33 \mathrm{~mL})$ was added conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(55.6 \mu \mathrm{~L}, 1 \mathrm{mmol}, 0.05$ equiv.) dropwise in an ice-bath, then refluxed overnight. After cooling to room temperature, saturated NaHCO_{3} was added, and then extracted by EtOAc three times. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated. The residue was dissolved in dried THF (20 mL) under N_{2}, and then LDA ($15 \mathrm{~mL}, 2.0 \mathrm{M}$ in THF, 1.5 equiv.) was added at $-78{ }^{\circ} \mathrm{C}$. The solution was stirred for another 12 h , and iodomethane ($2.5 \mathrm{~mL}, 40 \mathrm{mmol}, 2.0$ equiv.) was added dropwise. The reaction was stirred at room temperature overnight. The mixture was quenched by water at $-40^{\circ} \mathrm{C}$ and extracted with EtOAc (3 times). The organic layers were combined, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the crude ester was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$, and the solution refluxed overnight after $20 \% \mathrm{NaOH}(20 \mathrm{~mL})$ was added. The reaction was cooled to $0^{\circ} \mathrm{C}$ and then acidified using 4 N HCl . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the crude acid was purified by flash column chromatography (petroleum ether/EtOAc $=10: 1$ to petroleum ether/acetone $=5: 1,4.20 \mathrm{~g}, 59 \%$ yield). Then, the similar amidation according to $\mathbf{1 a}$ was carried out to give $\mathbf{1 h}(3.10 \mathrm{~g}, 68 \%$ yield) as pale yellow solid.

2,2-bis(3-(trifluoromethyl)phenyl)- N -methoxypropanamide (1h)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09$ (s, 1H), 7.59 (d, $J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.51$ (s, 2H), 7.48 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.40 (d, $J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.75(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.5,144.2,131.7,131.4(\mathrm{q}, J=32.4 \mathrm{~Hz}), 129.5$, $124.8(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.6(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.9(\mathrm{q}, J=$ 272.6 Hz), 64.5, 55.5, 27.0. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{NF}_{6}$ 392.1080; Found 392.1082.

$\mathbf{P d}\left(\right.$ II) -Catalyzed enantioselective $\mathbf{C}\left(\mathbf{s p}^{2}\right)-\mathbf{H}$ amination

In a 25 mL Schlenk tube, 2.5 mL pentafluoropanol was added to a mixture of diarylamide 1 (0.15 mmol), $\mathrm{Pd}(\mathrm{hfacac})_{2}(7.8 \mathrm{mg}, 0.015 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pNz-Phe-NHOMe ($16.8 \mathrm{mg}, 0.045 \mathrm{mmol}, 30 \mathrm{~mol} \%$), $\mathrm{Zn}(\mathrm{OAc})_{2}(4.1 \mathrm{mg}, 0.0225 \mathrm{mmol}, 15 \mathrm{~mol} \%)$, dibenzyl phosphate ($12.5 \mathrm{mg}, 0.045 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Ag}_{2} \mathrm{O}(69.5 \mathrm{mg}, 0.3 \mathrm{mmol}, 2.0$ equiv.) under N_{2}. The tube was sealed with a Teflon lined cap and the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ in a preheating oil bath for 24 h . After cooling to room temperature, the mixture was concentrated under vacuum and the residue was purified by column chromatography on silica gel (petroleum ether/acetone $=7: 1$ to $5: 1$) to give the chiral lactams as white to pale yellow solid.

Preparation procedure of racemic products was shown as follows:
In a 25 mL Schlenk tube, 1.0 mL trifluoroethanol was added to a mixture of diarylamide 1 (0.1 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, Cbz-Gly-NHOMe (7.1 mg , $0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$), and $\mathrm{Ag}_{2} \mathrm{O}\left(46.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0\right.$ equiv.) under N_{2}. The following procedure was the same as the enantioselective approach.

1-Methoxy-3-methyl-3-phenylindolin-2-one (2a)

36.2 mg (95% yield), 240.0 mg (94% yield for 1 mmol scale reaction in 100 mL Schlenk tube). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.34 (td, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.32-7.22$ (m, 5H), 7.19 (d, $J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.02(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.1,140.0,139.6,131.4$, 128.8, 128.4, 127.6, 126.7, 124.6, 123.5, 107.7, 63.6, 51.0, 23.6. HRMS (ESI) m/z: [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N} 254.1176$; Found 254.1178. $[\alpha]_{\mathrm{D}}{ }^{20}=+101.4^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 95\%, determined by HPLC (Chiralpak-AD-H, hexane/isopropanol $=90 / 10$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right)$: $\mathrm{t}_{\mathrm{R}}=6.940 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=9.382 \mathrm{~min}$ (major).

1-Methoxy-3,6-dimethyl-3-(p-tolyl)indolin-2-one (2b)

$32.4 \mathrm{mg}\left(77 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ (d, $J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~s}$, $3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.5,139.6,138.6,137.3,137.2,129.4$, 128.6, 126.6, 124.3, 124.0, 108.4, 63.5, 50.4, 23.7, 21.9, 21.1. HRMS (ESI) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}$ 282.1489; Found 282.1491. $[\alpha]_{\mathrm{D}}{ }^{20}=+94.0^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 93\%, determined by HPLC (Chiralpak-AD-H, hexane/isopropanol $=90 / 10$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=10.335$ \min (minor), $\mathrm{t}_{\mathrm{R}}=11.668 \mathrm{~min}$ (major).

6-Ethyl-3-(4-ethylphenyl)-1-methoxy-3-methylindolin-2-one (2c)

33.7 mg (73% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.13 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.09 (d, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~s}$, $3 \mathrm{H}), 2.71(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.77$ ($\mathrm{s}, 3 \mathrm{H}$), $1.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}{ }^{3}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.6,145.1,143.4,139.6,137.5,128.8,128.2,126.6$, 124.4, 122.8, 107.2, 63.6, 50.5, 29.2, 28.5, 23.7, 15.7, 15.6. HRMS (ESI) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}$ 310.1802; Found 310.1817. $[\alpha]_{\mathrm{D}}{ }^{20}=+77.2^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 93\%, determined by HPLC (Chiralpak-AD-H, hexane/isopropanol $=90 / 10$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right)$: $\mathrm{t}_{\mathrm{R}}=9.599 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=10.931 \mathrm{~min}$ (minor).
6-Butyl-3-(4-butylphenyl)-1-methoxy-3-methylindolin-2-one (2d)

$34.3 \mathrm{mg}\left(63 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24$ - 7.19 (m, 2H), $7.14-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.92$ (d, $J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.59$ - 2.51 (m, 2H), 1.77 (s, 3H), $1.69-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.60-$ $1.50(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{dt}, J=14.9,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{dt}, J=$ $14.6,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 174.6,143.7,142.2,139.6,137.5,128.8,128.7,126.5,124.3,123.4,107.7$, 63.6, 50.5, 36.1, 35.3, 33.8, 33.6, 23.8, 22.6, 22.5, 14.1 (2C). HRMS (ESI) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{~N} 366.2428$; Found 366.2441. $[\alpha]_{\mathrm{D}}{ }^{20}=+67.9^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 93\%, determined by HPLC (Chiralpak-AD-H,
hexane/isopropanol $=90 / 10$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right)$: $\mathrm{t}_{\mathrm{R}}=6.768 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=7.608 \mathrm{~min}$ (minor).
1,6-Dimethoxy-3-(4-methoxyphenyl)-3-methylindolin-2-one (2e)

37.6 mg (80% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.22 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ (dd, $J=8.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.9$, $160.4,159.0,140.8,132.5,127.8,125.3,123.2,114.1,108.0,95.0,63.6,55.7,55.4$, 49.9, 24.0. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~N}$ 314.1387; Found 314.1390. $[\alpha]_{D^{20}}=+104.6^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 92%, determined by HPLC (Chiralpak-OD-H, hexane/isopropanol $=86 / 14$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25$ ${ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=8.337 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=10.972 \mathrm{~min}$ (major).

6-Fluoro-3-(4-fluorophenyl)-1-methoxy-3-methylindolin-2-one (2f)

$17.4 \mathrm{mg}(40 \%$ yield $)$ was obtained by using $\mathrm{Pd}(\mathrm{OAc})_{2}$ (10 $\mathrm{mol} \%$) as catalyst without $\mathrm{Zn}(\mathrm{OAc})_{2} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.31-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{t}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85-6.77(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.3,164.0(\mathrm{~d}, J=88.1 \mathrm{~Hz})$, $161.6(\mathrm{~d}, J=88.5 \mathrm{~Hz}), 141.1(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 135.5,128.4(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 126.2(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}), 125.8(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 109.9(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 96.7(\mathrm{~d}$, $J=28.3 \mathrm{~Hz}$), 63.8, 50.2, 24.0. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{NF}_{2}$ 290.0987; Found 290.0993. [$\alpha]_{\mathrm{D}}{ }^{20}=+103.5^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 91%, determined by HPLC (Chiralpak-OD-H, hexane/isopropanol $=90 / 10$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=6.292 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=7.296 \mathrm{~min}$ (major).
1-Methoxy-3,5-dimethyl-3-(m-tolyl)indolin-2-one (2g)

$38.1 \mathrm{mg}\left(90 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19$ ($\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.10$ (m, 2H), 7.09 - 7.03 (m, 2H), 6.98 (s , $1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}$, $3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.2,140.1$, 138.4, 137.1, 133.2, 131.8, 128.6, 128.4, 127.3, 125.2, 123.7, 107.4, 63.5, 50.9, 23.4, 21.7, 21.4. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}$ 282.1489; Found 282.1490. $[\alpha]_{\mathrm{D}}{ }^{20}=+113.0^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 93%, determined by HPLC (Chiralpak-AD-H, hexane/isopropanol $=90 / 10$, flow rate 1.0
$\mathrm{mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=5.179 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=6.919 \mathrm{~min}$ (major).
1-Methoxy-3-methyl 5-trifluoromethyl-3-(3-trifluoromethylphenyl)indolin-2-one

18.0 mg (31% yield) was obtained at $80^{\circ} \mathrm{C}$ for $96 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}$, $2 \mathrm{H}), 7.47$ (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.19 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.3,142.6,140.0,131.4(\mathrm{q}, J=32.3 \mathrm{~Hz}), 131.0,130.1,129.6,126.8$ $(\mathrm{q}, J=3.9 \mathrm{~Hz}), 126.3(\mathrm{q}, J=32.8 \mathrm{~Hz}), 125.1(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.2(\mathrm{q}, J=271.7 \mathrm{~Hz})$, $124.0(\mathrm{q}, J=272.5 \mathrm{~Hz}), 123.4(\mathrm{q}, J=4.0 \mathrm{~Hz}), 121.7(\mathrm{q}, J=3.7 \mathrm{~Hz}) .107 .9,64.0,50.9$, 23.6. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{NF}_{6} 390.0923$; Found 390.0929. $[\alpha]_{\mathrm{D}} 20=+55.2^{\circ}\left(c 0.5, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 86%, determined by HPLC (Chiralpak-AD-H, hexane/isopropanol $=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254$ nm): $\mathrm{t}_{\mathrm{R}}=4.597 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=5.140 \mathrm{~min}$ (major).

3-(3,4-Dimethylphenyl)-1-methoxy-3,5,6-trimethylindolin-2-one (2i)

$35.4 \mathrm{mg}\left(76 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.07$ (d, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=$ $7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.75$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.6,137.8,137.5$, $136.9,136.7,135.9,131.5,129.9,129.2,127.8,125.6,124.0,109.0,63.5,50.5,23.5$, 20.3, 20.1, 19.8, 19.5. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N} 310.1802$; Found 310.1813. $[\alpha]_{D}^{20}=+107.2^{\circ}$ (c 1.0, CHCl_{3}). Enantiomeric excess: 87%, determined by HPLC (Chiralpak-AD-H, hexane/isopropanol $=90 / 10$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=5.436 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=8.260 \mathrm{~min}$ (major).

1,6-Dimethoxy-3-(4-methoxy-3-methylphenyl)-3,5-dimethylindolin-2-one (2j)

39.0 mg (76% yield) was obtained by using $\operatorname{Pd}(\mathrm{acac})_{2}(10$ $\mathrm{mol} \%$) as catalyst at $50^{\circ} \mathrm{C}$ for $48 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.11-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.78$ $(\mathrm{s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
(100 MHz, CDCl_{3}) $\delta 175.1,158.0,157.1,138.5,132.0,129.0,126.8,126.4,125.0$, 122.3, 121.1, 109.9, 91.6, 63.6, 55.9, 55.4, 50.0, 23.8, 16.6, 16.3. HRMS (ESI) m/z: [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N} 342.1700$; Found 342.1712. $[\alpha]_{\mathrm{D}}{ }^{20}=+70.4^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

Enantiomeric excess: 83\%, determined by HPLC (Chiralpak-AD-H, hexane/isopropanol $=87 / 13$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right)$: $\mathrm{t}_{\mathrm{R}}=6.877 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=9.890 \mathrm{~min}$ (major).
5-Chloro-3-(3-chloro-4-methoxyphenyl)-1,6-dimethoxy-3-methylindolin-2-one
 (2k)
37.8 mg (66% yield) was obtained by using $\operatorname{Pd}(\text { acacc })_{2}$ ($10 \mathrm{~mol} \%$) as catalyst, AgOAc ($15 \mathrm{~mol} \%$) as acetate, and Tfz-Phe-NHOMe ($30 \mathrm{~mol} \%$) as ligand. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.73$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.0,155.8,154.6,139.4,132.7,128.5,126.2$, 126.1, 122.8, 122.6, 116.8, 112.2, 93.4, 63.9, 56.8, 56.3, 49.8, 23.8. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{NCl}_{2}$ 382.0607; Found 382.0623. $[\alpha]_{\mathrm{D}}{ }^{20}=+90.4^{\circ}(c 1.0$, CHCl_{3}). Enantiomeric excess: 85\%, determined by HPLC (Chiralpak-AD-H, hexane/isopropanol $=87 / 13$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=11.056$ \min (minor), $\mathrm{t}_{\mathrm{R}}=13.336 \mathrm{~min}$ (major).

7-Chloro-3-(3-chloro-4-methoxyphenyl)-1,6-dimethoxy-3-methylindolin-2-one

(2k')
9.1 mg (16% yield) was obtained with 2 k as separable mixture. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17$ ($\mathrm{d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.09$ (dd, $J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (d, $J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.4,156.1,154.5,137.4,133.1,128.6,126.2,124.9,122.9,122.7,112.2,106.2$, 105.1, 65.0, 56.7, 56.3, 48.7, 24.1. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{NCl}_{2}$ 382.0607; Found 382.0622. $[\alpha]_{\mathrm{D}}{ }^{20}=+41.3^{\circ}\left(c 0.4, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 73%, determined by HPLC (Chiralpak-AD-H, hexane/isopropanol $=87 / 13$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=15.319 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=17.644 \mathrm{~min}$ (major).

3-(2,3-Dihydro- \mathbf{H}-inden-5-yl)-1-methoxy-3-methyl-3,5,6,7-tetrahydrocyclo-

penta $[f]$ indol-2(1H)-one (21)
25.1 mg (50% yield) was obtained by using $\operatorname{Pd}(\mathrm{acacc})_{2}(10$ mol\%) as catalyst. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18$ (s , 1 H), 7.14 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.04 (dd, $J=7.9,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.90-2.82(\mathrm{~m}$,
$6 \mathrm{H}), 2.15-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 174.7, 144.9, $144.2,143.6,139.2,138.3,137.9,130.2,124.5,124.5,122.7,120.6,104.2,63.4,50.8$, 33.3, 33.0, 32.6 (2C), 25.7, 25.6, 23.7.HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}$ 334.1802; Found 334.1816. $[\alpha]_{D}{ }^{20}=+100.3^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 85%, determined by HPLC (Chiralpak-AD-H, hexane/isopropanol $=90 / 10$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=5.770 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=8.247 \mathrm{~min}$ (major).

5-(2,3-Dihydrobenzofuran-5-yl)-7-methoxy-5-methyl-2,3,5,7-tetrahydro-6H-
 furo[3,2-ffindol-6-one (2m)
20.7 mg (41% yield) was obtained by using $\operatorname{Pd}(\mathrm{acacc})_{2}(10$ mol\%) as catalyst for $30 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.16(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{t}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.99 (s, 3H), 3.17 (td, $J=8.6,5.6 \mathrm{~Hz}, 4 \mathrm{H}$), 1.73 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.0,160.3,159.6,139.6,132.6,127.6,126.5,123.5,123.4,121.3$, 121.0, 109.2, 91.2, 72.1, 71.6, 63.5, 50.2, 29.9, 29.6, 24.0. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~N}$ 338.1387; Found 338.1401. $[\alpha]_{\mathrm{D}}{ }^{20}=+136.4^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 90\%, determined by HPLC (Chiralpak-AD-H, hexane/isopropanol $=87 / 13$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}=14.240$ $\min ($ minor $), \mathrm{t}_{\mathrm{R}}=21.634 \mathrm{~min}$ (major).

3-(2,3-Dihydrobenzofuran-5-yl)-1-methoxy-3-methyl-1,3,7,8-tetrahydro-2H-

furo $[2,3-g]$ indol-2-one ($2 \mathrm{~m}^{\prime}$)
7.1 mg (14% yield) was obtained with $\mathbf{2 m}$ as separable mixture. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H})$, $\left.3.48-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100MHz,CDCl}_{3}\right)$ $\delta 175.6,161.8,159.6,136.4,132.6,127.6,126.5,124.0,123.5,123.4,109.2,107.9$, 103.7, 72.1, 71.6, 64.5, 50.2, 29.9, 27.5, 24.4. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~N} 338.1387$; Found 338.1401. $[\alpha]_{\mathrm{D}}{ }^{20}=+43.1^{\circ}\left(c 0.5, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 90%, determined by HPLC (Chiralpak-AD-H, hexane/isopropanol $=87 / 13$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=12.979 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=15.573 \mathrm{~min}$ (major).

3-Ethyl-1-methoxy-3-phenylindolin-2-one (2n)

$39.1 \mathrm{mg}\left(97 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.33$ (m, 3H), $7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{td}, J=7.6$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{dq}, J=$ $14.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dq}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.73(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.2, 140.5, 139.6, 128.8, 128.4, 127.6, 127.0, 125.1, 123.4, 107.6, 63.6, 56.1, 30.9, 9.1. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N} 268.1332$; Found 268.1328. [$\left.\alpha\right]_{\mathrm{D}}{ }^{20}=+114.4^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 90%, determined by HPLC (Chiralpak-OD-H, hexane/isopropanol $=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=8.645 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=9.438 \mathrm{~min}$ (minor).

3-Isoamyl-1-methoxy-3-phenylindolin-2-one (20)

 24.0 mg (52% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.25$ (m, 6H), 7.24 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{td}, J=12.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.20$ $(\mathrm{td}, J=12.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.01(\mathrm{~m}, 1 \mathrm{H})$, $0.82(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.78-0.70(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,140.3,139.7,129.0,128.7,128.4,127.6,126.9,125.1,123.3$, 107.6, 63.6, 55.4, 35.9, 33.3, 28.3, 22.7, 22.4. HRMS (ESI) m/z: [M + H] Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N} 310.1802$; Found 310.1806. $[\alpha]_{\mathrm{D}}{ }^{20}=+97.7^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 87%, determined by HPLC (Chiralpak-AD-H, hexane/isopropanol $=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=8.184 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=9.188 \mathrm{~min}$ (minor).

3-Isobutyl-1-methoxy-3-phenylindolin-2-one (2p)

$14.1 \mathrm{mg}\left(32 \%\right.$ yield) was obtained at $65^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.40-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{t}, J=7.5$ Hz, 1H), 7.06 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00$ (s, 3H), 2.45 (dd, $J=13.9$, $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=13.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{tt}, J=13.1,6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 0.79(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8,140.9,140.4,128.7,128.5,127.5,126.7,125.8,123.1,107.7,63.5,55.0,46.5$, 25.8, 24.4, 23.1. HRMS (ESI) m/z: [M + H] Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}$ 296.1645; Found 296.1647. $[\alpha]_{\mathrm{D}}{ }^{20}=+87.2^{\circ}\left(c 0.5, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 82%, determined by HPLC (Chiralpak-OD-H, hexane/isopropanol $=95 / 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, $254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=11.523 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=12.709 \mathrm{~min}($ minor $)$.

3-(Ethoxymethyl)-1-methoxy-3-phenylindolin-2-one (2q)

$22.9 \mathrm{mg}\left(51 \%\right.$ yield) was obtained for $36 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.42-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.14(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (dd, $J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.32(\mathrm{~m}$, $2 \mathrm{H}), 1.02(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9$, 140.6, 136.6, 128.8, 128.6, 127.9, 127.9, 127.2, 125.5, 123.2, 107.5, 74.5, 67.3, 63.3, 56.4, 14.9. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}$ 298.1438; Found 298.1442. $[\alpha]_{D}{ }^{20}=+114.6^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 92%, determined by HPLC (Chiralpak-AD-H, hexane/isopropanol $=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25$ ${ }^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=10.605 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=13.498 \mathrm{~min}$ (minor).

1-Ethoxy-3-methyl-3-phenylindolin-2-one (2r)

$37.9 \mathrm{mg}\left(95 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33$ ($\mathrm{td}, J=$ 7.7, $1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.32-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.18$ (ddd, $J=7.4,1.2,0.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (ddd, $J=7.8,1.0,0.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.5,140.5,140.2,131.4,128.8,128.4,127.6$, 126.7, 124.4, 123.4, 107.9, 72.0, 51.0, 23.6, 13.9. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}$ 268.1332; Found 268.1333. $[\alpha]_{\mathrm{D}}{ }^{20}=+94.8^{\circ}$ (c 1.0, CHCl_{3}). Enantiomeric excess: 94\%, determined by HPLC (Chiralpak-AD-H, hexane/isopropanol $=90 / 10$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}\right)$: $\mathrm{t}_{\mathrm{R}}=6.614 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=8.667 \mathrm{~min}$ (major).

1-(Benzyloxy)-3-methyl-3-phenylindolin-2-one (2s)

43.3 mg (88% yield) was obtained by using TFE as solvent. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.19$ (m, $9 \mathrm{H}), 7.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 174.6,140.5,140.1,134.3,131.1,130.2,129.4,128.7$ (2C), 128.2, 127.6, 126.7, 124.2, 123.3, 108.0, 78.0, 51.0, 23.5. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N} 330.1489$; Found 330.1489. [$\left.\alpha\right]_{\mathrm{D}}{ }^{20}=+111.6^{\circ}$ (c 1.0, CHCl_{3}). Enantiomeric excess: 91%, determined by HPLC (Chiralpak-ID, hexane/isopropanol $=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=12.869 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=18.349 \mathrm{~min}$ (major).

Derivatizations of Product 2a

Deprotection of methoxy group ${ }^{6}$
To a solution of 1-Methoxy-3-methyl-3-phenylindolin-2-one ($50.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) in THF (2 mL) and deoxygenated water $(0.1 \mathrm{~mL})$ was added $\operatorname{SmI} 2(0.1 \mathrm{M}$ in THF, 20 mL , $2.0 \mathrm{mmol}, 10$ equiv.) in an ice-bath. The mixture was stirred for 1 h , and diluted with EtOAc, washed with saturated NaHCO_{3}, saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/acetone $=4: 1$) to give $\mathbf{3 a}(43.5 \mathrm{mg}$, 98% yield) as a white solid.

3-Methyl-3-phenylindolin-2-one (3a)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.21(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.18(\mathrm{~m}, 6 \mathrm{H})$, $7.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 182.5,140.6$, $140.6,135.7,128.7,128.2,127.5,126.8,124.5,122.9,110.4,52.9$, 23.5. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ON}$ 224.1070; Found 224.1079. $[\alpha]_{\mathrm{D}}{ }^{20}=+100.5^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 95%, determined by HPLC (Chiralpak-OD-H, hexane/isopropanol $=87 / 13$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}, 254$ $\mathrm{nm}): \mathrm{t}_{\mathrm{R}}=7.518 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=15.083 \mathrm{~min}$ (major) .

Reduction of lactam ${ }^{9}$

To a solution of 1-Methoxy-3-methyl-3-phenylindolin-2-one ($101.2 \mathrm{mg}, 0.4 \mathrm{mmol}$) in dried THF (5 mL) was added $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}(2.0 \mathrm{M}$ in THF, $0.66 \mathrm{~mL}, 1.32 \mathrm{mmol}, 3.3$ equiv.) dropwise in an ice-bath. The mixture was warmed to room temperature and stirred for 2.5 h , then heated to reflux for 48 h . After cooling to $0{ }^{\circ} \mathrm{C}, 10 \% \mathrm{HCl}$ was added slowly to quench the reaction, and the resulting solution was refluxed for 1.5 h . The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ again, and 12 N NaOH was added until $\mathrm{pH}>10$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ for three times, and the combined organic phase was
washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether $/ E t O A c=5: 1$) to give $\mathbf{4 a}(35.0 \mathrm{mg}, 84 \%$ yield $)$ as a colorless liquid.

3-Methyl-3-phenylindoline (4a)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.16(\mathrm{~m}$, 1 H), 7.09 (td, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.76 (td, $J=7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.57 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.72 (s, 3 H). ${ }^{13} \mathrm{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.8,147.8,137.1,128.3,127.8,126.7,126.3,124.3,119.2,110.1$, 63.8, 49.8, 26.3. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}$ 210.1277; Found 210.1285. $[\alpha]_{\mathrm{D}}{ }^{20}=+67.3^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 95%, determined by HPLC (Chiralpak-OD-H, hexane/isopropanol $=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, 254 nm): $\mathrm{t}_{\mathrm{R}}=8.726 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=11.417 \mathrm{~min}($ major $)$.

Determination of the Absolute Configuration of Product 2n

The crystal of $\mathbf{2 n}$ was obtained via solvent diffusion of DCM solution and hexane. The crystal of $\mathbf{2 n}$, which was detected by X-ray, was the major product determined by chiral HPLC.

X-ray crystal data of the enantiomerically enriched isomer 2n:

Table S5 Crystal data and structure refinement for exf-160315.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
cxf-160315
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$
267.31

290(2)
orthorhombic

Space group	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$
a / \AA	7.0909(2)
b / \AA	9.2808(2)
c/Å	22.0489(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
γ°	90
Volume/ \AA^{3}	1451.02(6)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.224
μ / mm^{-1}	0.640
F(000)	568.0
Crystal size $/ \mathrm{mm}^{3}$	$0.360 \times 0.320 \times 0.270$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ} 8.02$ to 140.348	
Index ranges	$-8 \leq \mathrm{h} \leq 8,-11 \leq \mathrm{k} \leq 7,-26 \leq 1 \leq 26$
Reflections collected	10055
Independent reflections	$2697\left[\mathrm{R}_{\text {int }}=0.0251, \mathrm{R}_{\text {sigma }}=0.0155\right]$
Data/restraints/parameters	2697/0/184
Goodness-of-fit on F^{2}	1.048
Final R indexes [$\mathrm{l}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0320, \mathrm{wR}_{2}=0.0904$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0326, \mathrm{wR}_{2}=0.0909$
Largest diff. peak/hole / e $\AA^{-3} 0.14 /-0.13$	
Flack parameter	-0.04(5)

Table S6 Fractional Atomic Coordinates ($\times 10^{4}$) and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{c x f}-160315$. $U_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised Uistensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{U}($ eq)
O1	$9657(3)$	$12014.1(15)$	$3820.8(7)$	$74.7(5)$
O2	$8081(2)$	$10810.1(16)$	$4874.2(6)$	$71.9(4)$
C7	$9544(2)$	$9569.6(17)$	$3372.5(7)$	$47.2(4)$
N1	$8325(2)$	$10116.9(17)$	$4325.1(6)$	$59.0(4)$
C9	$11648(2)$	$9571(2)$	$3189.1(8)$	$56.4(4)$
C1	$8212(2)$	$8614.3(18)$	$4275.9(7)$	$49.1(4)$
C6	$8953(2)$	$8217.7(17)$	$3715.7(7)$	$45.7(4)$
C12	$8415(3)$	$8918(2)$	$2320.7(8)$	$56.8(4)$
C5	$9078(3)$	$6779.1(18)$	$3574.0(9)$	$54.7(4)$
C2	$7524(3)$	$7634(2)$	$4689.6(8)$	$61.8(5)$
C16	$6955(3)$	$10938(2)$	$2797.8(9)$	$61.7(5)$
C11	$8270(2)$	$9833.3(17)$	$2818.9(7)$	$47.0(4)$
C4	$8431(3)$	$5762(2)$	$3988.3(10)$	$64.1(5)$
C8	$9225(3)$	$10752.4(19)$	$3850.3(8)$	$54.4(4)$
C13	$7278(3)$	$9117(3)$	$1819.8(9)$	$70.7(5)$
C10	$12994(3)$	$9332(3)$	$3711.7(10)$	$81.8(7)$
C14	$5985(3)$	$10204(3)$	$1804.4(10)$	$78.6(6)$
C15	$5820(3)$	$11119(3)$	$2293.7(11)$	$77.8(6)$
C3	$7640(3)$	$6194(2)$	$4529.8(10)$	$66.4(5)$
C17	$6369(4)$	$11621(3)$	$4868.9(13)$	$90.9(8)$

Table S7 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for cxf-160315. The Anisotropic displacement factor exponent takes the form: -
$2 \pi^{2}\left[h^{2} a^{* 2} \mathbf{U}_{11}+2 h k a * b^{*} U_{12}+\ldots\right]$.

Atom	\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	\mathbf{U}_{13}	\mathbf{U}_{12}
O1	$103.9(11)$	$49.6(7)$	$70.6(9)$	$-10.5(6)$	$12.3(8)$	$-21.1(7)$
O2	$88.7(10)$	$79.0(9)$	$48.1(7)$	$-19.3(6)$	$8.1(7)$	$-0.8(8)$
C7	$53.5(9)$	$44.3(8)$	$43.9(8)$	$-2.4(6)$	$6.0(7)$	$-5.5(7)$
N1	$78.5(10)$	$54.1(8)$	$44.3(7)$	$-8.2(6)$	$13.2(7)$	$-3.7(7)$

C9	$51.9(9)$	$65.3(10)$	$52.0(9)$	$2.9(8)$	$4.9(7)$	$-7.3(8)$
C1	$48.2(8)$	$51.6(9)$	$47.3(8)$	$1.4(7)$	$2.0(7)$	$-1.9(7)$
C6	$45.5(8)$	$46.6(8)$	$45.1(8)$	$1.3(6)$	$-0.3(6)$	$-2.9(6)$
C12	$59.5(10)$	$57.9(10)$	$53.1(9)$	$-3.2(8)$	$-2.1(8)$	$2.5(8)$
C5	$59.5(10)$	$48.8(9)$	$55.8(9)$	$-0.4(7)$	$-2.1(8)$	$-0.8(8)$
C2	$62(1)$	$71.6(12)$	$51.9(9)$	$11.6(8)$	$6.0(8)$	$-2.5(9)$
C16	$60.1(10)$	$62.5(10)$	$62.5(10)$	$2.2(8)$	$12.1(9)$	$8.9(9)$
C11	$47.6(8)$	$46.0(8)$	$47.5(8)$	$3.4(6)$	$8.1(6)$	$-4.4(6)$
C4	$70.3(11)$	$45.0(9)$	$76.9(12)$	$8.5(8)$	$-11.4(9)$	$-3.1(8)$
C8	$64.1(10)$	$48.7(9)$	$50.5(9)$	$-5.1(7)$	$4.1(8)$	$-8.0(8)$
C13	$68.9(12)$	$85.7(14)$	$57.4(10)$	$-6.2(10)$	$-9.7(9)$	$-2.0(11)$
C10	$57.3(11)$	$121(2)$	$67.6(12)$	$7.6(12)$	$-6.6(10)$	$-16.9(13)$
C14	$61.0(11)$	$106.7(18)$	$68.1(12)$	$9.6(12)$	$-11.6(10)$	$2.9(12)$
C15	$58.0(11)$	$90.5(15)$	$85.1(14)$	$17.3(13)$	$5.4(10)$	$19.6(11)$
C3	$67.9(11)$	$61.5(11)$	$69.7(11)$	$23.5(9)$	$-3.4(10)$	$-9.2(9)$
C17	$93.1(17)$	$93.2(17)$	$86.5(16)$	$-25.5(14)$	$26.4(14)$	$10.3(14)$

Table S8 Bond Lengths for cxf- 160315.

Atom Atom Length $/ \AA$ Atom Atom Length $/ \AA$ i̊

$\left.\begin{array}{llcll}\text { O1 } & \text { C8 } & 1.212(2) & \mathrm{C} 1 & \mathrm{C} 6\end{array}\right) 1.392(2)$

Table S9 Bond Angles for cxf-160315.

Atom Atom Atom			Angle ${ }^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
N1	O 2	C17	110.14(17)	C 1	C6	C7	109.07(13)
C6	C7	C11	111.32(13)	C 13	C12	C11	120.44(18)
C6	C7	C8	101.95(12)	C6	C5	C4	119.25(18)
C11	C7	C8	110.10(14)	C1	C2	C3	116.62(17)
C6	C7	C9	113.33(15)	C 15	C16	C11	120.57(19)
C11	C7	C9	111.05(13)	C16	C11	C12	118.31(17)
C8	C7	C9	108.69(14)	C16	C11	C7	122.63(15)
C8	N1	O 2	122.07(15)	C 12	C11	C7	119.05(15)
C8	N1	C1	113.49 (14)	C3	C4	C5	120.35(18)
O 2	N1	C1	121.61(14)	O 1	C8	N1	125.36(16)
C10	C9	C7	114.19(15)	O 1	C8	C7	127.99(16)
C2	C1	C6	123.14(16)	N1	C8	C7	106.65(14)
C2	C1	N1	128.76(16)	C14	C13	C12	120.8(2)
C6	C1	N1	108.09(14)	C 13	C14	C15	119.6(2)
C5	C6	C1	118.90(16)	C14	C15	C16	120.3(2)
C5	C6	C7	132.01(15)	C 4	C3	C2	121.67(17)

Table S10 Torsion Angles for cxf-160315.

A B C
Angle ${ }^{\circ}$
$\begin{array}{lllll}\text { A } & \mathbf{B} & \mathbf{C} & \mathbf{D} & \text { Angle } /{ }^{\circ}\end{array}$
C17O2 N1 C8 88.6(2) C13 C12C11C16 0.2(3)
C17O2 N1 C1
-111.7(2) C13 C12 C11C7 179.31(17)
C6 C7 C9 C10
-54.4(2) C6 C7 C11C16 108.16(17)
C11C7 C9 C10
179.44(18) C8 C7 C11C16
-4.1(2)
C8 C7 C9 C10 $\quad 58.2(2) \mathrm{C} 9 \quad \mathrm{C} 7 \mathrm{C} 11 \mathrm{C} 16-124.56(18)$
C8 N1 C1 C2
174.97(19) C6 C7 C11 C12 -70.86(19)
O2 N1 C1 C2 13.7(3) C8 C7 C11C12 176.83(15)

Table S11 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters ($\AA^{2} \times 10^{3}$) for cxf- 160315 .

Atom	\boldsymbol{x}	y	z	U(eq)
H9A	11851	8822	2889	68
H9B	11942	10487	3000	68
H12	9284	8167	2326	68
H5	9591	6489	3205	66
H2	7008	7925	5057	74
H16	6836	11562	3126	74
H4	8533	4785	3899	77
H13	7394	8502	1489	85

H10A	12827	10081	4007	123
H10B	14267	9350	3564	123
H10C	12741	8414	3895	123
H14	5220	10328	1466	94
H15	4941	11863	2285	93
H3	7172	5500	4795	80
H17A	6197	12079	5256	136
H17B	5326	10988	4790	136
H17C	6432	12342	4557	136

Crystal structure determination of [cxf-160315]

Crystal Data for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}(M=267.31 \mathrm{~g} / \mathrm{mol})$: orthorhombic, space group $\mathrm{P} 22_{12} 2_{1}$ (no. 19), $a=7.0909(2) \AA, b=9.2808(2) \AA, c=22.0489(4) \AA, V=$ 1451.02(6) $\AA^{3}, Z=4, T=290(2) \mathrm{K}, \mu(\mathrm{CuK} \alpha)=0.640 \mathrm{~mm}^{-1}$, Dcalc $=1.224 \mathrm{~g} / \mathrm{cm}^{3}$, 10055 reflections measured $\left(8.02^{\circ} \leq 2 \Theta \leq 140.348^{\circ}\right), 2697$ unique ($R_{\mathrm{int}}=0.0251$, $\left.\mathrm{R}_{\text {sigma }}=0.0155\right)$ which were used in all calculations. The final R_{1} was $0.0320(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.0909 (all data).

References:

(1) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460.
(2) Liu, C.; Li, M. Chin. J. Chem. 2013, 31, 1274.
(3) Xiao, K.-J.; Lin, D. W.; Miura, M.; Zhu, R.-Y.; Gong, W.; Wssa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 8138.
(4) Lai, M. Y. H.; Brimble, M. A.; Callis, D. J.; Harris, P. W. R.; Levi, M. S.; Sieg, F. Bioorg. Med. Chem. 2005, 13, 533.
(5) Vincenti, M.; Ghiglione, N.; Valsania, M. C.; Davit, P.; D. Richardson, S. Helv. Chim. Acta. 2004, 87, 370.
(6) Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058.
(7) Cheng, X.-F.; Li, Y.; Su, Y.-M.; Yin, F.; Wang, J.-Y.; Sheng, J.; Vora, H. U.; Wang, X.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 1236.
(8) Jiang, Y.; Chen, C.-A.; Lu, K.; Daniewska, I.; De Leon, J.; Kong, R.; Forray, C.; Li, B.; Hegde, L. G.; Wolinsky, T. D.; Craig, D. A.; Wetzel, J. M.; Andersen, K.; Marzabadi, M. R. J. Med. Chem. 2007, 50, 3870.
(9) Zou, M.-F.; Keck, T. M.; Kumar, V.; Donthamsetti, P.; Michino, M.; Burzynski, C.; Schweppe, C.; Bonifazi, A.; Free, R. B.; Sibley, D. R.; Janowsky, A.; Shi, L.; Javitch, J. A.; Newman, A. H. J. Med. Chem. 2016, 59, 2973.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{L 1 7}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{L 1 7}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{L 1 8}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{L 1 8}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{L 1 9}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{L 2 0}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{L 2 0}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{L 2 2}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{L} 22$ (Acetone- $\mathrm{d}_{63}, 100 \mathrm{MHz}$)

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 c}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 d}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 d}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 g}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 h}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 h}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

8
B
i

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 i}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

$\underbrace{\text { L }}$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 m}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 m}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 q}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 q}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

2b OMe

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 b}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of 2b $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 e}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 e}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 g}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 h}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 i}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 i}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2} \mathbf{j}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2} \mathbf{j}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 k}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 k}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 k}{ }^{\prime}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 k}{ }^{\mathbf{}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 m}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 m}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 m}{ }^{\prime}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 o}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 0}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{4 a}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Chiral HPLC Data

Chromatography
malu

Table
PDA Ch4 254nm

Number	Retention Time	Height	Height8	Area	AreaX
1	6.948	109623	57.146	893872	49.912
2	9.398	82207	42.854	897031	50.088
惫计		191830	100.000	1790903	100.000

Chromatography
malu

Table
PDh Ch4 254 rmm

Number	Retention Time	Height	Height\％	Area	AreaX
1	6.940	109248	2.761	885466	2.348
2	9.382	3847309	97.239	36824022	97.652
出计		3956557	100.000	37709488	100.000

Chromatography
m dl

Table
PDA Ch4 254 nmm

Number	Retention Time	Height	Height\％	Area	AreaX
1	10.391	324770	53.450	4027563	49.669
2	11.793	282841	46.550	4081188	50.331
总计		607611	100.000	8108750	100.000

Chromatography

mid

Table
PDA Ch4 254nm

Number	Retention Time	Height	HeightX	Area	AreaX
1	10.335	39977	4.343	490396	3.645
2	11.668	880453	95.657	12962472	96.355
．出计		920430	100.000	13452868	100.000

Chromatography
mid

Table
PDA Ch3 254nm

Humber	Retention Time	Height	Height\%	Area	AreaX
1	9.631	147558	53.198	1828537	50.202
2	10.938	129818	46.802	1813823	49.798
多计		277377	100.000	3642360	100.000

Chromatography

mall

Table

PDA Ch3 254nm	Retention Time	Height	Height\%	Area	Area\%
Humber	9.599	517051	96.755	6466577	96.384
1	10.931	17341	3.245	242570	3.616
2		534391	100.000	6709147	100.000
whit					

Chromatography
mAlU

Table
PDA Ch3 254 rmm

Number	Retention Time	Height	Height\%	Area	AreaX
1	6.736	73745	55.734	833184	50.078
2	7.551	58570	44.266	830592	49.922
总计		132315	100.000	1663776	100.000

Chromatogr aphy
midu

Table
PDA Ch1 254nm

Humber	Retention Time	Height	Height\%	Area	AreaX
1	6.768	302121	97.024	3359483	96.330
2	7.608	9268	2.976	127991	3.670
chit		311389	100.000	3487474	100.000

Chromatography
m dl
（200）
Table
PDA Ch4 254nm

Number	Retention Time	Height	Height\％	Area	AreaX
1	8.332	330643	58.066	4610872	49.977
2	11.133	238779	41.934	4615184	50.023
多计		569422	100.000	9226057	100.000

Chromatography

mid

Table
PDA Ch5 254 nm

Number	Retention Time	Height	Height\％	Area	AreaX
1	8.337	63966	5.725	892677	4.141
2	10.972	1053334	94.275	20666238	95.859
．孚计		1117299	100.000	21558915	100.000

Chromatography
m dl

Table
PDA Ch3 254n

Number	Retention Time	Height	Height\％	Area	AreaX
1	6.296	107149	53.288	958787	50.108
2	7.333	93927	46.712	954650	49.892
出计		201076	100.000	1913436	100.000

Chromatography

mid

Table
PDA Ch3 254 nm

Number	Retention Time	Height	Height\％	Area	AreaX
1	6.292	32687	5.289	291399	4.698
2	7.296	585380	94.711	5910955	95.302
．孚计		618067	100.000	6202354	100.000

Chromatography
m dl

Table

Number	Retention Time	Height	Height\%	Area	AreaX
1	5.170	407490	56.325	2646988	49.485
2	6.946	315966	43.675	2702058	50.515
总计		723455	100.000	5349046	100. 000

Chromatography
mid

Table

PDA Ch4 254ni	Retention Time	Height	Height\%	Area	Area\%
Humber	5.179	123223	4.285	801585	3.548
1	6.919	2752246	95.715	21792764	96.452
2		2875469	100.000	22594349	100.000
whit					

Chromatography
mid

Table
PDA Ch4 254nm

Number	Retention Time	Height	Height\％	Area	AreaX
1	4.593	242735	52.144	1463789	50.387
2	5.138	222778	47.856	1441283	49.613
出计		465514	100.000	2905072	100.000

Chromatography

mall

Table

Number	Retention Time	Height	Height\％	Area	Area＊
1	4.597	70318	7.666	409422	6.992
2	5.140	846923	92.334	5446469	93.008
．总计		917241	100.000	5855892	100． 000

Chromatography
mid

Table
PDA Ch4 254nm

Number	Retention Time	Height	Height\%	Area	AreaX
1	5.465	280104	60.357	1966452	50.518
2	8.351	183972	39.643	1926160	49.482
.4.4 i+		464077	100.000	3892612	100.000

Chromatography
mil

Table

| PDA Ch4 254 nm | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number Retention Time Height Height\%
 1 5.436 157524 9.630
 Area 1111152 6.376
 2 8.260 1478188 90.370
 16317125 93.624
 .孚计 1635712 100.000 | 17428277 | 100.000 |

Chromatography
m dl

Table
PDA Ch4 254nm

Number	Retention Time	Height	Height\％	Area	AreaX
1	6.962	330652	59.391	2997582	50.051
2	10.096	226090	40.609	2991471	49.949
画计		556742	100.000	5989053	100.000

Chromatography

midl

Table

PDA Ch4 254nm	Retention Time	Height	Height\％	Area	Area\％
Humber 6.877 32552 11.936 287873 8.504 1 9.890 240182 2 272735 出计 100.000 3385197					

Chromatography
m dl

Table
PDA Ch2 254nm

Number	Retention Time	Height	Height\%	Area	AreaX
1	11.060	68088	54.858	974671	49.963
2	13.360	56028	45.142	976125	50.037
总计		124116	100.000	1950796	100.000

Chromatography

mid

Table

PDA Ch3 254nm	Retention Time	Height	Height\%	Area	Area\%
Humber	11.056	26716	9.149	385568	7.648
1	13.336	265307	90.851	4655578	92.352
2		292023	100.000	5041146	100.000
whit					

Chromatography
m dl

Table
PDA Ch3 254nm

Number	Retention Time	Height	Height\％	Area	AreaX
1	15.290	47209	53.518	934996	49.977
2	17.612	41003	46.482	935862	50.023
总计		88211	100.000	1870859	100.000

Chromatography

mid

Table
PDA Ch3 254rm

Humber	Retention Time	Height	Height\％	Area	Area\％
1	15.319	8485	15.252	167845	13.447
2	17.644	47203	84.748	1080328	86.553
出计		55699	100.000	1248173	100.000

Chromatography
mid

Table
PDA Ch4 254nm

Number	Retention Time	Height	Height\％	Area	AreaX
1	5.774	259033	58.815	1960276	49.876
2	8.264	181385	41.185	1970042	50.124
出计		440418	100.000	3930318	100.000

〈色谱图〉
midl

〈峰表〉
PDA Ch4 254 nm

Number	Retention Time	Height	Height\％	Area	AreaX
1	5.770	56503	10.430	431445	7.492
2	8.247	485229	89.570	5327287	92.508
．孚计		541732	100.000	5758732	100.000

Chromatography
mid

Table
PDA Ch3 254nm

Number	Retention Time	Height	Height\％	Area	AreaX
1	14.226	36850	60.945	670893	50.089
2	21.768	23614	39.055	668498	49.911
惫计		60464	100.000	1339390	100.000

Chromatography
madJ

Table
PDA Ch4 254nm

Humber	Retention Time	Height	Height\％	Area	AreaX
1	14.240	33985	8.456	619663	5.191
2	21.634	367896	91.544	11317255	94.809
总计		401880	100.000	11936918	100.000

Chromatography
mald

Table
PDA Ch3 254n

Humber	Retention Time	Height	Height\％	Area	Area\＆
1	12.930	138235	54.511	2212852	49.714
2	15.464	115355	45.489	2238284	50.286
总计		253591	100.000	4451136	100.000

Chromatography

midl

Table

PDA Ch3 254 nm					
Humber	Retention Time	Height	Height\％	Area	Area\％
1	12.979	20989	6.066	344977	5.035
2	15.573	325028	93.934	6506026	94.965
出计		346017	100.000	6851003	100.000

Chromatography

midl

Table
PDA Ch3 254nm

Humber	Retention Time	Height	Height\％	Area	AreaX
1	8.687	152794	52.359	1932538	49.929
2	9.417	139026	47.641	1938014	50.071
．出计		291819	100.000	3870551	100.000

Chromatogr aphy
mAlU

Table
PDA Ch3 254rm

Number	Retention Time	Height	Height\％	Area	Area\＆
1	8.645	613123	95.163	7843920	94.911
2	9.438	31162	4.837	420556	5.089
．峦计		644284	100.000	8264476	100.000

Chromatography
midl

Table
PDA Ch3 254nm

Humber	Retention Time	Height	Height\％	Area	AreaX
1	8.262	501571	53.352	5363431	50.166
2	9.257	438551	46.648	5327927	49.834
多计		940122	100.000	10691358	100.000

Chromatography

mid

Table
PDA Ch3 254 nmm

Number	Retention Time	Height	Height\％	Area	AreaX
1	8.184	459084	94.184	4873427	93.463
2	9.188	28352	5.816	340848	6.537
．孚计		487435	100.000	5214275	100.000

Chromatography
mid

Table
PDA Ch5 254nm

Humber	Retention Time	Height	Height\％	Area	AreaX
1	11.487	106452	52.245	1483140	49.698
2	12.634	97305	47.755	1501191	50.302
多计		203757	100.000	2984331	100.000

Chromatography
mid

Table

Number	Retention Time	Height	Height\％	Area	Area\％
1	11.523	964318	91.899	13583179	91.089
2	12． 709	85010	8． 101	1328732	8.911
．苗计		1049328	100.000	14911911	100.000

Chromatography
mid

Table
PDA Ch4 254nm

Humber	Retention Time	Height	Height\％	Area	Area\％
1	10.751	566113	56.687	7461695	50.029
2	13.599	432552	43.313	7453067	49.971
出计		998664	100.000	14914762	100.000

Chromatography
mid

Table
PDA Ch4 254 nm

Number	Retention Time	Height	Height\％	Area	AreaX
1	10.605	1419473	96.510	19218074	95.790
2	13.498	51329	3.490	844603	4.210
．孚计		1470802	100.000	20062678	100.000

Chromatography
m dl

Table
PDA Ch4 254 nm

Humber	Retention Time	Height	Height\％	Area	AreaX
1	6.604	1292900	56.788	10238960	49.971
2	8.718	983805	43.212	10250708	50.029
多计		2276706	100.000	20489668	100.000

Chromatography
mil

Table
PDA Ch4 254 nmm

Number	Retention Time	Height	Height\％	Area	Area\％
1	6.614	158235	3.807	1268857	2.615
2	8.667	3997858	96.193	47254941	97.385
兽计		4156093	100.000	48523798	100.000

Chromatography
mid

Table
PDA Ch4 254nm

Number	Retention Time	Height	Height\％	Area	AreaX
1	12.865	113332	60.356	1909931	50.174
2	18.726	74439	39.644	1896650	49.826
出计		187771	100.000	3806581	100.000

Chromatography
mall

Table
PDA Ch3 254 nm

Number	Retention Time	Height	Height\％	Area	AreaX
1	12.869	100850	8.206	1699816	4.498
2	18.349	1128156	91.794	36088095	95.502
．孚计		1229007	100.000	37787912	100.000

Chromatography
mid

Table
PDA Ch2 254nm

Humber	Retention Time	Height	Height\％	Area	AreaX
1	7.478	250035	69.867	3311576	50.014
2	15.136	107836	30.133	3309696	49.986
总计		357871	100.000	6621271	100.000

Chromatography

mid

Table
PDA Ch2 254 nm

Number	Retention Time	Height	Height\％	Area	AreaX
1	7.518	19169	5.926	251013	2.588
2	15.083	304324	94.074	9448286	97.412
．孚计		323493	100.000	9699299	100.000

Chromatography
m dl

Table
PDA Ch3 254nm

Humber	Retention Time	Height	Height\％	Area	AreaX
1	8.613	194900	56.781	2064363	49.942
2	11.262	148351	43.219	2069188	50.058
多计		343251	100.000	4133551	100.000

Chromatography

mid

Table
PDA Ch3 254 nm

Number	Retention Time	Height	Height\％	Area	AreaX
1	8.726	6307	3.424	62777	2.410
2	11.417	177910	96.576	2542003	97.590
．孚计		184217	100.000	2604781	100.000

[^0]: ${ }^{\text {a }}$ Reaction conditions: $1 \mathrm{a}(0.15 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.015 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Boc}-\mathrm{Ile}-\mathrm{OH}(0.045$ $\mathrm{mmol}, 30 \mathrm{~mol} \%)$, oxidant ($0.3 \mathrm{mmol}, 2.0$ equiv.), TFE (1.5 mL), $\mathrm{N}_{2}, 80^{\circ} \mathrm{C}, 24 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ The ee value was determined by chiral HPLC analysis. ${ }^{d} 12 \mathrm{~h}$.

