Supplemental Information

Structural Studies of *Methylosinus trichosporium* OB3b Soluble Methane Monooxygenase Hydroxylase and Regulatory Component Complex Reveal a Transient Substrate Tunnel

Jason C. Jones,^{†,¶} Rahul Banerjee,^{†,¶} Ke Shi,[†]

Hideki Aihara,[†] and John D. Lipscomb^{†,¶,*}

[†] Department of Biochemistry, Molecular Biology, and Biophysics, and [¶]Center for Metals in Biocatalysis University of Minnesota, Minneapolis, Minnesota 55455, United States

Table of Contents

	Page
Analysis of stopped-flow data	S2
Table S1. MMOB variant primers	S 3
Table S2. Data collection and refinement statistics	S4
Table S3. Interatomic distances for MMOH	S5
Rare Types of helices within sMMOH	S6
Figure S1. The π -helices of <i>Mt</i> sMMOH ^{ox} (6VK6) and <i>Mt</i> sMMOH ^{ox} :MMOB (6VK5)	S 6
Table S4. Assignment of secondary structures	S 7
Table S5. Interatomic distances for sMMOH:MMOB	S10
Comparison of structures from data for crystals at 100K/synchrotron	S11
versus room temperature/XFEL	
Table S6. Structural alignment average RMSD values (Å)	S11
Figure S2, RMSD comparison of the structures of the α -subunits of	S12
sMMOH ^{ox} :MMOB with RT-XFEL sMMOH ^{ox} :MMOB	~ 1 =
Figure S3. Unassigned electron density in the active site of Mc sMMOH ^{ox}	S12
	~
Table S7. The W308 tunnel residues are conserved amongst 15 small	S13
hydrocarbon oxidizing strains	
Figure S4. Effect of diiron cluster reduction on the Pore and the W308-Tunnel	S14
Table S8. Steady-state O ₂ uptake in the reconstituted sMMO system	S15
with MMOB variants	
Figure S5. Competition between WT-MMOB and V39R-MMOB	S15
during steady state turnover	
Figure S6. Parallel mode EPR spectra of sMMOH ^{red} with MMOB and MMOB variants	S16
Figure S7. The W308-Tunnel molecular gate	S17
Figure S8. Sequence alignments of key regions of hydroxylase and regulatory proteins	S18
Figure S9. Exogenous molecules bound inside the cavities	S19
Supplemental references	S19
11	

Analysis of Stopped-Flow Data. For a linear series of first order or pseudo-first order reactions, the time course can be fit by summing exponential expressions where the number of exponentials is equal to the number of steps, n (Eq. 1). If the steps are irreversible, then the reciprocal relaxation times $(1/\tau)$ give the rate constants for individual steps, although it is not possible to assign a specific reciprocal relaxation time to the rate constant for a specific step without additional information. When the steps are reversible, the reciprocal relaxation times become coupled, so that they do not correlate with a specific rate constant. In some cases, the rate constants can be determined from the ligand concentration dependence of the reciprocal relaxation times.¹

$$Abs_t = (\sum_{i=1}^n Amp_i e^{-\frac{\iota}{\tau i}}) + Abs_{inf}$$
 (Eq. 1)

The kinetic data were fit to Eq. 1 using the nonlinear regression function of the Applied Photophysics ProData Viewer program. In this equation, Abs_t is the observed absorbance at time t, Amp_i is the observed amplitude for exponential phase *i*, τ_i is the relaxation time for phase *i*, and Abs_{inf} is the final absorbance at the end of the reaction. Fitting statistics were reported by the fitting program, and each reaction was repeated multiple times to determine the average fitting parameters and errors.

For a single step reaction (Eq. 2) only one exponential phase is observed under pseudo-first order conditions in ligand, allowing Eq. 3 to be used to determine the forward (k_r) and reverse (k_r) rate constants as well as the K_D from their ratio.

$$k_{f}$$
E + ligand \rightleftharpoons E·ligand (Eq. 2)
 k_{r}
 $\frac{1}{\tau_{obs}} = k_{f}$ [ligand] + k_{r} (Eq. 3)

For a two-step reaction where the first step is fast, reversible ligand binding (Eq. 4), only one exponential phase may be observed. A plot of $1/\tau_{obs}$ versus the concentration of the binding ligand will be hyperbolic if the rate constant k_{r1} is at least 3 fold greater than k_{f2} (Eq. 5).² The K_{D1} for the first step, k_{f2} , and k_{r2} are given by a non-linear regression fit to the hyperbolic plot.

$$\begin{array}{ccc}
k_{f1} & k_{f2} \\
E + \text{ligand} \rightleftharpoons E \cdot \text{ligand} \rightleftharpoons E \cdot \text{ligand'} & (Eq. 4) \\
k_{r1} & k_{r2}
\end{array}$$

$$\frac{1}{\tau_{obs}} = \frac{k_{f2}[\text{ligand}]}{(\frac{k_{r1}}{k_{f1}}) + [\text{ligand}]} + k_{r2}$$
(Eq. 5)

Table S1. MMOB Variant Primers

MMOB Mutant	Mutagenesis Forward Primer 5'-3'	Mutagenesis Reverse Primer 5'-3'
V41(WT)	GTGGTTCTGGTGCTGATGAAGAG	GGCGTTGGACTCGTGGAC
V41F	GTGGTTCTGTTCCTGATGAAGAG	GGCGTTGGACTCGTGGAC
V41R	GTGGTTCTGCGTCTGATGAAGAG	GGCGTTGGACTCGTGGAC
V41E	GTGGTTCTGGAGCTGATGAAGAG	GGCGTTGGACTCGTGGAC
V39F	AACGCCGTGTTTCTGGTGCT	GGACTCGTGGACGACCTG
V39R	AACGCCGTGCGTCTGGTGCT	GGACTCGTGGACGACCTG

Table S2. Data Collection and Refinement Statistics

			Form 1	<u>Form 2</u>	
Data collection					
PDB Code	6VK6	6VK7	6VK5	6VK8	6VK4
Resolution range (Å)	63.8-1.52 (1.57 - 1.52)	49.1-2.12 (2.20 - 2.12)	73.5-1.86 (1.93 - 1.86)	86.0-2.03 (2.10 - 2.03)	52.6-2.35 (2.43 - 2.35)
Space group	C222 ₁	C222 ₁	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁
Unit cell (Å)	63.07 292.63 141.79	62.46 290.45 139.2	102.62 105.46 299.42	101.87 105.35 297.72	102.86 105.21 300.88
Total reflections	628962 (60913)	363811 (33807)	1365173 (131835)	858293 (87118)	576343 (57098)
Unique reflections	197515 (19628)	71995 (7050)	271076 (26707)	203936 (19538)	133740 (11725)
Multiplicity	3.2 (3.1)	5.1 (4.8)	5.0 (4.9)	4.2 (4.3)	4.3 (4.3)
Completeness (%)	98.25 (98.37)	99.37 (98.84)	99.65 (99.26)	97.85 (95.35)	96.27 (86.80)
Ι/σΙ	11.58 (1.14)	6.69 (1.08)	8.21 (0.97)	8.09 (0.95)	5.71 (0.65)
R-merge	0.06956 (1.023)	0.1599 (1.366)	0.131 (1.511)	0.137 (2.025)	0.1447 (2.263)
R-meas	0.08342 (1.234)	0.1784 (1.534)	0.1463 (1.691)	0.152 (2.316)	0.1641 (2.574)
R-pim	0.04492 (0.6755)	0.07791 (0.6875)	0.06397 (0.7467)	0.096 (1.105)	0.07547 (1.195)
CC _{1/2}	0.998 (0.532)	0.994 (0.442)	0.996 (0.39)	0.992 (0.387)	0.993 (0.392)
<u>Refinement</u>					
Reflections	197477 (19613)	71994 (7048)	270965 (26698)	202459 (19516)	131580 (11717)
# used for R-free	9858 (1002)	3609 (398)	13530 (1336)	10347 (1019)	6689 (597)
R-work	0.1392 (0.3111)	0.1600 (0.2659)	0.1721 (0.2965)	0.1664 (0.3154)	0.2088 (0.3991)
R-free	0.1585 (0.3048)	0.2027 (0.3213)	0.1933 (0.3108)	0.2073 (0.3445)	0.2379 (0.4275)
# of non-H atoms	10110	9437	21007	20999	19851
Macromolecules	8814	8697	19498	19498	19475
Ligands	201	2	123	116	78
Solvent	1095	738	1386	1385	298
RMS deviation					
Bond lengths (Å)	0.011	0.010	0.005	0.007	0.003
Bond angles (º)	1.03	1.00	0.86	0.85	0.57
Ramachandran plot					
Favored (%)	97.18	97.37	96.96	97.13	96.51
Allowed (%)	2.82	2.63	2.95	2.87	3.37
Outliers (%)	0.00	0.00	0.08	0.00	0.12
Average B-factor	22.14	36.94	28.46	36.59	63.63
Macromolecules	20.29	36.44	28.28	36.15	63.57
Ligands	46.47	34.96	34.43	51.86	102.92
Solvent	32.52	42.89	30.50	41.52	57.03

Ligand-FeSMMOH** (6VK6)SMMOHred (6VK7)Resolution1.52 Å2.12 ÅFe1-Fe23.13.3Fe1-Fe23.13.3Fe1-E114 OE12.02.1Fe1-E144 OE12.12.3Fe1-E243 OE23.92.2Fe1-H147 ND12.22.2Fe1-HOH 12.22.4Fe1-HO(H) 2 ^a 2.1N/AFe2-E209 OE21.92.0Fe2-E243 OE23.42.4Fe2-E243 OE12.22.2Fe2-E144 OE22.22.2Fe2-H246 ND12.22.2Fe2-EDO O2 ^a 2.4N/AFe2-EDO O2 ^a 2.4N/A	Table S3. Interatomic Distances for sMMOH								
Resolution 1.52 Å 2.12 ÅFe1-Fe2 3.1 3.3 Fe1-Fe2 3.1 3.3 Fe1-E114 OE1 2.0 2.1 Fe1-E144 OE1 2.1 2.3 Fe1-E243 OE2 3.9 2.2 Fe1-H147 ND1 2.2 2.2 Fe1-HOH 1 2.2 2.4 Fe1-HO(H) 2^a 2.1 N/A Fe2-E209 OE2 1.9 2.0 Fe2-E243 OE2 3.4 2.4 Fe2-E243 OE1 2.2 2.2 Fe2-E144 OE2 2.2 2.2 Fe2-H246 ND1 2.2 2.2 Fe2-EDO O2 ^a 2.4 N/AFe2-EDO O2 ^a 2.4 N/AFe2-EDO O2 ^a 2.4 N/A	Ligand-Fe	sMMOH ^{ox} <u>(6VK6)</u>	sMMOH ^{red} (6VK7)						
Fe1-Fe2 3.1 3.3 Fe1-E114 OE1 2.0 2.1 Fe1-E144 OE1 2.1 2.3 Fe1-E243 OE2 3.9 2.2 Fe1-H147 ND1 2.2 2.2 Fe1-HOH 1 2.2 2.4 Fe1-HO(H) 2^a 2.1 N/A Fe2-E209 OE2 1.9 2.0 Fe2-E243 OE1 2.2 2.2 Fe2-E243 OE1 2.2 2.2 Fe2-E144 OE2 2.2 2.2 Fe2-H246 ND1 2.2 2.2 Fe2-EDO O2 ^a 2.4 N/AFe2-EDO O2 ^a 2.4 N/AFe2-EDO O2 ^a 2.4 N/AFe2-EDO O2 ^a 2.4 N/A	Resolution	1.52 Å	2.12 Å						
Fe1-E114 OE1 2.0 2.1 Fe1-E144 OE1 2.1 2.3 Fe1-E243 OE2 3.9 2.2 Fe1-H147 ND1 2.2 2.2 Fe1-HOH 1 2.2 2.4 Fe1-HO(H) 2^a 2.1 N/A Fe2-E209 OE2 1.9 2.0 Fe2-E243 OE2 3.4 2.4 Fe2-E243 OE1 2.2 2.2 Fe2-E144 OE2 2.2 2.2 Fe2-E144 OE2 2.2 2.2 Fe2-H246 ND1 2.2 2.2 Fe2-EDO O2 ^a 2.4 N/A Fe2-EDO O2 ^a 2.4 N/A Fe2-EDO O2 ^a 2.4 N/A	Fe1-Fe2	3.1	3.3						
Fe1-E144 OE12.12.3Fe1-E243 OE2 3.9 2.2 Fe1-H147 ND1 2.2 2.2 Fe1-HOH 1 2.2 2.4 Fe1-HO(H) 2^a 2.1 2.5 Fe1-EDO O2 ^a 2.1 N/AFe2-E209 OE2 1.9 2.0 Fe2-E243 OE2 3.4 2.4 Fe2-E243 OE1 2.2 2.2 Fe2-E144 OE2 2.2 2.2 Fe2-H246 ND1 2.2 2.2 Fe2-H246 ND1 2.2 2.3	Fe1-E114 OE1	2.0	2.1						
Fe1-E243 OE2 3.9 2.2 Fe1-H147 ND1 2.2 2.2 Fe1-HOH 1 2.2 2.4 Fe1-HO(H) 2^a 2.1 2.5 Fe1-EDO O2 ^a 2.1 N/AFe2-E209 OE2 1.9 2.0 Fe2-E243 OE2 3.4 2.4 Fe2-E243 OE1 2.2 2.2 Fe2-E144 OE2 2.2 2.2 Fe2-E144 OE2 2.2 2.2 Fe2-H246 ND1 2.2 2.2 Fe2-EDO O2 ^a 2.4 N/AFe2-EDO O2 ^a 2.4 N/AFe2-HO(H) 2^a 1.9 2.3	Fe1-E144 OE1	2.1	2.3						
Fe1-H147 ND1 2.2 2.2 Fe1-HOH 1 2.2 2.4 Fe1-HO(H) 2^a 2.1 2.5 Fe1-EDO $O2^a$ 2.1 N/AFe2-E209 OE2 1.9 2.0 Fe2-E243 OE2 3.4 2.4 Fe2-E243 OE1 2.2 2.2 Fe2-E144 OE2 2.2 2.2 Fe2-H246 ND1 2.2 2.2 Fe2-H246 ND1 2.2 2.2 Fe2-H246 ND1 2.2 2.3	Fe1-E243 OE2	3.9	2.2						
Fe1-HOH 1 2.2 2.4 Fe1-HO(H) 2^a 2.1 2.5 Fe1-EDO $O2^a$ 2.1 N/AFe2-E209 OE2 1.9 2.0 Fe2-E243 OE2 3.4 2.4 Fe2-E243 OE1 2.2 2.2 Fe2-E144 OE2 2.2 2.2 Fe2-H246 ND1 2.2 2.2 Fe2-EDO $O2^a$ 2.4 N/AFe2-HO(H) 2^a 1.9 2.3	Fe1-H147 ND1	2.2	2.2						
Fe1-HO(H) 2^a 2.12.5Fe1-EDO $O2^a$ 2.1N/AFe2-E209 OE21.92.0Fe2-E243 OE23.42.4Fe2-E243 OE12.22.2Fe2-E144 OE22.22.2Fe2-H246 ND12.22.2Fe2-EDO $O2^a$ 2.4N/AFe2-HO(H) 2^a 1.92.3	Fe1-HOH 1	2.2	2.4						
Fe1-EDO $O2^a$ 2.1N/AFe2-E209 OE21.92.0Fe2-E243 OE23.42.4Fe2-E243 OE12.22.2Fe2-E144 OE22.22.2Fe2-H246 ND12.22.2Fe2-EDO $O2^a$ 2.4N/AFe2-HO(H) 2^a 1.92.3	Fe1-HO(H) 2 ^{<i>a</i>}	2.1	2.5						
Fe2-E209 OE2 1.9 2.0 Fe2-E243 OE2 3.4 2.4 Fe2-E243 OE1 2.2 2.2 Fe2-E144 OE2 2.2 2.2 Fe2-H246 ND1 2.2 2.2 Fe2-EDO O2 ^a 2.4 N/AFe2-HO(H) 2^a 1.9 2.3	Fe1-EDO O2 ^a	2.1	N/A						
Fe2-E243 OE2 3.4 2.4 Fe2-E243 OE1 2.2 2.2 Fe2-E144 OE2 2.2 2.2 Fe2-H246 ND1 2.2 2.2 Fe2-EDO O2 ^a 2.4 N/A Fe2-HO(H) 2 ^a 1.9 2.3	Fe2-E209 OE2	1.9	2.0						
Fe2-E243 OE1 2.2 2.2 Fe2-E144 OE2 2.2 2.2 Fe2-H246 ND1 2.2 2.2 Fe2-ED0 O2 ^a 2.4 N/A Fe2-HO(H) 2 ^a 1.9 2.3	Fe2-E243 OE2	3.4	2.4						
Fe2-E144 OE2 2.2 2.2 Fe2-H246 ND1 2.2 2.2 Fe2-ED0 O2 ^a 2.4 N/A Fe2-HO(H) 2 ^a 1.9 2.3	Fe2-E243 OE1	2.2	2.2						
Fe2-H246 ND12.22.2Fe2-EDO $O2^a$ 2.4N/AFe2-HO(H) 2^a 1.92.3	Fe2-E144 OE2	2.2	2.2						
Fe2-EDO $O2^a$ 2.4 N/A Fe2-HO(H) 2^a 1.9 2.3	Fe2-H246 ND1	2.2	2.2						
Fe2-HO(H) 2^a 1.9 2.3	Fe2-EDO O2 ^a	2.4	N/A						
"Bridging	Fe2-HO(H) 2 ^{<i>a</i>}	1.9	2.3						

Table S3. Inte	ratomic Distances	for sMMOH

Rare Types of Helices within sMMOH. Close inspection of the *Mt* sMMOH and *Mt* sMMOH:MMOB crystal structures obtained in this study provided detailed information about the helical composition of the sMMOH α -subunit as summarized in Table S4. Principal helices A, D, E, H, and a helix formed by residues W379 to L393 contain π -helices, where the backbone carbonyl of residue i hydrogen bonds to the backbone NH moiety of the i+5 residue in at least 2 consecutive residues (Figure S1). Two of these π -helices (in Helices E and H) have been described previously in limited detail.³⁻⁵ The helix composed of residues W379 to L393 is involved in making crystal contacts, and the backbone carbonyl group of residue W379 is engaged in a rare trifurcated acceptor hydrogen bond, which initiates the π -helix. Because this π -helix is involved in crystal contacts, we assume it an artifact of protein crystallization, and therefore not functionally important. When the complex with MMOB forms, Helix E residues N214 and P215 as well as Helix H residues G314 and G315 form additional π -helices (Figure S1). The π -helix in Helix D, composed of residues K185 and R186, becomes a coiled region as a result of large exogenous molecules present in the active site in Forms 1 and 2 crystals. It is interesting to note that many of the residues that stabilize the α -helices throughout the α -subunit also form hydrogen bonds to the i + 3 residue (a 3₁₀ helix, Table S4). Typically, 3_{10} helices are located at the ends of α -helices, but this is not universally the case in sMMOH. The partial 3_{10} helix character causes the α -helices to be tightly wound, further highlighting the flexibility of the interspersed π -helical segments.

Figure S1. The π -helices of *Mt* sMMOH^{ox} (6VK6) and *Mt* sMMOH^{ox}:MMOB (6VK5) crystal structures. sMMOH and sMMOH:MMOB Helices A, D, E, and H are represented as grey and white cartoons, respectively. The π -helices are colored red and sections of the protein that do not form intramain chain hydrogen bonds are colored yellow.

Table S4. Assignment of Secondary Structures

image image <th< th=""><th></th><th>1.52</th><th>Å sMN</th><th>1OH⁰× proto</th><th>mer 1</th><th></th><th>2.12</th><th>2 Å sMI</th><th>NOHred</th><th>ⁱ proto</th><th>mer 1</th><th colspan="3">1 1.86 Å sMMOH^{ox}:MMOB Form 1, protomer 1</th><th></th><th colspan="5">2.5 Å sMMOH^{red}:MMOB protomer 1</th><th></th></th<>		1.52	Å sMN	1OH⁰× proto	mer 1		2.12	2 Å sMI	NOHred	ⁱ proto	mer 1	1 1.86 Å sMMOH ^{ox} :MMOB Form 1, protomer 1				2.5 Å sMMOH ^{red} :MMOB protomer 1							
h 0 -	Residues	i	i + 3	i+41+5	distances	Residues	i	i + 3	i + 4	I + 5	distances	Residues	Form	1, prot i+3	i+4	1	distances	Residues	, I	i + 3	i+4	I + 5	distances
	25-35 Helix 1	P25 Q26 F27		К30	2.4	25-35 Helix 1	P25 Q26 F27	V28	H29 K30		3.2,2.9 3.3	25-35 Helix 1	P25 Q26 F27	V28	H29 K30		2.7, 2.1 2.5	25-35 Helix 1	P25 Q26 F27	V28	H29 K30		3.0, 2.9 3.4
No. No. <td></td> <td>V28 H29</td> <td>W31 L32</td> <td></td> <td>2.1 2</td> <td></td> <td>V28 H29</td> <td>W31 L32</td> <td></td> <td></td> <td>2.9 3</td> <td></td> <td>V28 H29</td> <td>W31 L32</td> <td></td> <td></td> <td>2.1 2.2</td> <td></td> <td>V28 H29</td> <td>W31 L32</td> <td></td> <td></td> <td>3 3.1</td>		V28 H29	W31 L32		2.1 2		V28 H29	W31 L32			2.9 3		V28 H29	W31 L32			2.1 2.2		V28 H29	W31 L32			3 3.1
No. No. <td></td> <td>K30 W31 L32</td> <td>S34 F35</td> <td></td> <td>2.4</td> <td></td> <td>K30 W31 L32</td> <td>S34 F35</td> <td></td> <td></td> <td>3.2 2.8</td> <td></td>		K30 W31 L32	S34 F35		2.4		K30 W31 L32	S34 F35			3.2 2.8												
none none <th< td=""><td>64.80</td><td>A6.4</td><td></td><td>469</td><td>2.2</td><td>64.80</td><td>A.G.A</td><td></td><td>100</td><td></td><td>3.1</td><td>64.80</td><td>464</td><td></td><td>100</td><td></td><td>2.1</td><td>64.80</td><td>464</td><td>VCT</td><td>169</td><td></td><td>22.21</td></th<>	64.80	A6.4		469	2.2	64.80	A.G.A		100		3.1	64.80	464		100		2.1	64.80	464	VCT	169		22.21
No. No. <td>Helix A</td> <td>K65</td> <td>A68</td> <td>R69</td> <td>2.9, 2.2</td> <td>Helix A</td> <td>K65</td> <td></td> <td>R69</td> <td></td> <td>3.1</td> <td>Helix A</td> <td>K65</td> <td></td> <td>R69</td> <td></td> <td>3.4, 3.1</td> <td>Helix A</td> <td>K65</td> <td>107</td> <td>R69</td> <td></td> <td>3.1</td>	Helix A	K65	A68	R69	2.9, 2.2	Helix A	K65		R69		3.1	Helix A	K65		R69		3.4, 3.1	Helix A	K65	107	R69		3.1
No. No. <td></td> <td>E66 ¥67</td> <td>R69 M70</td> <td>M70 F71</td> <td>2.9, 2.1</td> <td></td> <td>E66 ¥67</td> <td></td> <td>M70 F71</td> <td></td> <td>3</td> <td></td> <td>E66 ¥67</td> <td>M70</td> <td>M70 F71</td> <td></td> <td>3.1</td> <td></td> <td>E66 ¥67</td> <td></td> <td>M70 F71</td> <td></td> <td>3</td>		E66 ¥67	R69 M70	M70 F71	2.9, 2.1		E66 ¥67		M70 F71		3		E66 ¥67	M70	M70 F71		3.1		E66 ¥67		M70 F71		3
Property Propery Propery Propery P		A68	E71	A72	2.9,2.1		A68	E71	A72		3.2, 2.8		A68	E71	A72		2.9, 2.3		A68		A72		2.9
No. No. <td></td> <td>R69 M70</td> <td>\$73</td> <td>A73 K74</td> <td>2.5</td> <td></td> <td>R69 M70</td> <td></td> <td>A73 K74</td> <td></td> <td>3.2 3.5</td> <td></td> <td>R69 M70</td> <td>A73</td> <td>A73 K74</td> <td></td> <td>2.3 2.9. 2.3</td> <td></td> <td>R69 M70</td> <td>A73</td> <td>A73 K74</td> <td></td> <td>3.2 3.0, 3.0</td>		R69 M70	\$73	A73 K74	2.5		R69 M70		A73 K74		3.2 3.5		R69 M70	A73	A73 K74		2.3 2.9. 2.3		R69 M70	A73	A73 K74		3.2 3.0, 3.0
Res Res <thres< th=""> <thres< th=""> <thres< th=""></thres<></thres<></thres<>		E71	К74	D75	2.7, 2.2		E71	K74	D75		3.0, 2.9		E71	К74	D75		2.8, 2.1		E71	K74	D75		3.2, 2.8
No. No. <td></td> <td>A72 A73</td> <td>D75</td> <td>E76 R77</td> <td>2.7, 2.2 2.7</td> <td></td> <td>A72 A73</td> <td></td> <td>E76 R77</td> <td></td> <td>3.1 3.5</td> <td></td> <td>A72 A73</td> <td></td> <td>E76 R77</td> <td></td> <td>2.1 2.7</td> <td></td> <td>A72 A73</td> <td></td> <td>E76 R77</td> <td></td> <td>3 3.5</td>		A72 A73	D75	E76 R77	2.7, 2.2 2.7		A72 A73		E76 R77		3.1 3.5		A72 A73		E76 R77		2.1 2.7		A72 A73		E76 R77		3 3.5
No. No. <td></td> <td>K74</td> <td>R77</td> <td>Q78</td> <td>2.8, 2.3</td> <td></td> <td>K74</td> <td>R77</td> <td>Q78</td> <td></td> <td>3.3, 3.1</td> <td></td> <td>K74</td> <td>0.70</td> <td>Q78</td> <td></td> <td>2.3</td> <td></td> <td>K74</td> <td>R77</td> <td>Q78</td> <td></td> <td>3.4, 3.0</td>		K74	R77	Q78	2.8, 2.3		K74	R77	Q78		3.3, 3.1		K74	0.70	Q78		2.3		K74	R77	Q78		3.4, 3.0
No. No. <td></td> <td>D75 E76</td> <td><u> </u></td> <td>G80</td> <td>2.9, 2.0</td> <td></td> <td>D75 E76</td> <td><u>U</u>/8</td> <td>F79 G80</td> <td></td> <td>3.1, 2.8</td> <td></td> <td>D75 E76</td> <td><u>U/8</u></td> <td>F79 G80</td> <td></td> <td>2.8, 1.9</td> <td></td> <td>D75 E76</td> <td></td> <td>F79 G80</td> <td></td> <td>2.8</td>		D75 E76	<u> </u>	G80	2.9, 2.0		D75 E76	<u>U</u> /8	F79 G80		3.1, 2.8		D75 E76	<u>U/8</u>	F79 G80		2.8, 1.9		D75 E76		F79 G80		2.8
No. No. <td></td> <td>R77</td> <td>T01</td> <td>T81</td> <td>2.3</td> <td></td> <td>R77</td> <td>G80</td> <td>T81</td> <td></td> <td>3.3, 3.1</td> <td></td> <td>R77</td> <td></td> <td>T81</td> <td></td> <td>2.2</td> <td></td> <td>R77</td> <td>T01</td> <td>T81</td> <td></td> <td>3</td>		R77	T01	T81	2.3		R77	G80	T81		3.3, 3.1		R77		T81		2.2		R77	T01	T81		3
No. No. <td></td> <td>F79</td> <td>101</td> <td>L83</td> <td>2.1</td> <td></td> <td>F79</td> <td></td> <td>L83</td> <td></td> <td>3</td> <td></td> <td>F79</td> <td></td> <td>L83</td> <td></td> <td>2.5</td> <td></td> <td>F79</td> <td>101</td> <td>L83</td> <td></td> <td>2.8</td>		F79	101	L83	2.1		F79		L83		3		F79		L83		2.5		F79	101	L83		2.8
Norm Norm <th< td=""><td></td><td>G80 T81</td><td></td><td>D84 G85 G85 L86</td><td>2.1, 2.6</td><td></td><td>G80 T81</td><td></td><td>D84 G85</td><td>G85 L86</td><td>2.9, 3.4</td><td></td><td>G80 T81</td><td></td><td>D84</td><td>G85 L86</td><td>2.2, 2.7</td><td></td><td>G80 T81</td><td></td><td>D84</td><td>G85 L86</td><td>3.2, 3.3 2.8</td></th<>		G80 T81		D84 G85 G85 L86	2.1, 2.6		G80 T81		D84 G85	G85 L86	2.9, 3.4		G80 T81		D84	G85 L86	2.2, 2.7		G80 T81		D84	G85 L86	3.2, 3.3 2.8
Image Image <th< td=""><td></td><td>L82</td><td></td><td>T87</td><td>2.8</td><td></td><td>L82</td><td></td><td></td><td></td><td></td><td></td><td>L82</td><td></td><td></td><td>T87</td><td>2.8</td><td></td><td>L82</td><td></td><td></td><td>T87</td><td>3.3</td></th<>		L82		T87	2.8		L82						L82			T87	2.8		L82			T87	3.3
Bit Bit <td></td> <td>L83 D84</td> <td></td> <td>R88</td> <td>2.3</td> <td></td> <td>L83 D84</td> <td></td> <td>R88</td> <td></td> <td>3.2</td> <td></td> <td>L83 D84</td> <td>T87</td> <td>R88</td> <td></td> <td>2.7, 2.2</td> <td></td> <td>L83 D84</td> <td></td> <td>R88</td> <td></td> <td>3</td>		L83 D84		R88	2.3		L83 D84		R88		3.2		L83 D84	T87	R88		2.7, 2.2		L83 D84		R88		3
No No<		G85	R88	L89	2.8, 2.4		G85	R88	L89		3.2, 3.1		G85	R88	L89		2.8, 2.3		G85	R88	L89		3.2, 3.1
new No		T87	G90	050	2.2								200	205			2.7						
nink nink </td <td>97-126</td> <td>P97</td> <td>G100</td> <td>E101</td> <td>2.9,2.2</td> <td>97-101</td> <td>P97</td> <td></td> <td>E101</td> <td></td> <td>2.9</td> <td>97-127</td> <td>P97</td> <td></td> <td>E101</td> <td></td> <td>2.2</td> <td>97-127</td> <td>P97</td> <td></td> <td>E101</td> <td></td> <td>3</td>	97-126	P97	G100	E101	2.9,2.2	97-101	P97		E101		2.9	97-127	P97		E101		2.2	97-127	P97		E101		3
icita icita <th< td=""><td>Helix B</td><td>R98</td><td>E101</td><td>T102</td><td>2.9, 2.2</td><td>Helix B</td><td>R98</td><td></td><td></td><td></td><td></td><td>Helix B</td><td>R98</td><td>T102</td><td>T102</td><td></td><td>2.2</td><td>Helix B</td><td>R98</td><td></td><td>T102</td><td></td><td>3.1</td></th<>	Helix B	R98	E101	T102	2.9, 2.2	Helix B	R98					Helix B	R98	T102	T102		2.2	Helix B	R98		T102		3.1
100 100 <td></td> <td>G100</td> <td></td> <td></td> <td></td> <td></td> <td>G100</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>G100</td> <td>1102</td> <td>111205</td> <td></td> <td>2.7, 2.2</td> <td></td> <td>G100</td> <td>M103</td> <td>111205</td> <td></td> <td>3.3</td>		G100					G100						G100	1102	111205		2.7, 2.2		G100	M103	111205		3.3
Num Num <td></td> <td>E101 T102</td> <td>K104 V105</td> <td>1106</td> <td>2.3 2.4. 2.0</td> <td></td> <td>E101</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>E101 T102</td> <td>K104 V105</td> <td>1106</td> <td></td> <td>2.6 2.4. 2.1</td> <td></td> <td>E101 T102</td> <td>K104 V105</td> <td>1106</td> <td></td> <td>2.9 3.2. 2.9</td>		E101 T102	K104 V105	1106	2.3 2.4. 2.0		E101						E101 T102	K104 V105	1106		2.6 2.4. 2.1		E101 T102	K104 V105	1106		2.9 3.2. 2.9
nine nine 1.00 nine 1.4.28 nine 1.00 <		M103		S107	2.3	102-127	M103		S107		3		M103		S107		2.2		M103		S107		3.1
106 107 123 106 1100 2.1 10.00 2.1 10.00 2.1 10.00 2.1 10.00 2.1 10.00 2.1 10.00 10.00 2.1 10.00 10.00 2.1 10.00 1		K104 V105		F109	2.6	Helix B	K104 V105	N108	F109		3.4,2.8		K104 V105		N108 F109		2.6		V104 V105		F109		2.9
NIDE UND UND <td></td> <td>1106 \$107</td> <td></td> <td>L110 F111</td> <td>2.1</td> <td></td> <td>1106 \$107</td> <td></td> <td>L110 F111</td> <td></td> <td>3</td> <td></td> <td>1106 \$107</td> <td></td> <td>L110 F111</td> <td></td> <td>2.1</td> <td></td> <td>1106 \$107</td> <td></td> <td>L110 F111</td> <td></td> <td>2.9</td>		1106 \$107		L110 F111	2.1		1106 \$107		L110 F111		3		1106 \$107		L110 F111		2.1		1106 \$107		L110 F111		2.9
120 V11 123 120 V11 13.3 120 120 V11 13.3 120 V11 0.11		N108		V112	2.7		N108		V112		3.2		N108		V112		2.7		N108		V112		3.2
nin nin<		F109 L110	V112 G113	E114	2.5		F109 L110	V112 G113	G113 E114		3.3, 3.6 3.0, 2.9		F109 L110	G113	G113 E114		2.5, 2.5 2.6, 1.9		F109 L110	G113	G113 E114		3.3, 3.2 3.1, 2.7
133 M.133 2.5 1.133 M.137 2.5 M.137 3.5 M.137 1.13 M.137 3.5 M.137 1.135 M.137 1.135 M.137 1.135 M.137 1.135 M.137 1.135 M.137 1.135 M.137 M.135 M.137		E111	E114	Y115	2.9, 2.0		E111	E115	Y115		3.1, 2.8		E111	E114	Y115		2.9, 2.1		E111		Y115		2.8
E14 ALT B18 ALZ B18 B18 <td></td> <td>G113</td> <td></td> <td>A117</td> <td>2.2</td> <td></td> <td>G113</td> <td></td> <td>N116 A117</td> <td></td> <td>3.1</td> <td></td> <td>G113</td> <td></td> <td>N116 A117</td> <td></td> <td>2</td> <td></td> <td>G112 G113</td> <td></td> <td>A117</td> <td></td> <td>2.9</td>		G113		A117	2.2		G113		N116 A117		3.1		G113		N116 A117		2		G112 G113		A117		2.9
NDDS ATDS ATDS <th< td=""><td></td><td>E114</td><td>A117</td><td>1118</td><td>2.8, 2.7</td><td></td><td>E114</td><td>A117</td><td>1118</td><td></td><td>3.1, 3.3</td><td></td><td>E114</td><td>A117</td><td>1118</td><td></td><td>2.6, 2.5</td><td></td><td>E114</td><td>1119</td><td>1118</td><td></td><td>3.1</td></th<>		E114	A117	1118	2.8, 2.7		E114	A117	1118		3.1, 3.3		E114	A117	1118		2.6, 2.5		E114	1119	1118		3.1
Alify Sizi 2.1 Alify Sizi 2.2 Alify Sizi 2.2 Alify Sizi 3.1 Alify Sizi Alify Sizi Alify Sizi Alify Sizi Alify Sizi Alify Alify Alify Alify Alify Alify Sizi Alify Alify Alify Sizi Alify		N116	A119	A120	2.7, 2.1		N116	A119	A120		3.1, 2.9		N115	A119	A120		2.5, 2.0		N115	A119	A120		3.1, 2.9
A199 A129 M123 M123 C A199 M123 C A199 M123 C A199 M123 C C A199 M123 C C A190 M123 U32 U		A117 118	S121	S121 A122	2.1 2.9, 2.2		A117 118		S121 A122		3		A117 118		S121 A122		2		A117 118		S121 A122		2.9 3.1
A200 M122 M124 C27, 22 A100 M124 3 A100 M122 U24 25, 22 A102 M123 U24 U24 <thu24< th=""> <thu24< th=""> U24</thu24<></thu24<>		A119	A122	M123	2.7, 2.2		A119		M123		2.9		A119	A122	M123		2.5, 2.3		A119	A122	M123		3.0, 3.0
Al22 D <thd< th=""> D D D <</thd<>		A120 S121	M123	W125	2.7, 2.2		A120 S121		U124 W125		3		A120 S121	M123	W125		2.5, 2.2		A120 S121	L124	W125		3.1, 3.1 3.1, 2.7
1122 5127 2.4 1124 5127 2.9 1124 5127 126 127 2.8 1126 5127 128		A122 M123		D126	2.2		A122 M123		D126		2.9		A122 M123		D126		1.9		A122 M123		D126		2.8
131-161 N135 2.1 131-161 N135 2.9 131-161 N135 2.8,20 131-161 A131 N135 3 N135 0.133 0.136 0.137 0.2,7.3 0.136 0.137 0.2,7.3 0.136 0.137 0.2,7.3 0.136 0.133 0.137 0.2,8.2 0.136 0.133 0.137 0.2,8.2 0.135 0.136 0.133 0.137 0.2,8.2 0.136 0.133 0.137 0.2,8.2 0.136 0.133 0.137 0.2,8.3 0.138 0.148 0.138 0.148 0.148 0.148 0.148 0.148 0.148		L124	S127	5127	2.4		L124	S127	5127		2.9		L124	S127	5127		2.8				5127		2.0
helic 6132 6136 2.2 Helic 6132 6136 2.2 Helic 613 <	131-161	A131		N135	2.1	131-161	A131		N135		2.9	131-161	A131	K134	N135		2.8, 2.0	131-161	A131		N135		3
R13 V13 L13 L2, 21 R134 L13 L2 R135 R135 R135 L13 L33 L3 L33 L33 L33 L33 L33 L3 L33 L3 L33 L3 L33 L3 L33 L3 L33 L34 <	Helix C	E132	6136	G136 ¥137	2.2	Helix C	E132	6136	G136 V137		3	Helix C	E132		G136 V137		2.2	Helix C	E132		G136 V137		2.8
N135 A139 2.2 N135 A139 2.9 N135 L138 A139 2.7, 2.5 N135 A139 3.2 6136 A130 0.40 2,2, 2.5 (113 (114) 2,2, 2.5 (113) (114) 2,1,2,5 (113) (114) 2,1,2,5 (113) (114) 2,1,2,5 (113) (114) 2,2,2,5 (114) 2,2,2,5 (114) 2,2,2,5 (114) 2,2,2,5 (114) 2,2,2,5 (114) 2,2,2,5 (114) 2,2,2,5 (114) 2,2,2,5 (114) 2,2,2,5 (114) 2,2,2,5 (114) 2,2,2,5 (114) 2,2,2,5 (114) 1,42 1,43,2 2,2,2,5 (114) 1,43,2 2,2,2,5 (114) 1,43,3 1,44,5 1,45,3 1,44,5 1,45,3 1,44,5 1,45,3 1,44,5 1,45,3 1,44,5 1,45,3 1,44,5 1,45,3 1,44,5 1,45,3 1,44,5 1,45,3 1,44,4 1,45,3 1,44,4 1,45,3 1,44,4 1,45,4 1,43,3 1,44,4 1,45,4 1,43,4 1,43,4 1,43,4 1,43,4 1,44,4 <td></td> <td>K134</td> <td>Y137</td> <td>L138</td> <td>2.8, 2.1</td> <td></td> <td>K134</td> <td>0150</td> <td>L138</td> <td></td> <td>2.9</td> <td></td> <td>K134</td> <td>Y137</td> <td>L138</td> <td></td> <td>2.9, 2.3</td> <td></td> <td>K134</td> <td></td> <td>L138</td> <td></td> <td>3.1</td>		K134	Y137	L138	2.8, 2.1		K134	0150	L138		2.9		K134	Y137	L138		2.9, 2.3		K134		L138		3.1
Y137 Q140 V141 2, 6, 2, 7, 2 U137 V141 2, 8 V137 V141 2 V137 V141 2, 9 A138 V141 U142 2, 7, 2 U138 V141 2, 1 U138 U141 2, 1 U141 2, 1 U141 2, 1 U141 2, 1 U143 1, 1 <td></td> <td>N135 G136</td> <td>A139</td> <td>A139 Q140</td> <td>2.2 2.9, 2.6</td> <td></td> <td>N135 G136</td> <td></td> <td>A139 Q140</td> <td></td> <td>2.9 3.2</td> <td></td> <td>N135 G136</td> <td>L138</td> <td>A139 Q140</td> <td></td> <td>2.7, 2.5 2.4</td> <td></td> <td>N135 G136</td> <td></td> <td>A139 Q140</td> <td></td> <td>3.2 3.1</td>		N135 G136	A139	A139 Q140	2.2 2.9, 2.6		N135 G136		A139 Q140		2.9 3.2		N135 G136	L138	A139 Q140		2.7, 2.5 2.4		N135 G136		A139 Q140		3.2 3.1
L138 L141 L142 L142 L142 L143 L144 L144 L145 L145 L144		Y137	Q140	V141	2.6, 2.1		Y137	1/1.41	V141		2.8		Y137		V141		2		Y137		V141		2.9
0140 0143 E144 2.7, 2 0.140 E144 2.9 0.143 E144 2.7, 21 0.140 E144 145 3.3 1142 1145 8146 2.8, 2.5 1142 1145 8146 3.3 1142 1145 1146 145 8146 3.3.3 1142 1145 7.14 0.143 8146 1147 3.2.8 D143 1145 1148 2.6.2.3 1145 1148 3.1.3.0 1145 1148 1148 1149 1141 1149 1149 1148 1148 1148 1148 1148 1148 1148 1149 11		A139	L142	D143	2.8, 2.1		A139	L142	D143		3.3, 3.0		A139	L142	D143		2.9, 2.1		A139		D143		2.9
142 145 846 2.7, 2.3 142 145 846 3.3 142 145 8146 2.6, 2.1 142 145 8146 3.1, 3.0 D13 H47 2.1 D133 8146 H47 3.2, 8 D143 H147 2 D143 H147 2.8 145 T148 H49 2.7, 2.3 1145 T148 3.1 146 T148 H149 2.6, 2.3 1145 H149 3.2, 2.8 8146 H149 0.50 2.7, 2.2 8146 H149 0.50 3.2, 2.8 8146 H149 2.6, 2.3 1145 H149 3.2, 2.8 1417 C151 2.1 H147 C151 2.9 H147 C151 2.1 H147 1.3 2.8 1148 H149 5153 2.1 H147 1.53 1.53 1.51 1.54 3.2 2.8 1.55 1.53 1.54 2.5, 2.3 0.150 1.54 3.2 2.8 1.55 1.55 3.6 2.8 1.55 1.55 3.6 2.8		Q140 V141	D143 E144	E144 1145	2.7, 2.0		Q140 V141		E144 I145		2.9 3.3		Q140 V141	D143 E144	E144 I145		2.7, 2.1 2.8, 2.5		Q140 V141	E144	E144 1145		3 3.4. 3.3
D143 H147 L1 D143 H147 J, J28 D143 H147 L D143 H147 L28 H148 L22 E144 H148 L3 H147 L38		L142	1145	R146	2.7, 2.3		L142	1145	R146		3, 3		L142	1145	R146		2.6, 2.1		L142	1145	R146		3.1, 3.0
1445 1146 1156 1156 1156 1156 1156 1156 1156		D143 E144		H147 T148	2.1 2.1		D143 E144	R146	H147 T148		3, 2.8		D143 E144		H147 T148		2		D143 E144		H147 T148		2.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1145 R146	T148 H149	H149 0150	2.7, 2.3		I145 R146	H149	H149 0150		3.1		1145 R146	T148 H149	H149 0150		2.6, 2.3		1145 R146	H149	H149 0150		3.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		H147		C151	2.1		H147	1115	C151		2.9		H147	1145	C151		2.1		H147	11245	C151		3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		T148 H149		A152 F153	2.1 2.1		T148 H149		A152 F153		3 2.9		T148 H149		A152 F153		2.1 2.1		T148 H149		A152 F153		2.8 2.8
Lisia N155 2.7,2.5 C.151 1124 N155 3.2, 3.4 C151 1144 N155 2.7,2.6 C.151 N155 3.6 3.6 3.2, 3.4 C151 1144 N155 2.7,2.6 C.151 N155 3.6 3.6 3.2, 3.4 C151 1145 N155 2.7,2.6 C.151 N155 3.6 3.2, 3.4 C151 N155 N155 C.8,2.0 A152 M155 2.9 7.7 7.8 <td></td> <td>Q150</td> <td>14.0</td> <td>1154</td> <td>2.3</td> <td></td> <td>Q150</td> <td></td> <td>1154</td> <td></td> <td>3</td> <td></td> <td>Q150</td> <td>F153</td> <td>1154</td> <td></td> <td>2.5, 2.3</td> <td></td> <td>Q150</td> <td></td> <td>1154</td> <td></td> <td>3</td>		Q150	14.0	1154	2.3		Q150		1154		3		Q150	F153	1154		2.5, 2.3		Q150		1154		3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		C151 A152	N155	N155 H156	2.7,2.5 2.7,2.0		C151 A152	N155	N155 H156		3.2, 3.4 3.2, 2.7		C151 A152	N155	N155 H156		2.7, 2.6 2.8, 2.0		C151 A152		N155 H156		3.6 2.9
Introduction Introduction <th< td=""><td></td><td>F153</td><td>¥157</td><td>Y157 Y158</td><td>1.9</td><td></td><td>F153</td><td>¥157</td><td>Y157 Y158</td><td></td><td>2.8</td><td></td><td>F153</td><td>¥157</td><td>Y157 Y158</td><td></td><td>1.9 2.8 2 0</td><td></td><td>F153</td><td></td><td>Y157 Y158</td><td></td><td>2.7</td></th<>		F153	¥157	Y157 Y158	1.9		F153	¥157	Y157 Y158		2.8		F153	¥157	Y157 Y158		1.9 2.8 2 0		F153		Y157 Y158		2.7
H156 K160 2.5 H156 K160 3.3 H156 S159 K160 2.7, 24 H156 S159 K160 3.3, 34 Y158 H161 2.4, 23 Y158 H161 2.9, 30 Y158 H161 2.4, 23 Y158 Y158 H161 3.0, 31 171-177 A171 A175 C.6 Y158 H161 3.4 3.4 171-177 A171 A172 2.6 Y158 H161 3.4 3.4 171-177 A171 A171 R175 C.6 Y158 H161 3.4 171-177 A171 A171 R175 C.7 A174 H156 1174 H156 3.4 171-177 A172 C.3 174-177 T174 IT77 A171 R175 C.4 H156 1174 H157 C.4 H156 1174 H157 C.4 H157 L174 L177 L174 L177 L		N155		S159	2		N155		\$159		2.9		N155		\$159		2		N155		S159		2.9
Y158 H161 2.5 Y158 H161 3.2 Y158 H161 2.6 Y158 H161 3.4 171-177 A171 A175 2.1 171-177 A171 R175 2 171-177 A171 R175 2 R173 A176 2.4 171-177 A171 R175 2 171-177 A176 2.4 R173 A176 2.3 174-177 T174 1177 3.2 T174 1177 2.3 174-177 T174 1177 3.4		H156 Y157	K160	K160 H161	2.5 2.4,2.4		H156 Y157	K160	K160 H161		3.3 2.9, 3.0		H156 Y157	S159 K160	K160 H161		2.7, 2.4 2.4, 2.3		H156 Y157	S159 K160	K160 H161		3.3, 3.4 3.0, 3.1
171-177 A171 R175 2 R172 -		Y158	H161		2.5		Y158	H161			3.2		Y158	H161			2.6		Y158	H161			3.4
R172 R173 R176 R173 R176 2.4 R173 A176 2.4 R173 A176 2.4 T174 L177 2.3 174-177 T174 1177 3.2 R175 G178 2.5 R175 R175 R175	171-177	A171		A175	2.1							171-177	A171		R175		2						
T174 1177 2.3 174-177 T174 1177 3.2 T174 1177 2.3 174-177 T174 1177 3.4 R175 G178 2.5 R175 R175		R172 R173	A176		2.4								R172 R173	A176			2.4						
		T174 8175	l177		2.3	174-177	T174	1177			3.2		T174 8175	1177			2.3	174-177	T174	1177			3.4
			31/0		2.5																		

179-193	P179	K182			2.6	179-193	P179	K182			3.3	179-187	P179	K182			2.6	179-187	P179	K182			3
Helix D	L180 W181	G183 M184	M184 K185		2.9, 2.5	Helix D	W181	M184	M184 K185		3.5	Helix D	U180 W181	M184	K185		2.4.2.5	Helix D	U180 W181	M184	K185		3.5
	K182	К185	R186		2.7, 2.6		K182	К185	R186		3.1, 3.3		K182	К185			2.6		K182	K185			3.2
	G183	R186	V187		2.6, 2.5		G183	R186	V187		3.3, 3.4		G183	R186	V187		2.4, 2.2		G183	R186	V187		3.1, 3.2.
	K185	V18/	A189	D190	2.9, 2.1		K185		A189	D190	3.0, 2.6		K185						K185				
	R186			G191	2.1		R186			G191	2.8		R186						R186				
	V187						V187						V187						V187				
	F188 A189	F192			2.4		F188 A189	F192			3.1		F188 A189						F188 A189				
	D190	1193			2.3		D190	1193			3.1	190-193	D190	1193			2.8	190-193	D190	1193			3.3
407 227	4107	6201			2	407 227	4407		6201		2.7	107 227	4107	C200			2.5	107 227	4407	C200			2
197-227 Helix E	A197 V198	\$201	V202		2.2	197-227 Helix E	A197 V198		V202		2.7	197-227 Helix E	A197 V198	S201			2.5	197-227 Helix E	A197 V198	S201			3.1
	E199	V202	N203		2.7, 2.2		E199		N203		3.1		E199	V202	N203				E199	V202	N203		2.7, 3.1
	C200	N203	L204		2.8, 2.0		C200		L204		2.8		C200		L204	Q205	2.5, 2.5		C200		L204	Q205	2.9, 3.1
	S201		Q205	L206	2.1, 24		\$201 V202		Q205	L206	2.6, 3.2		\$201 V202			L206	2.2		S201			L206	3.1
	N202			G208	2.1		N202			G208	2.9		N202			G208	2.5		N202			G208	2.5
	L204			E209	2		L204			E209	2.9		L204			E209	2		L204			E209	2.7
	Q205			A210	2.3		Q205			A210	2.8		Q205		E209	A110	2.9, 2.1		Q205		E209	A210	3.2, 2.8
	V207		C211	F212	2.0.2.7		V207		A210 C211	F212	2.8		V207		C211	F212	2.0.2.5		V207		C211	F212	3.4.3.4
	G208		F212	T213	2.5, 1.9		G208			T213	3.2		G208		F212	T213	2.3, 2.4		G208		F212	T213	3.1, 3.1
	E209			N214	2.1		E209		T213		3.4		E209						E209				
	A210						A210						A210						A210				
	F212		L216		2		F212		L216		2.9		F212		L216		2.3		F212		L216		3.2
	T213		1217		2		T213		1217		2.9		T213		1217		2		T213		1217		2.8
	N214						N214	1217	V218		3.2, 3.0		N214		V218	A219	2.2, 2.0		N214		V218	A219	2.9, 3.0
	P215	V218	A219		2.8, 2.0		P215		A219		3		P215			V220	2.7		P215				
	1217	R215	T221		2.6		1217		T221		2.9		1217						1217				
	V218	T221	E222		2.4, 25		V218		E222		2.9		V218	T221			2.2		V218	T221			3
	A219	E222	W223		2.3, 2.1		A219	E222	W223		3.2, 2.7		A219	E222	4224		2.3		A219	E222	4224		3.2
	T221		S225		2.1		T221		S225		3		T221	VV 225	S225		2.3, 2.1		T221	VV225	S225		3.1, 2.9
	E222		A226		2.2		E222		A226		3.1		E222		A226		2.2		E222		A226		2.9
	W223		N227		2.5		W223		N227		3.3		W223	A226	N227		2.9, 2.2		W223		N227		3.2
	A224	N227			2.3		A224	N227			3		A224	N227			2.4		A224	N227			3.1
230-258	E230		T234		2.7	230-257	E230					230-259	E230		T234		2.7	230-259	E230				
Helix F	1231	T234	V235		2.7, 2.5	Helix F	1231	T234	V235		3.2, 3.3	Helix F	1231	T234	V235		2.5, 2.5	Helix F	1231	T234	V235		3.2, 3.2
	P233	V235	F236 L237		2.7, 1.9		P233	V235	L230		3.3, 2.9		P233	V235	F236 L237		2.6, 2.0		P233	V235	L230		3.1, 2.6
	T234						T234						T234						T234				
	V235	S238	V239		2.3, 2.1		V235	S238	V239		2.8, 2,9		V235	S238	V289		2.3, 2.0		V235	S238	V239		3.0, 2.8
	1230		E240		2.1		1230		E240		3		1230		E240		2.3		1230		E240 T241		3
	S238	T241			2.4		S238	T241			3.2		\$238	T241			2.5		\$238	T241			3.4
	V239	D242			2.2		V239	D242	E243		3.2, 3.0		V239	D242			2.3		V239	D242			3.3
	E240 T241	E243			2.3		E240 T241		L244		3.2		E240 T241	E243			2		E240 T241	E243			2.8
	D242	R245			2.8		D242	R245			3		D242	R245			2.8		D242	R245	H246		3.1, 3.5
	E243	H246	M247		2.3, 2.2		E243	H246	M247		3.1, 3.2		E243	H246	M247		2.5, 2.1		E243		M247		3.2
	L244		A248		2.1		L244		A248		3.5		L244		A248		2.4		L244		A248		3.5
	кz45 H246	N249	G250		2.3		R245 H246		G250		3.1		H245	N249	G250		2.1		R245 H246	N249	G250		3.3.3.1
	M247	G250	Y251		2.6, 2.2		M247		Y251		3		M247	G250	Y251		2.7, 2.0		M247		Y251		3
	A248	Y251	Q252		2.8, 2.0		A248	0.050	Q252		3.1		A248	0252	Q252		2.4		A248	Y251	Q252		3.3, 3.2
	N249 G250	T253	1253 V254		2.1		N249 G250	Q252	1253 V254		3.1, 2.9		N249 G250	Q252 T253	1253 V254		2.7, 2.7		N249 G250	Q252 T253	V254		3.4
	Y251	V254	V255		2.6, 2.1		Y251	V254	V255		3.2, 3.0		Y251	V254	V255		2.6, 2.1		Y251		V255		3
	Q252		S256		2		Q252		S256		2.8		Q252	S256			2.5		Q252		S256		3.4
	T253 V254	S256	1257 4258		2.7, 2.7		T253 V254	1257	1257		3.4		T253 V254	S256	1257 A258		2.7, 2.2		T253	\$256	1257 A258		3.0, 2.9
	V255	A258	11250		2.4		1234	1257			5.4		V255	A258	N259		2.8, 2.3		V255	A258	N259		3.1, 2.8
													S256	N259			2.6						
261-202	P261	A264	K265		2927	261-202	P261	A264	K365		2225	261-202	P261	K265			2.6	261-202	P261				
Helix G	A262	K265	F266		2.6, 2.3	Helix G	A262	71204	F266		3	Helix G	A262	- ALOS			2.0	Helix G	A262				
	S263	F266	L267		2.5, 2.0		S263	F266	L267		3.4, 2.9		S263	F266			2.3		S263	F266			3.3
	A264 K265						A264 K265						A264 K265	L207			2.3		A264 K265	L207			3.2
	F266	T269	D270		2.5, 2.3		F266	T269	D270		3.0, 3.1		F266		D270		2.3		F266		D270		3.2
	L267	D270	L271		2.8, 2.0		L267	D270	L271		3.2, 3.9		L267	D270	L271		2.9, 2.1		L267	D270	L271		3.3, 2.8
	N268 T269		N272 N273		2.1		N268 T269		N272 N273		3.1		N268 T269	N272	N272 N273		2.2		N268 T269		N272 N273		3 2.9
	D270		A274		2.1		D270		A274		2.9		D270		A274		2.1		D270		A274		2.9
	L271	A274	F275		2.8, 1.9		L271		F275		2.7		L271	A274	F275		2.8, 2.0		L271	A274	F275		3.2, 2.8
	N272 N273		W276 T277		2.1		N272 N273		W276 T277		3 2.9		N272 N273		W276 T277		2.1		N272 N273		W276 T277		3 2.8
	A274	T277	Q278		2.9, 2.1		A274		Q278		2.9		A274		Q278		2.1		A274		Q278		3
	F275	Q278	Q279		2.8, 2.2		F275		Q279		2.9		F275		Q279		2		F275		Q279		2.8
	W276 T277	K280	K280		2.1		W276 T277		K280		2.9		W276 T277		K280		2		W276 T277		K280		2.8
	Q278	Y281	F282		2.7, 2.3		Q278	Y281	F282		3.5, 2.9		Q278	Y281	F282		2.7, 2.1		Q278		F282		3
	Q279		T283		2.1		Q279		T283		3.1		Q279		T283		2		Q279		T283		3.1
	K280		V20E		2.2		K280		1/205		2.0		K280		1/205		2.2		K280		1/295		2
	F281		L285		2.2		F281		L286		3.3		F281		L285		2.2		F281		L286		3
	T283						T283		G287		3.2		T283		G287		2.5		T283		G287		3.3
	P284	Vage	Y288		2.4		P284		Y288		2.9		P284		Y288		2.2		P284		Y288		3.1
	L286	1200	F290		2.0, 2.1		L286		F290		2.3		L286		F290		2		L286		F290		3
	G287		E291		2.1		G287		E291		3		G287		E291		2.2		G287		E291		3.2
	Y288		Y292		2.1		Y288		Y292		2.9		Y288		Y292		2.1		Y288		Y292		2.9

301-322	W301 T	1304 W305	2.	8, 1.9	301-322	W301	<mark>304</mark> W305	NOOC		3.0, 2.8	301-324	W301 T	<mark>304</mark> W305	NOOC		2.5, 2.0	301-323	W301		W305		2.8
Helix H	V302 K303	N306 R307	2.	2.5 9, 2.4	Helix H	K302		N306 R307		2.9	Helix H	V302 K303		N306 R307		2	Helix h	K302		N306 R307		2.8
	T304	R307 W308	2.	7, 2.0		T304		W308		3.2		T304		W308		2.2		T304		W308		3.1
	W305 N306	V309 V310	F311 2	2		W305 N306		V309 V310	Y310 F311	2.8, 3.4		W305 N306		V309 V310	Y310 F311	2.1, 2.4		W305 N306		V309	Y310 F311	2.8,3.2
	R307		D312	1.9		R307			D312	3		R307			D312	2.3		R307			D312	3
	W308		W313	2.3		W308			W313	2.9		W308			W313	2.1		W308			W313	3
	V309 Y310		G314 G315	2.7		V309 Y310			6314	2.9		V309 Y310			6314	2.2		V309 Y310			6314	2.9
	E311	G315	1316 2.	5, 2.4		E311		G115	1316	3.0, 3.5		E311		G315		1.9		E311		G315		2.7
	D312 W313	1316 W317	W317 2.	.9,2.1		D312 W313		1316	W317 1318	2.9, 3.1		D312 W313	G315	1316 W317	1318	2.8, 1.9		D312 W313		I316 W317	1318	2.7
	G314					G314						G314			G319	1.9		G314			G319	2.5
	G315	G319	2	2.2		G315	C210	G319		3		G315			R320	2.6		G315			R320	3.1
	W317	R320	2.	2.6		W317	R320	L321		3.2, 3.1		W317		L321		2.2		W317		L321		3.1
	1318	L321		2.1		1318		G322		3.2		1318		G322		2.4		1318		G322		3
	G319	G322		2.2		G319 R320	G322 K323			3		G319 R320	G322 K323			2.4		G319 R320	G322 K323			3.3
						L321	Y324			2.9		L321	Y324			2.1						
											221-256	\$221	D224	A225		2722						
332-335	L332	A335		2.7	332-356	L332	1	K336		3.1	331-330	L332	A335	K336		2.4, 2.0	332-355	L332	A335	K336		3.0, 2.8
	R333					R333	K336	R337		3.1, 3.3		R333	K336	R337		2.8, 2.4		R333		R337		3.2
	D334 A335					D334 A335		D338 A339		3.2		D334 A335	D338	D338 A339		2.5		D334 A335	D338	D338 A339		3.1.2.8
	K336					K336	A339			3.2		K336	A339	Y340		2.7, 2.6		K336		Y340		3.1
	R337					R337	Y340	4242		3.5		R337	Y340	W341		2.6, 2.3		R337	14/244	W341		3.2
	A339					A339	VV541	M342		5.5, 2.0		A339		A342		2		A339	VV541	M342		5.5, 2.5
	Y340					Y340						Y340						Y340				
342-356	W341 A342	1346		2.2		W341 A342	H344	D345 L346		3.1, 3.0		W341 A342	H344	D345 L346		2.4, 2.3		W341 A342	H344 D345	D345 L346		3.1, 3.1 3.0, 2.8
	H343	A347		2.2		H343		A347		2.9		H343		A347		2.2		H343		A347		3
	H344	L348 L349	2	2.5		H344	1348	L348 4349		3.2		H344 D345	A347	L348 4349		2.8, 2.6		H344	1348	L348 4349		3.3
	L346	A349 A350	2.	5, 2.0		L346	A349	A350		2.9, 2.8		L346	A349	A350		2.5, 2.0		L346	A349	A350		3.2, 2.8
	A347	A350 Y351	2.	9, 2.0		A347		Y351		2.8		A347		Y351		2		A347		Y351		2.9
	A349	A352 M353	2.	8, 2.3		A349		M353		2.9		A349		M353		2.1		A349		M353		2.9
	A350	M353		2.8		A350						A350	M353			2.8		A350				
	Y351 4352	W354		2.6		Y351 4352	W354			3.4		Y351 4352	W354			2.7		Y351 4352	W354			3.5
	M353 L	.356		2.2		M353 L	. <mark>356</mark>			3		M353 L	. <mark>356</mark>			2.2		M353 L	<mark>356</mark>			2.2
366-375	E366	A370		2.3	366-375	E366		A370		3	366-375	E366		A370		2.3	366-375	E366		A370		3.2
	E367	A370 W371	2.	8, 2.3		E367		W371		3		E367		W371		2.4		E367	A370	W371		3.3, 3.0
	D368 0369	W371 F372 F372 F373	2.	.5, 2.0		D368 0369		F372 F373		2.8		D368 0369	W371	F372 F373		2.6, 2.0		D368 0369	W371	F372 F373		2.9, 2.7
	A370	A374		2.2		A370		A374		2.9		A370		A374		2.1		A370		A374		3.1
	W371	A374 N375	2.	.8,2.3		W371	A374	N375		3.2, 3.1		W371	A374	N375		2.9, 2.3		W371		N375		3.1
	F3/2	N375 1376	2.	.8, 2.0		F3/2	N375			3.5		F372	N375			2.8		F372	N3/5			3.2
379-393	W379	H382 Y383	G384 2.4,	2.6, 2.1	379-393	W379	A380	D381	H382	3.2, 3.0, 2.8	379-393	W379	H382	Y383	G384	2.5, 2.7, 2.1	379-393	W379	H382	Y383	G384 3	.4, 2.9, 2.8
	A380 D381		K385	2.5		A380 D381			K385	3		A380 D381			K385	2.5		A380 D381			K385	3.1
	H382	K385 1386	2.	8, 2.3		H382	K385	1386		3.3, 3.1		H382	K385	1386		2.9, 2.5		H382				
	Y383 G384	1386 F387	2.	7,2.0		Y383 G384	1386	F387 N388		30, 2.8		Y383 G384	1386	F387 N388		2.6, 2.2		Y383 G384	1386	F387 N388		3.0, 2.9
	K385	E389		2.2		K385		E389		3		K385		E389		2.1		K385		E389		3
	1386	E389 W390	2.	7, 2.1		1386	E389	W390		3.1, 3.0		1386	E389	W390		2.6, 2.1		1386		W390		3
	N388	K391 K391	2.	2.2		N388	W390	K391 K392		3.2, 3.0		F387 N388	W390	K391 K392		2.9, 2.1		N388		K391 K392		3.1
	E389	K392 L393	2.	7, 2.2		E389		L393		3		E389	K392	L393		2.7, 2.3		E389	K392	L393		3.0, 2.9
	W390	L393		2.6		W390	L393			3		W390	L393			2.5		W390	L393			3.1
404-411	P404		2.	.5,2.0	404-411	P404	W407	L408		3.0, 2.9	404-411	P404	W407	L408		2.4, 2.1	404-411	P404		L408		2.9
	Y405		2.	8, 2.3		Y405		L409		3.2		Y405	L408	L409		2.8, 2.5		Y405	L408	L409		3.2, 3.3
	W407	W407 14	08 2.	.9, 2.4		W407		N411		3.1		W407	2405	N410 N411		2.7		W407		N411		3.3
	L408	L408 L4	09	2.6		L408	N411			3.2		L408	N411			2.3		L408	N411			3.1
451-459	D451	L409 A4	10 11	2.4	451-459	D451	1	R455		3.2	451-459	D451		R455		2.6	451-459	D451		R455		3.3
	W452	R4 N411 56	2.	9, 2.4		W452	R455	Q456		3.4, 3.1		W452		Q456		2.5		W452		Q456		3.3
	G453 E454	Q456 W457 W457 L458	2.	8, 2.1 7. 2.0		G453 E454		W457 L458		2.9		G453 E454	Q456 W457	W457 L458		2.8, 2.1 2.8, 2.0		G453 E454		W457 L458		2.8
	R455	L458 1459	2.	8, 2.1		R455	L458	1459		3.3, 3.0		R455	L458	1459		2.9, 2.1		R455		1459		2.9
461-463	F460				461-463	F460					461-463	F460					461-463	F460				
401 405	P461				401 405	P461					401 405	P461					401 400	P461				
469-473	V469	Y473		2	469-473	N478					469-473	N478					469-473	V469		Y473		2.9
						V469						V469										
478-485	L478	V481 I482	2.	6, 2.2	478-485	L478	V481	1482		3.1, 3.0	478-485	L478	V481	1482		2.6, 2.2	478-485	L478	V481	1482		3.1, 3.2
	6470	A383		2.2		S479		A483		3		S479		A483		2.1		S479		A483		2.9
	5475 E490	E (1 M /		4.4		E48U		G485		3		£480 V481		G485		2.1		£480 V481		6485		2.9
	E480 V481	G485		2.3		V481																
	E480 V481 I482	G485		2.3 2.7		1482	G485			3.1		1482	G485			2.6						
509-515	E480 V481 I482 L509	G485 G485	2.	2.3 2.7 7, 2.0	509-515	1482 1509	G485	K513		3.1 3.2, 2.8	509-515	1482 L509	G485	К513		2.6	509-515	L509	1512	K513		3.2, 3.0
509-515	E480 V481 I482 L509 E510	G485 G485 I512 K513 R514	2.	2.3 2.7 7, 2.0 2.3	509-515	1482 L509 E510	G485	K513 R514		3.1 3.2, 2.8 3	509-515	1482 L509 E510	G485 I512	K513 R514		2.6 2.7, 2.0 2.3	509-515	L509 E510	1512	K513 R514		3.2, 3.0 3
509-515	E480 V481 I482 L509 E510 D511 I512	G485 G485 I512 K513 R514	2.	2.3 2.7 7, 2.0 2.3 2.2	509-515	V481 I482 L509 E510 D511 I512	G485 I512 A515	K513 R514		3.1 3.2, 2.8 3 2.8	509-515	I482 L509 E510 D511 I512	G485 I512 A515	K513 R514		2.6 2.7, 2.0 2.3 2.3	509-515	L509 E510 D511 I512	1512 A515	K513 R514		3.2, 3.0 3 2.9

hydrogen bonding = i + 3 (3_{10} helix) hydrogen bonding = i + 4 (α -helix) hydrogen bonding = i + 5 (α -helix) hydrogen bonding lost in this region relative to other structures

Complex		<u>sMMOH</u>	DX: MMOB	MOB <u>sMMOH</u> red:MMOB						
Туре	Form 1	<u>(6VK5)</u>	Form 2	<u>(6VK8)</u>	(6VK4)				
	Protomer 1	Protomer 2	Protomer 1	Protomer 2	Protomer 1	Protomer 2				
Resolution	1.86 Å	1.86 Å	2.03 Å	2.03 Å	2.35 Å	2.35 Å				
Fe1-Fe2	3.5	3.5	3.4	3.5	3.5	3.2				
Fe1-E114 OE1	2.1	1.9	2.0	1.9	1.9	2.0				
Fe1-E144 OE1	2.1	2	2.1	2.1	2.1	2.0				
Fe1-E243 OE2	3.7	3.8	3.9	3.9	3.4	2.2				
Fe1-H147 ND1	2.3	2.2	2.2	2.2	2.1	2.3				
Fe1-HOH 1	2.2	2.0	2.2	2.2	2.1	2.1				
Fe1-HOH 2 ^{<i>a</i>}	2.0	2.0	2.0	1.9	1.9	N/A				
Fe1-BEZ/SIN O1	2.1	2.1	1.9	1.9	2.0	1.9				
Fe2-E209 OE2	2.1	2.2	2.3	2.1	2.1	2.1				
Fe2-E243 OE2	3.2	3.4	3.5	3.6	3.3	2.2				
Fe2-E243 OE1	2.3	2.2	2.2	2.2	2.0	2.1				
Fe2-E144 OE2	2.2	2.1	2.3	2.2	2.0	2				
Fe2-H246 ND1	2.3	2.2	2.3	2.2	2.2	2.1				
Fe2-BEZ /SIN O2	2.2	2.2	2.5	2.3	2.1	2.2				
Fe2-HOH 2 ^a	2.0	1.9	1.8	2.0	1.9	N/A				

Table S5. Interatomic Distances for sMMOH:MMOB

^abridging

Comparison of Structures from Data for Crystals at 100K/Synchrotron versus

Room Temperature/XFEL. An alignment of the room temperature RT-XFEL⁶ and cryogenic (100 K) synchrotron *Mt* sMMOH:MMOB structures at comparable resolution (cf. 1.95 Å – 6YD0, 1.86Å – 6VK5) shows that structural changes are concentrated in the α -subunit of sMMOH. A comparison of RMSD values is shown in Table S6 and Figure S2. For the sMMOH^{ox}:MMOB structures, it was found that the β - and γ -subunits of sMMOH align well (RMSD = 0.33 Å for β and 0.21 for γ). In contrast, the α -subunits align slightly less well (RMSD = 0.71 Å). This difference is mainly due to the structural changes caused by exogenous molecule binding in the active site of the cryogenic structures. These findings indicate that there is little difference between structures determined using diffraction from crystals at room temperature versus those at 100 K. This observation is also borne out by the comparison between the original room temperature structure of sMMOH (1MHY, 2.0 Å resolution)⁴ and the 1.52 Å cryo structure of MMOH from this study (RMSD = 0.26 Å for α ; 0.19 Å for β and 0.19 for γ).

sMMOH Subunits	Form 1 vs. Form 2	Form 1 reduced vs. Form 1	Form1 vs. XFEL H ^{ox} B ^b	sMMOH ^{ox} vs. 1MHY	sMMOH ^{ox} vs. Form1 ^b	sMMOH ^{ox} vs. sMMOH ^{red}
α1-α1	0.159	0.190	0.703	0.265	0.857	0.474
α1-α2	0.182	0.185	0.707	$\mathbf{N}\mathbf{A}^b$	0.883	N/A^b
β1-β1	0.129	0.167	0.342	0.195	0.277	0.188
β1-β2	0.147	0.160	0.33	$\mathbf{N}\mathbf{A}^b$	0.267	N/A^b
γ1-γ1	0.112	0.160	0.22	0.191	0.206	0.155
γ1-γ2	0.13	0.144	0.208	\mathbf{NA}^{b}	0.192	N/A^b

Table S6. Structural Alignment Average RMSD Values (Å)^a

^{*a*}Form 1 = sMMOH^{ox}:MMOB (6VK5); Form 2 = sMMOH^{ox}:MMOB (6VK8); Form 1 reduced = sMMOH^{red}:MMOB (6VK4); XFEL H^{ox}B = sMMOH^{ox}:MMOB (6YD0); XFEL H^{red}B = sMMOH^{red}:MMOB (6YDI); sMMOH^{ox} (6VK6); sMMOH^{red} (6VK7); 1MHY is previously submitted *Mt* sMMOH^{ox} with data recorded at 20 °C resolution = 2 Å.⁴

^bThe crystals of sMMOH^{ox}, sMMOH^{red}, and XFEL H^{ox}B have 2-fold crystallographic symmetry, unlike the crystals of the other enzyme forms in this table which have both $\alpha\beta\gamma$ protomers in the asymmetric unit. Consequently, α , β , and γ subunits of sMMOH^{ox/red} and XFEL H^{ox}B are compared with both α , β , and γ subunits in the asymmetric units of the other crystals.

Figure S2. Main chain C α RMSD comparison of the structures of the α -subunits of Form 1 sMMOH^{ox}:MMOB (6VK5) with RT-XFEL sMMOH^{ox}:MMOB (6YD0). These structural changes occur as a result of binding of an exogenous molecule (benzoate) in the active site of sMMOH. The majority of the changes occur in three out of four helices of the four-helix bundle housing the diiron cluster (C, E and F) and Helix D that forms the outer border of the active site cavity. This reorganization in turn rearranges an extended coil region in contact with Helices C, E and F and Helix H that is in contact with Helix E. *Inset*: Cartoon of the α -subunit with color coding to showing the regions that change in structure. The diiron cluster is shown as gold spheres.

Figure S3. Unassigned electron density in the active site of Mc sMMOH^{ox} (PDB:4GAM, Chain A). The 2Fo-Fc map (1.2 σ) is represented as purple isomesh and the Fo-Fc map (+3 σ) is represented as green isomesh. The green Fo-Fc isomesh indicates that the two waters (red spheres) modeled into the active site do not account for all of the experimental density. Three of the four subunits in the asymmetric unit of the 4GAM model have positive sigma density altering the position of F188 and enlarging the connection between Cavities 2 and 1.

Table S7. The W308 Tunnel Residues are Conserved Amongst 15 Small Hydrocarbon Oxidizing Strains^a

	Sub^b	110	188	192	212	213	215	216	217	219	222	223	282	286	290	299	301	304	305	308	309
Methylosinus trichosporium OB3b	CH ₄	L	F	F	F	Т	Р	L	Ι	Α	Ε	W	F	L	F	Ε	W	Т	W	W	V
Methylococcus capsulatus Bath	CH ₄	L	F	F	F	Т	Р	L	Ι	А	Ε	W	F	L	F	E	W	Т	W	W	V
<i>Sphingobium</i> sp. SCG-1	CH ₄	L	F	F	F	Т	Ρ	L	Ι	A	E	W	F	L	F	E	W	Т	W	W	۷
Methylospira mobilis	CH_4	L	F	F	F	Т	Ρ	L	Ι	A	E	W	F	L	F	E	W	Т	W	W	۷
Methylomicrobium japanense	CH_4	L	F	F	F	Т	Р	L	Ι	А	Ε	W	F	L	F	Е	W	Т	W	W	۷
Methylomonas methanica	CH_4	L	F	F	F	Т	Ρ	L	Ι	A	E	W	F	L	F	E	W	Т	W	W	۷
Crenothrix polyspora	CH_4	L	F	F	F	Т	Ρ	L	Ι	А	E	W	F	L	F	E	W	Т	W	W	V
Methylovulum miyakonense HT12	CH_4	L	F	F	F	Т	Р	L	Ι	А	Ε	W	F	L	F	Е	W	Т	W	W	۷
Betaproteobacteria bacterium	CH_4	L	F	F	F	Т	Ρ	L	Ι	G	Е	W	F	L	F	Е	W	Т	W	W	۷
Rhodospirillaceae bacterium	CH_4	L	L	F	F	Т	Р	L	Ι	А	Ε	W	Ι	V	L	Е	W	Т	W	W	۷
Mycolicibacterium elephantis	CH ₄	L	А	F	F	Т	Р	L	V	А	Ε	W	L	V	F	E	W	Т	W	W	V
Mycolicibacterium rhodesiae	CH ₄	L	F	F	F	Т	Р	L	Ι	А	E	W	А	V	F	E	W	V	W	W	V
Mycobacterium chubuense NBB4	C_3H_8	L	F	F	F	Т	Р	L	Ι	А	Ε	W	А	V	F	Ε	W	V	W	W	V
Thauera butanivorans	CH ₄	L	F	F	F	Т	Ρ	L	Ι	S	E	W	L	V	L	E	W	S	W	W	۷
Brachymonas petroleovorans	C ₄ H ₁₀	L	F	F	F	Т	Ρ	L	Ι	А	Ε	W	L	V	L	D	W	М	W	W	۷

^aBLAST alignment of α-subunit W308-tunnel residues, *Methylosinus trichosporium* OB3b numbering. NCBI GenBank sequence ID: *Methylosinus trichosporium* OB3b - CAA39068.2, *Methylococcus capsulatus Bath* - WP_010960482.1, *Sphingobium* sp. SCG-1 - WP_104955546.1, *Methylospira mobilis* - WP_153249048.1, *Methylomicrobium japanense* - BAE86875.1, *Methylomonas methanica* - WP_013818321.1, *Crenothrix polyspora* - WP_087143657.1, *Methylovulum miyakonense* HT12 -BAJ17645.1, Betaproteobacteria bacterium - PKO92487.1, *Rhodospirillaceae* bacterium - PCJ58204.1, *Mycolicibacterium elephantis* - WP_046753692.1, *Mycolicibacterium rhodesiae* - WP_014211362.1, *Mycobacterium chubuense* NBB4 -ACZ56334.1, *Thauera butanivorans* - WP_068635403.1, *Brachymonas petroleovorans* - AAR98534.1.

^bSubstrate for the diiron monooxygenase

Figure S4. Effect of diiron cluster reduction on the Pore (left) and the W308-Tunnel (right). Reduction of sMMOH causes the Pore to partially close and opens the entrance into the W308-Tunnel. However, a bottleneck remains at sMMOH F282 and F212 that is not relieved until a complex is formed with MMOB (see Figures 8 and 13 in the main text). The Pore is fully closed in the sMMOH:MMOB complex (see Figure 6). sMMOH^{ox} = PDB:6KV6; sMMOH^{red} = PDB:6VK7.

MMOB Variant	Variant Alone % Activity	Variant 1:1 with MMOB % Activity	Variant 5:1 with MMOB % Activity
None (MMOH alone)	0	N/A	N/A
WT-MMOB	100	100	100
V39F	< 0.1	100	86
V39R	< 0.1	84	42
$V41E^{b}$	< 0.1	100	100
$V41F^{b}$	< 0.1	100	100
V41R	< 0.1	53	4

Table S8. Steady State O₂ Uptake in the Reconstituted sMMO System with MMOB Variants^a

^aConditions: 0.2 µM sMMOH (0.4 µM active sites), 0.4 µM MMOB, 0.4 µM or 2.0 µM MMOB variant when present

1.2 μM MMOR, 200 μM CH₄, 250 μM O₂, 400 μM NADH, 25 mM MOPS pH 7.5, 23 °C

^bSteady state data alone do not demonstrate binding for these variants. However, a perturbation in the EPR spectrum of reduced sMMOH shows that these variants do form a complex (see below).

Figure S5. Competition between WT-MMOB and V39R-MMOB during steady state turnover. *Mt* sMMOH is present at the same concentration in all experiments. When WT-MMOB or V39R-MMOB was added alone, it was present at the same concentration as MMOH (active sites). For experiments in which WT-MMOB and V39R are added together in the ratios shown, WT-MMOB is present at the same concentration as sMMOH (active sites). Other conditions for the experiment are given in Experimental Procedures.

Magnetic Field (Gauss)

Figure S6. Parallel mode EPR spectra of sMMOH^{red} with MMOB and MMOB variants. sMMOH^{red} exhibits a characteristic EPR spectrum at g = 16 due to ferromagnetic coupling of the two high-spin Fe(II) ions of the diiron cluster.^{7, 8} The resulting integer spin system gives an enhanced EPR signal when recorded with the microwave field aligned parallel with the magnetic field.⁹ The signal is perturbed when MMOB is present due to the formation of a protein-protein complex (compare the black and red spectra in the top trace). Each of the MMOB variants used in this study gives a similar perturbation, albeit with distinct intensities, showing that each forms a complex with MMOH^{red} (red trace from sMMOH:MMOB show for comparison in each case). Moreover, each perturbs the diiron cluster environment slightly differently. Conditions: sMMOH^{red}, 300 μ M (active sites); MMOB (or variant), 300 μ M, 25 mM MOPS, pH 7.5. EPR conditions: frequency, 9.400 GHz; time constant, 2.56 ms; microwave power, 2 mW, temperature, 2.0 K, cavity tuned for parallel mode detection.

Figure S7. The W308-Tunnel molecular gate. sMMOH amino acids P215 (Helix E) and W308 (Helix H) shift dramatically upon formation of the MMOB complex, acting as a molecular gate. The gate movement is possible because of the π -helices (red) and sections of the helix that do not form intra-main chain hydrogen bonds (yellow). As a result the helices are more flexible allowing the molecular gate to open and close. sMMOH^{ox} = PDB:6VK6; sMMOH^{ox}:MMOB = PDB:6YD0.

Figure S8. Sequence alignments of key regions of hydroxylase and regulatory proteins. Portions of the α -subunit of the hydroxylase components (panel A) and the regulatory protein components (panel B) of the bacterial multicomponent monooxygenase family are illustrated. Enzyme sub-families are identified by colored boxes; methane monooxygenase – red, butane monooxygenase – purple, propane monooxygenase – yellow, phenol hydroxylase – orange, toluene monooxygenase – cyan. The unique extended N-terminal tail of the regulatory component and the tryptophan-rich Helix H of the α -subunit in sMMOH have been highlighted by black boxes.

Figure S9. Exogenous molecules bound inside the cavities. The chain of Mt sMMOH internal cavities is represented as transparent gray surface. Water molecules are represented as red spheres. Alternative substrate molecules are shown as sticks where green is carbon and red is oxygen. A.) Mt sMMOH^{ox} (6VK6), B.) Mt sMMOH^{red} (6VK7), C.) Mt sMMOH^{ox}:MMOB, Form 1, protomer 1 (6VK5), D.) Mt sMMOH^{ox}:MMOB, Form 2, protomer 1 (6VK8), E.) RT-XFEL Mt sMMOH^{ox}:MMOB (6YD0),⁶ F.) RT-XFEL Mt sMMOH^{red}:MMOB (6YD1).⁶

Supplemental References

- [1] Groce, S. L., Miller-Rodeberg, M. A., and Lipscomb, J. D. (2004) Single-turnover kinetics of homoprotocatechuate 2,3-dioxygenase, *Biochemistry* 43, 15141-15153.
- [2] Whittaker, J. W., and Lipscomb, J. D. (1984) Transition state analogs for protocatechuate 3,4-dioxygenase. Spectroscopic and kinetic studies of the binding reactions of ketonized substrate analogs, *J. Biol. Chem.* 259, 4476-4486.
- [3] Rosenzweig, A. C., Frederick, C. A., Lippard, S. J., and Nordlund, P. (1993) Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane, *Nature 366*, 537-543.
- [4] Elango, N., Radhakrishnan, R., Froland, W. A., Wallar, B. J., Earhart, C. A., Lipscomb, J. D., and Ohlendorf, D. H. (1997) Crystal structure of the hydroxylase component of methane monooxygenase from *Methylosinus trichosporium* OB3b, *Protein Sci.* 6, 556-568.
- [5] Sazinsky, M. H., and Lippard, S. J. (2005) Product bound structures of the soluble methane monooxygenase hydroxylase from *Methylococcus capsulatus* (Bath): Protein motion in the a-subunit, J. Am. Chem. Soc. 127, 5814-5825.
- [6] Srinivas, V., Banerjee, R., Lebrette, H., Jones, J. C., Aurelius, O., Kim, I.-S., Pham, C. C., Gul, S., Sutherlin, K. D., Bhowmick, A., John, J., Bozkurt, E., Fransson, T., Aller, P., Butryn, A., Bogacz, I., Simon, P., Keable, S., Britz, A., Tono, K., Kim, K. S., Park, S.-Y., Lee, S. J., Park, J., Alonso-Mori, R., Fuller, F. D., Batyuk, A., Brewster, A. S., Bergmann, U., Sauter, N. K., Orville, A. M., Yachandra, V. K., Yano, J., Lipscomb, J. D., Kern, J., and Högbom, M. (2020) High resolution XFEL structure of the soluble methane monooxygenase hydroxylase complex with its regulatory component at ambient temperature in two oxidation states, *J. Am. Chem. Soc.*, *https://doi.org/10.1021/jacs.0c05613*
- [7] Fox, B. G., Froland, W. A., Dege, J. E., and Lipscomb, J. D. (1989) Methane monooxygenase from *Methylosinus trichosporium* OB3b. Purification and properties of a threecomponent system with high specific activity from a type II methanotroph, *J. Biol. Chem.* 264, 10023-10033.
- [8] Froland, W. A., Andersson, K. K., Lee, S.-K., Liu, Y., and Lipscomb, J. D. (1992) Methane monooxygenase component B and reductase alter the regioselectivity of the hydroxylase component-catalyzed reactions. A novel role for protein-protein interactions in an oxygenase mechanism, J. Biol. Chem. 267, 17588-17597.
- [9] Hendrich, M. P., Münck, E., Fox, B. G., and Lipscomb, J. D. (1990) Integer-spin EPR studies of the fully reduced methane monooxygenase hydroxylase component, J. Am. Chem. Soc. 112, 5861-5865.