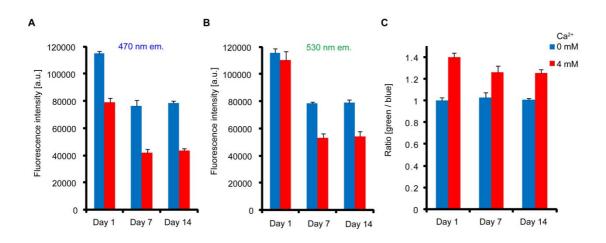

Extracellular Ca²⁺-sensing fluorescent protein biosensor based on a collagen-binding domain

Irina A. Okkelman¹, Ryan McGarrigle², Shane O'Carroll¹, Daniel Carvajal Berrio^{3,4}, Katja Schenke-Layland^{3,4,5,6}, James Hynes², Ruslan I. Dmitriev^{1,7,8*}

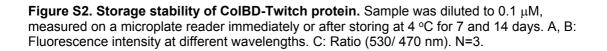
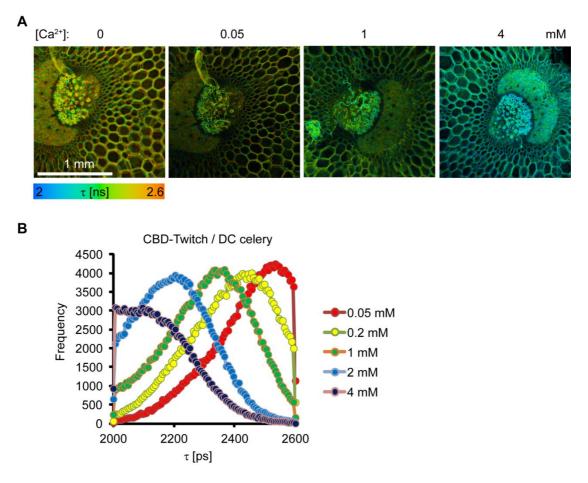
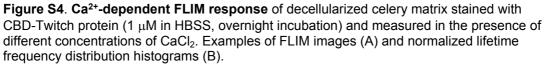
*to whom the correspondence should be addressed:


¹Metabolic Imaging Group, Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, Cavanagh Pharmacy Building, College Road T12K8AF, Cork, Ireland; Phone: 021-4901699; E-mail: <u>r.dmitriev@ucc.ie;</u>

⁸Tissue engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium. E-mail: <u>Ruslan.Dmitriev@UGent.be</u>;

Supplementary figures S1-S7

Figure S1. pH sensitivity of CoIBD-Twitch protein. The protein was diluted to 0.07 μ M in buffers with different pH and concentrations of CaCl₂ as indicated and measured on a microplate reader at 470 nm and 530 nm emission wavelengths, and in spectral emission scan modes. A: pH-dependence of emission spectra at 0 and 4 mM CaCl₂. B: pH-dependent ratio responses. N=3.

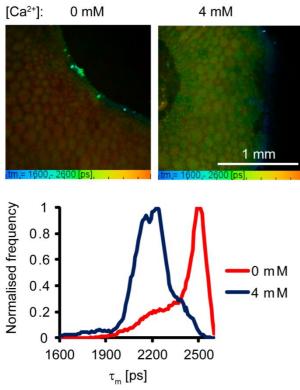


Figure S3. Biosensing properties of CoIBD-Twitch protein measured on a confocal FLIM microscope. CoIBD-Twitch-stained (1 μ M, 3 h) Matrigel matrix was used for measurements at various concentrations of CaCl₂ (37 °C). A: Examples of FLIM images for donor channel (405 nm exc., 468 nm em., double-exponential fit, τ_m) of stained Matrigel. B: Example of double-exponential decay fitting. C: Examples of Phasor diagrams. D: Normalized fluorescence lifetime frequency distribution histograms for FLIM images produced at 0-4 mM CaCl₂. E, F, G: comparisons of τ_m (double-exponential fit), A₁ fraction (%) and FRET efficiency [%] in response to Ca²⁺ binding.

Supporting information

Figure S5. Ca²⁺-dependent FLIM response with decellularized celery matrix pre-coated with Collagen IV (0.1%, overnight incubation) and stained with ColBD-Twitch protein (1 μ M, overnight). Produced matrix was subsequently imaged on FLIM (405 nm exc., 468 nm em.) at 0 and 4 mM CaCl₂ in PBS. Below: normalized fluorescence lifetime distribution histograms.

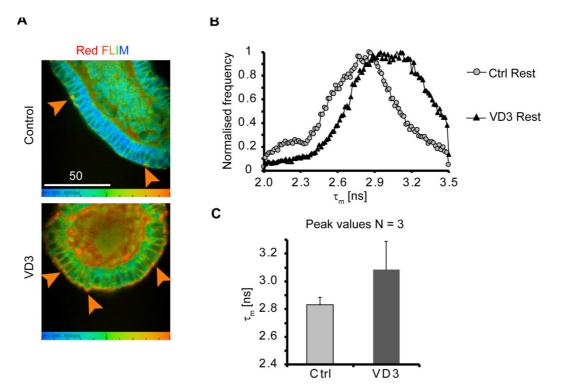
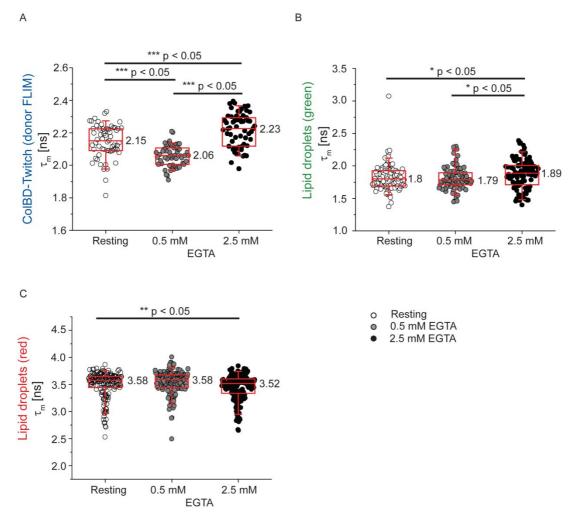



Figure S6: Live confocal FLIM of Nile Red-stained intestinal organoids shows Ca²⁺ and VD3-dependent responses. Organoids grown in presence of VD3 (100 nM, 3 d) were treated with 2.5 mM EGTA. A: FLIM images in red fluorescence (565-605 nm emission of Nile Red) channel. B, C: Lifetime distribution histograms and comparison of peak values for different experimental conditions. Scale bar is in μm .

Figure S7. 'General statistical analysis' of fluorescence lifetimes for donor FLIM channel (Matrix) measured with ColBD-Twitch (a), green (b) and red (c) spectral fractions of Nile Red measured and calculated at rest and different concentrations of EGTA added to the culture of live intestinal organoids (**second experiment**). Data distributions correspond to the average lifetime values calculated from ROIs taken from 6 organoid images per each condition. P values indicate statistical significance (Mann-Whitney test): * - p<0.05, ** - p<0.005 and ***- p<0.0005. Box charts correspond to median (values shown in numbers), 25 and 75 percentiles. Whiskers show 5 and 95 percentiles.