Efficient Recovery of End-of-Life NdFeB Permanent Magnets by 1 **Selective Leaching with Deep Eutectic Solvents** 2 Chuanying Liu[†], Qibin Yan[†], Xingwang Zhang^{†, ‡}, Lecheng Lei^{†, ‡}, Chengliang Xiao^{†, ‡, *} 3 4 [†]College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China 5 [‡]Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China 6 *Email: xiaoc@zju.edu.cn (Chengliang Xiao) 7 Number of Pages: 22 8 Number of Figures: 33 9 Number of Tables: 6 10 11 **Chemicals and Materials.** Guanidine hydrochloride (99.0%), 1-aminoguanidine 12 hydrochloride (99%), 1,3-diaminoguanidine hydrochloride (99%), choline chloride (99%), 13 glycolic acid (99.0%), ethylene glycol (99.5%), malic acid (99.5%), L-lactic acid (90% in water), 14 and glycerol (99%) were purchased from Shanghai Macklin Biochemical Co., Ltd. Neodymium(III) oxide (Nd₂O₃, 99.99%) and iron(III) oxide (Fe₂O₃, 99.99%) were purchased from 15 16 Shanghai Aladdin Biochemical Co., Ltd. Neodymium(III) chloride (NdCl₃, 99.99%) were 17 purchased from Shanghai Yuanye Biochemical Co., Ltd. All chemicals were used as received. The standard solutions of Nd and Fe bought from Guobiao (Beijing) Testing & Certification Co., Ltd. 18 19 Working solutions ranging from 1 to 10 mg L^{-1} of Nd and Fe were prepared via diluting the 20 standard solution. The neodymium lactate (NdLAC₃) was prepared by dissolving the Nd₂O₃ into 21 the aqueous lactic acid solution. Then the solution was concentrated by rotary evaporation and 22 settled for the precipitation of the light purple solid. The roasted NdFeB permanent magnet was

23 composed of Nd_2O_3 and Fe_2O_3 with a molar ratio of 1:7, as the same in the $Nd_2Fe_{14}B$.

24 Characterization Methods. The viscosity of DESs was determined using a Universal 25 Rheometer (HAAKE RheoStress 6000, Thermo Fisher Scientific Inc., Germany). The glass 26 transition temperature of DESs was achieved by differential scanning calorimetry (DSC), which 27 was performed with a heating rate of 10 °C·min⁻¹ by the instrument (Q200, TA Instrument 28 Company, America). All the DESs were run in aluminum hermetic crucibles, which were cooled to -90 °C before heated up to room temperature. Thermal gravimetric analysis (TGA) was 29 30 conducted by the instrument (Q600, TA Instrument Company, America) from room temperature 31 to 400 °C at a heating rate of 10 °C·min⁻¹ in a nitrogen atmosphere to get the DESs' onset 32 decomposition temperature. ¹H NMR spectra were recorded on an NMR spectrometer (Bruker 33 Avance III 500, Bruker Corporation, America) with dimethyl sulfoxide- d_6 as the solvent. Fourier 34 transform infrared (FT-IR) spectra were recorded on an FT-IR spectrometer (Thermo iS50, 35 Thermo Fisher Scientific Inc., Germany) in the range of 400 to 4000 cm⁻¹. The UV-vis spectra of 36 Nd loaded DESs was recorded by a UV-Vis-NIR spectrophotometer (UH5300, Hitachi High-Tech 37 Corporation, Japan). The concentrations of Nd and Fe dissolved in the DESs were analyzed by an 38 inductively coupled plasma optical atomic emission spectrometry (ICP-OES, 730-ES, Varian Inc., 39 America). Before analysis, all the samples were digested in concentrated nitric acid using a 40 microwave digestion system (MARS 6, CEM Corporation, America) and diluted by deionized 41 water. Each analysis was repeated three times. The particle size was recorded by a laser diffraction 42 particle sizing analyzer (LS13320, Beckman Coulter Inc., USA). Powder X-ray diffraction 43 (PXRD) measurements were done with a Rigaku 114 Ultima IV diffractometer (Rigaku Corporation, Japan) using Cu K α radiation (λ =1.54184 Å). Scanning Electron Microscope (SEM) 44 45 and Energy-dispersive X-ray spectroscopy (EDS) were measured on a Field Emission Scanning 46 Electron Microscope (SU8000, Hitachi High-Technologies Corporation, Japan).

47 Calculation of Oxalic Acid Amount. The solid-liquid ratio of oxalic acid to DES was chosen 48 based on the fact that the oxalic acid is generally reacted with Nd³⁺ with a molar ratio of 3:2. The 49 roasted NdFeB permanent magnet powders was composed of Nd₂O₃ and Fe₂O₃ with a molar ratio 50 of 1:7. It was reacted with GUC-LAC in a mass ratio of 1:10 and the dissolution ratio was about 51 85%. Taking the molar mass of Nd, Nd₂O₃, GUC-LAC, and oxalic acid into consideration, it could 52 be easily calculated the mass ratio of oxalic acid and the DES was 1:100.

53 Calculation of Acids Consumption. We only considered the reaction between acids and Nd, 54 Fe, in the theoretical acids consumption. An ideal NdFeB magnets has a formula of Nd₂Fe₁₄B. 55 After been totally oxidized, it would reacted with acids following the equations:

56

 $Fe_2O_3 + 6H^+ = 2Fe^{3+} + 3H_2O$

57 $Nd_2O_3 + 6H^+ = 2Nd^{3+} + 3H_2O$

58 In solvent extraction process, the Nd and Fe were completely dissolved into the leaching 59 liquor, 48 mole H⁺ was needed to treat 1 mole NdFeB. In selective leaching process, only Nd was 60 dissolved into the leaching liquor, 6 mole H⁺ was needed to treat 1 mole NdFeB. The acids 61 consumed in the selective leaching was only 1/8 of the complete leaching.

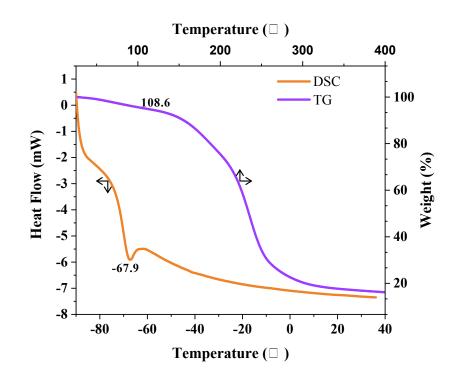


Figure S1. TG and DSC curves of GUC-GA

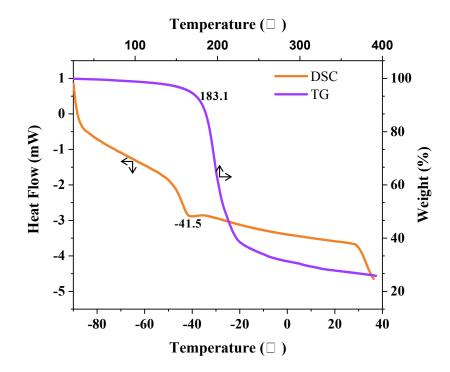


Figure S2. TG and DSC curves of GUC-MA

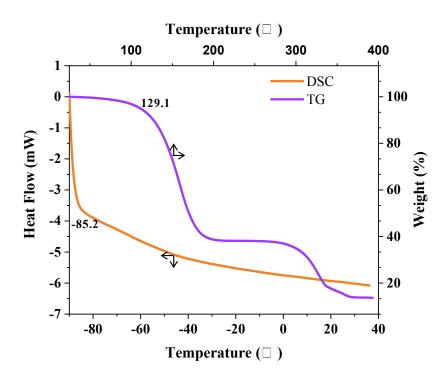


Figure S3. TG and DSC curves of GUC-EG

68

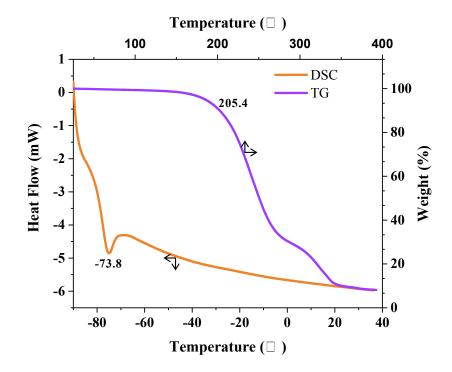


Figure S4. TG and DSC curves of GUC-GLY

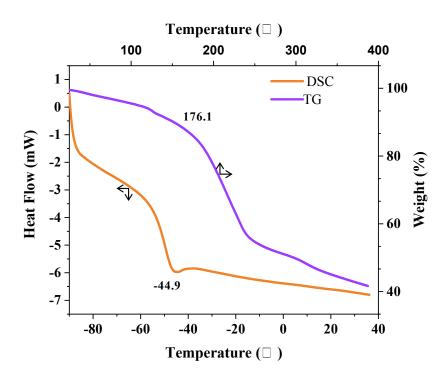
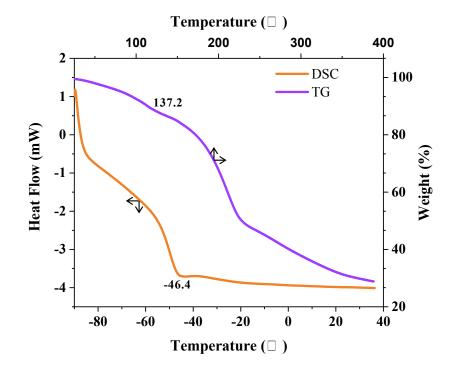



Figure S5. TG and DSC curves of AGU-GA

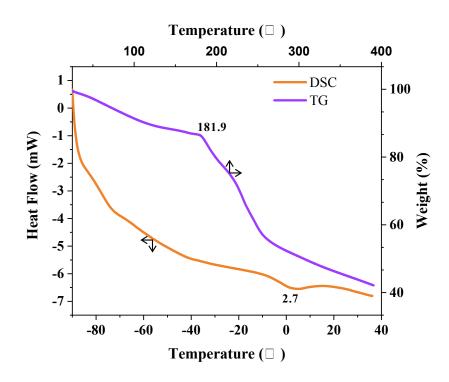
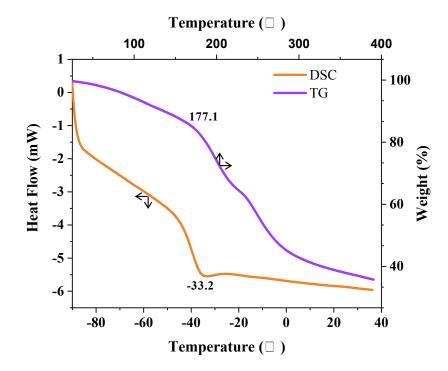
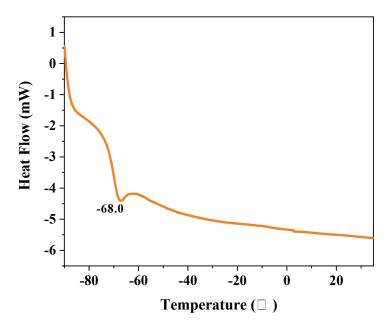




Figure S7. TG and DSC curves of DAG-GA

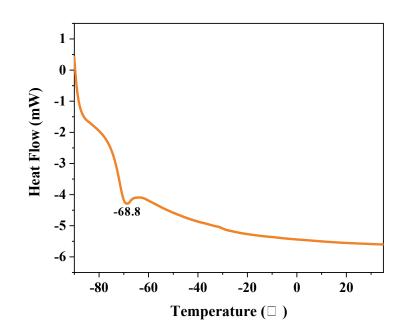


Figure S9. DSC curve of GUC-LAC (HBA:HBD = 1:3)

86

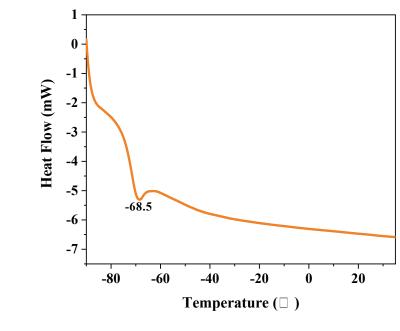

87

Figure S10. DSC curve of GUC-LAC (HBA:HBD = 1:5)

Figure S11. DSC curve of GUC-LAC (HBA:HBD = 1:7)

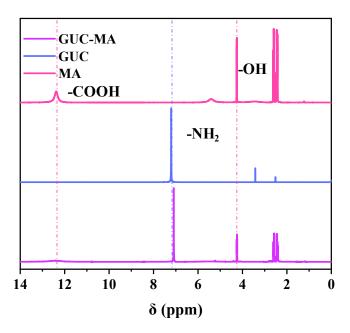
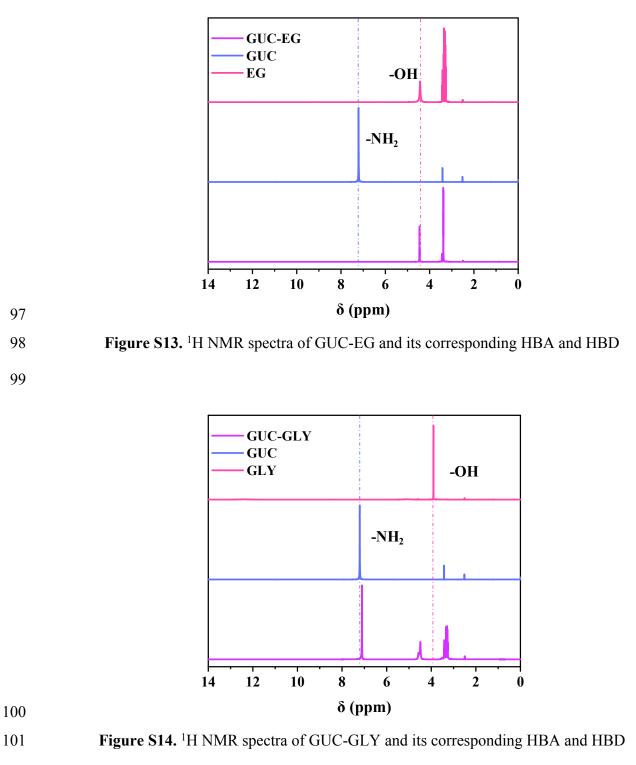
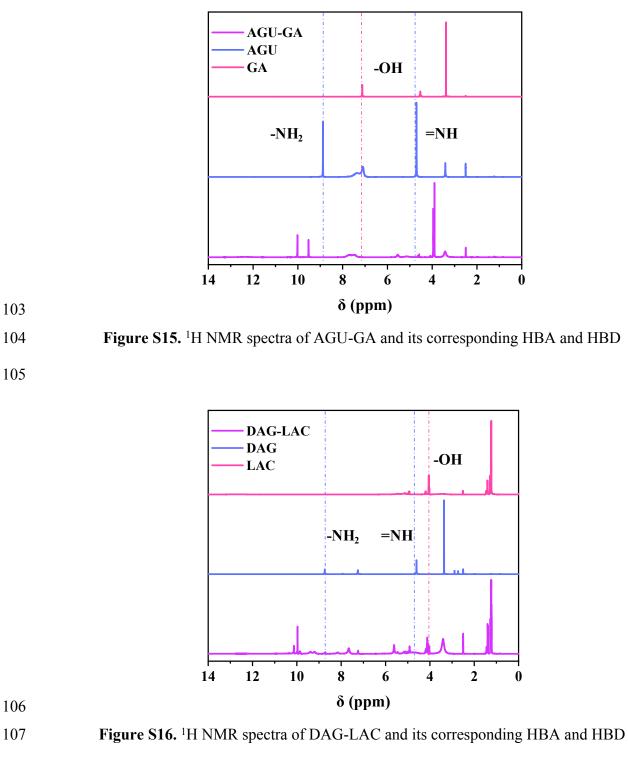
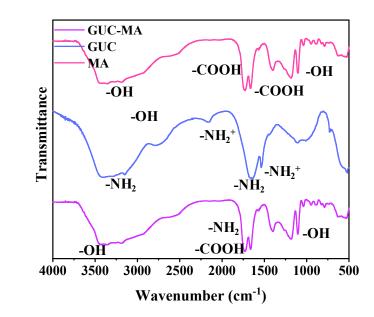
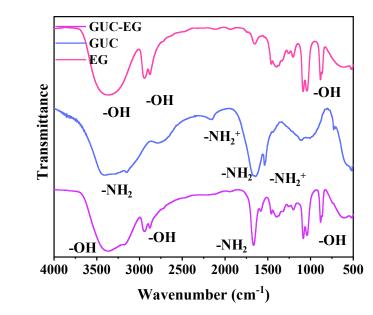





Figure S12. ¹H NMR spectra of GUC-MA and its corresponding HBA and HBD



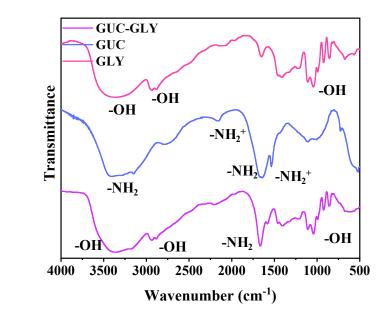
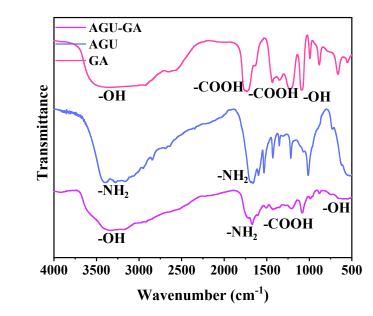
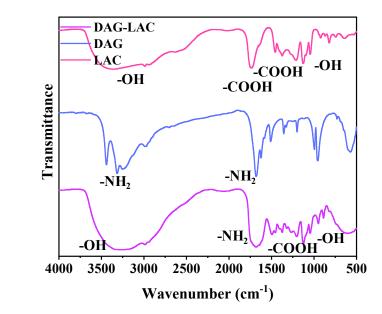


Figure S17. FT-IR spectra of GUC-MA and its corresponding HBA and HBD




Figure S18. FT-IR spectra of GUC-EG and its corresponding HBA and HBD

119 Figure S20. FT-IR spectra of AGU-GA and its corresponding HBA and HBD

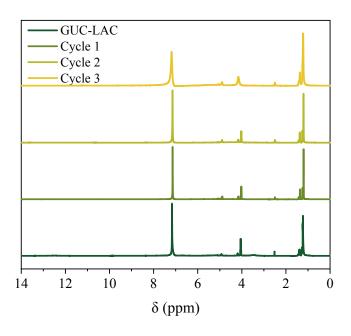
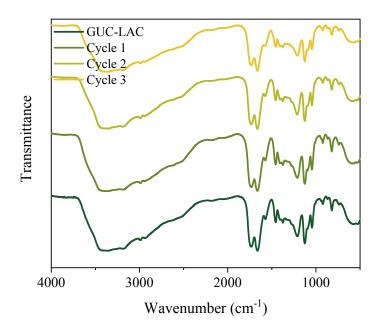
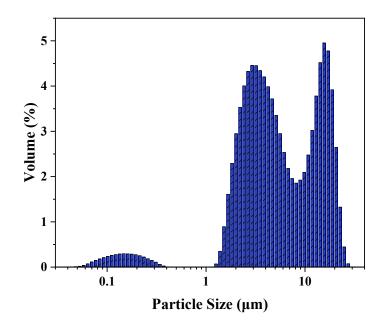




Figure S22. 1H NMR spectra of recycled GUC-LAC

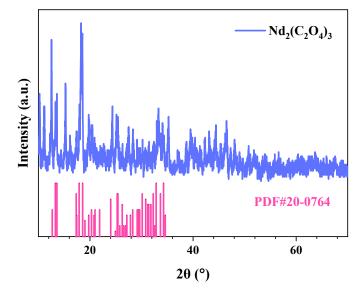
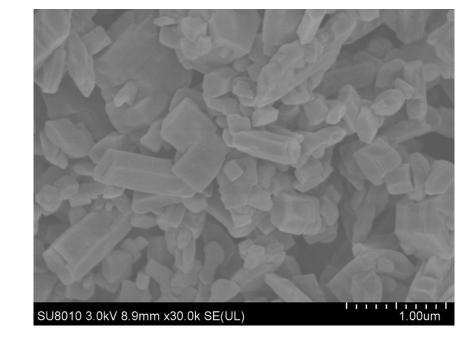
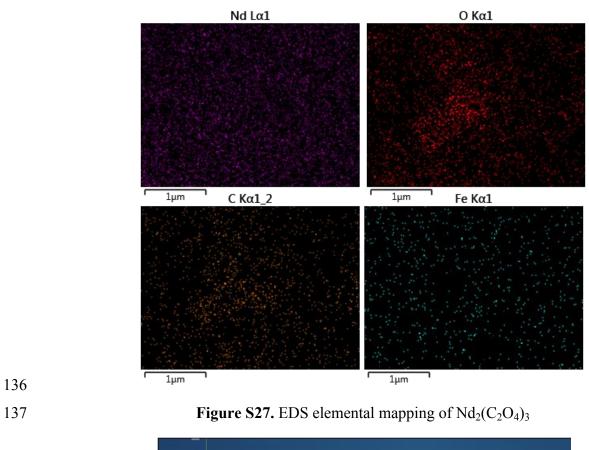
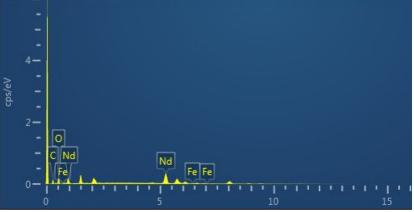

127 128

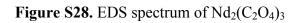
Figure S23. FT-IR spectra of recycled GUC-LAC

129 130


Figure S24. Particle Size distribution of Nd₂(C₂O₄)₃


132


Figure S25. PXRD pattern of $Nd_2(C_2O_4)_3$



135

Figure S26. SEM image of Nd₂(C₂O₄)₃

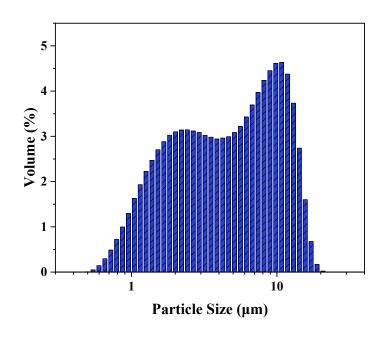


Figure S29. Particle Size distribution of Nd_2O_3

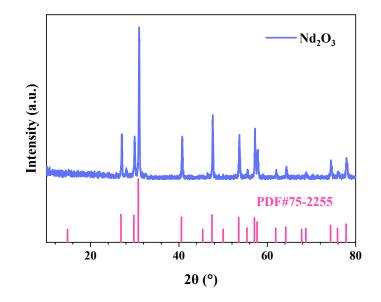
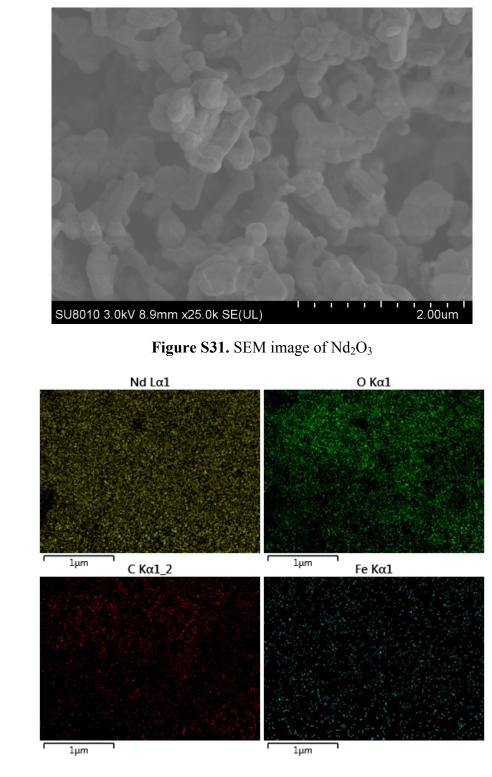
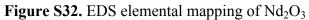




Figure S30. PXRD pattern of Nd₂O₃

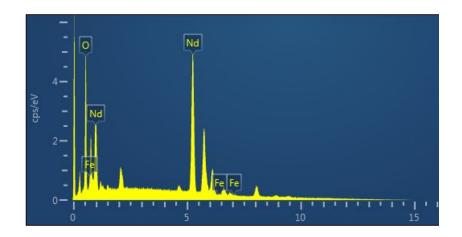


Table S1. The standard deviation of dissolution ratio

Figure S33. EDS spectrum of Nd₂O₃

Variables	Condition	D_{Nd}	STDEV _{Nd}	D_{Fe}	STDEV _{Fe}
	1	62.67%	0.064892	0.13%	0.028826
Time	3	72.13%	0.068211	0.28%	0.024895
	6	84.23%	0.071772	1.10%	0.040449
(h)	12	86.60%	0.066807	1.84%	0.039739
_	24	86.20%	0.051373	1.43%	0.028262
	20	62.64%	0.068668	0.20%	0.029175
-	25	75.22%	0.066317	0.42%	0.029588
Tama anatana	30	83.57%	0.065285	0.29%	0.01953
Temperature	35	81.93%	0.068843	0.47%	0.024852
(°C)	40	84.39%	0.069026	0.41%	0.029281
-	50	86.20%	0.051373	1.43%	0.028262
	60	87.87%	0.05627	3.86%	0.030765
	0.1	86.20%	0.051373	1.43%	0.028262
Solid to liquid ratio	0.2	86.43%	0.05403	1.51%	0.023864
1	0.3	84.51%	0.05006	1.59%	0.025901

	0.4	85.70%	0.058118	0.73%	0.029118
	0.5	86.27%	0.067892	0.60%	0.026616
	0.7	85.57%	0.056596	0.85%	0.028496
	0	0.49%	0.047006	0.19%	0.032757
	2/3	86.20%	0.051373	1.43%	0.028262
HBD ratio	4/5	85.27%	0.043186	2.26%	0.006186
	8/9	81.29%	0.044524	1.98%	0.018355
	1	12.16%	0.041271	0.66%	0.03712
	AGU-LAC	34.45%	0.055276	0.53%	0.039092
	GUC-LAC	86.20%	0.051373	1.43%	0.028262
DESs	GUC-GA	10.50%	0.039489	1.24%	0.01537
DE38	GUC-GLY	0.23%	0.041539	0.07%	0.012755
	CC-EG	0.01%	0.079747	0.09%	0.028903
	CC-LAC	7.71%	0.042455	0.34%	0.35706
	Cycle 0	96.37%	0.074227	1.51%	0.011265
Recycle of	Cycle 1	95.24%	0.073564	1.85%	0.013819
GUC-LAC	Cycle 2	96.61%	0.079899	1.44%	0.011445
	Cycle 3	95.61%	0.072636	1.68%	0.015534

Table S2. The loaded metal in GUC-LAC after dissolution in practical leaching and recycle

Element	Cycle 0 (ppm)	Cycle 1 (ppm)	Cycle 2 (ppm)	Cycle 3 (ppm)
Nd	20466.95	21869.74	20358.87	21480.04
Fe	913.40	1081.8	777.42	955.82

Table S3. The residual metal in GUC-LAC after stripping in practical leaching and recycle

Element	Cycle 0 (ppm)	Cycle 1 (ppm)	Cycle 2 (ppm)	Cycle 3 (ppm)

Nd	1460.3	38 2	113.64	3642.27	,	3714.55	
Fe	727.5	1 4	47.02	753.57		992.046	
	Table S4.	The metal com	position of tl	ne Nd ₂ O ₃ pro	duct		
El	ement		Nd		Fe		
Mass fi	raction (%)	99.56			0.44		
		ental compositi	ion of Nd ₂ (C	$_{2}O_{4})_{3}$ by EDS	spectrum		
Element	Table S5. Elemo	ental compositi pparent centration	ion of Nd ₂ (C ₂	2O4)3 by EDS wt%	spectrum Sigma	Stander	
	Table S5. Elemo	pparent centration		· -			
Element	Table S5. Element Line A con	pparent centration 3.28 0	K	wt%	Sigma	Sampl	
Element	Table S5. Elemo Line A con K	pparent centration 3.28 0 11.86 0	K 0.03281	wt% 16.73	Sigma 0.69	Sampl C Vit	

Total:

163 164

Table S6. Elemental composition of Nd₂O₃ by EDS spectrum

100.00

Element	Line	Apparent concentration	K	wt%	Sigma	Standerd Sample
0	K	27.53	0.09263	16.57	0.24	SiO ₂
Fe	Κ	0.00	0.00000	0.00	0.17	Fe
Nd	L	127.14	1.27143	83.43	0.24	Nd (v)
Total:				100.00		