Supporting Information

Assessing Air Quality and Public Health Benefits of New York City's Climate Action Plans

Sarah Johnson^{1*}, Jay Haney², Lia Cairone³, Christopher Huskey¹, Iyad Kheirbek⁴

¹ New York City Department of Health and Mental Hygiene, Bureau of Environmental Surveillance and Policy, 125 Worth Street, CN-34E, New York, New York 10014, United States;

² ICF International, 126 Indian Hills Drive, Novato, California 94949, United States

³ New York City Mayor's Office of Sustainability, 253 Broadway – 14th Floor, New York, New York 10007, United States

⁴ C40 Cities Climate Leadership Group Inc., 120 Park Avenue - Floor 23, New York, New York 10017, United States

Supporting information includes 7 pages, 5 figures, and one table.

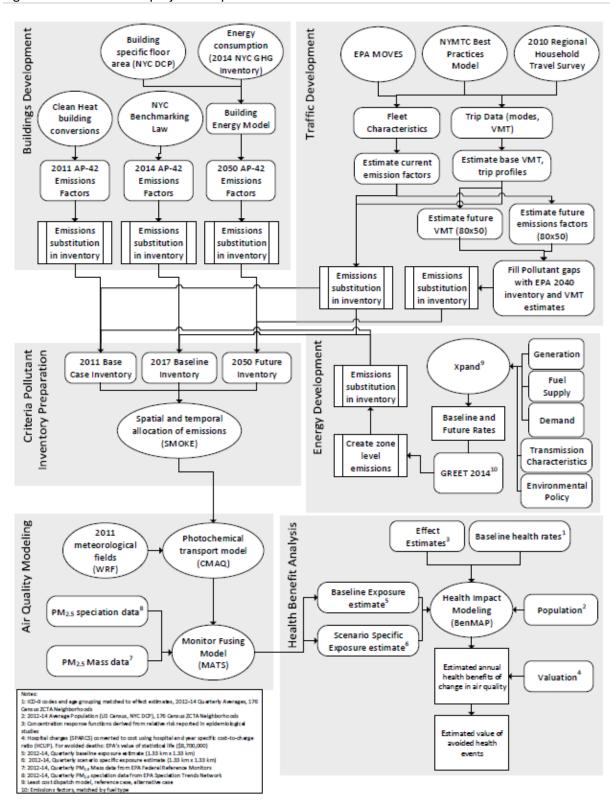


Figure S1. Flow chart of project components.

Endpoint	Age Range	Location	Qualifier	Effect Estimate	Reference
Emergency Room Visits, Asthma	0-99	New York City	Warm/cool seasons	Relative risk of 1.23 (April-September) and 1.04 (October-March) per 25.4 μ g/m ³ and 21.7 μ g/m ³ respective increase in PM _{2.5} ,	Ito K, Thurston G, Silverman R. 2007.
Hospitalizations through ED, Chronic Lung Disease	20-64	Los Angeles county	Year-round	2.2% increase in daily chronic respiratory disease hospitalizations per 10 μ g/m ³ increase in PM _{2.5}	Moolgavkar, S.H. 2000.
Hospitalizations through ED, Respiratory	65-99	26 U.S. Communities	4 seasons	1.79% (Winter), 4.34% (Spring), 1.26% (Summer), 1.52% (Fall) increase in respiratory disease hospitalizations per 10 μg/m3 increase in PM _{2.5}	Zanobetti, A., M. Franklin and J. Schwartz. 2009.
Hospitalizations through ED, Cardiovascular	40-99	New York City	Warm/cool seasons	 0.8% (April-September) and 1.1% (October-March) increase in daily cardiovascular disease hospitalizations per 10 μg/m³ increase in PM_{2.5} 	Ito K, Mathes R, Ross Z, Nadas A, Thurston G, Matte T. 2011.
Mortality, All Cause	30-99	116 US Cities	Year-round	Relative risk of 1.056 per 10 μ g/m ³ increase in PM _{2.5} .	Krewski, D., Jerrett, M., Burnett, R. T., Ma, R., Hughes, E., Shi, Y., & Thun, M. J. (2009).
Mortality, All Cause	25-99	6 Eastern Cities	Year-round	Relative risk of 1.14per 10 μ g/m ³ increase in PM _{2.5}	Lepeule, J., Laden, F., Dockery, D., & Schwartz, J. (2012).

Table S1. Epidemiological studies used in estimating health benefits in BenMAP.

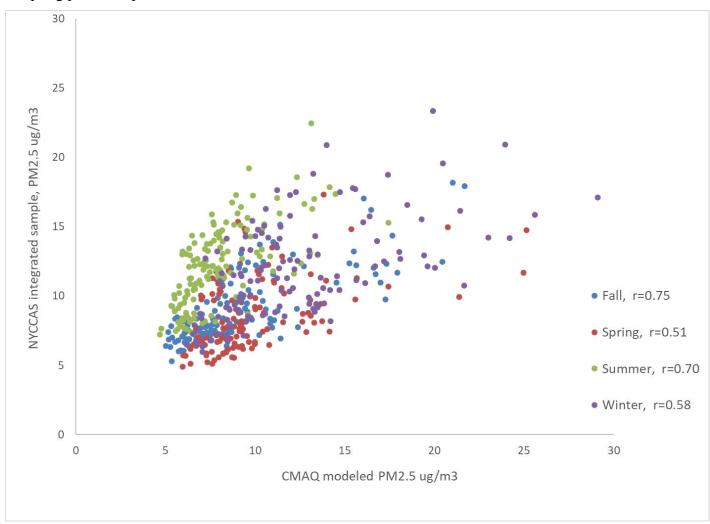
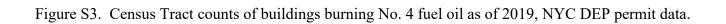



Figure S2. Spatial variation modeled by CMAQ compared to NYCCAS monitored values at intersecting locations and 2-week sampling periods. Spearman correlation coefficient.

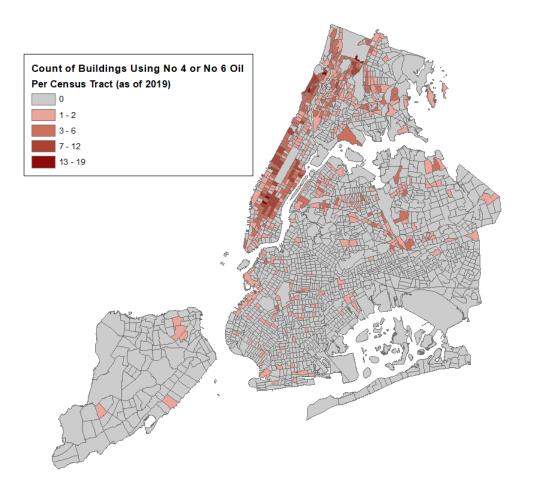


Figure S4. Baseline health outcome rates by ZCTA, 2012-2014 annual average.

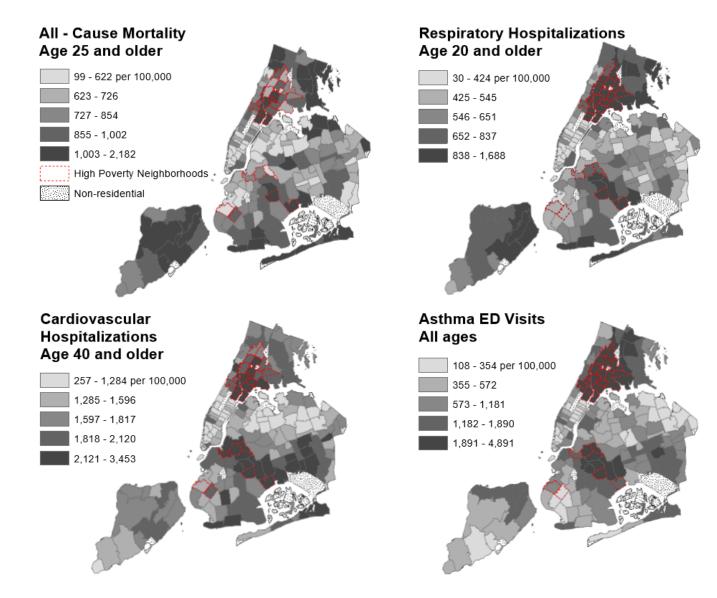
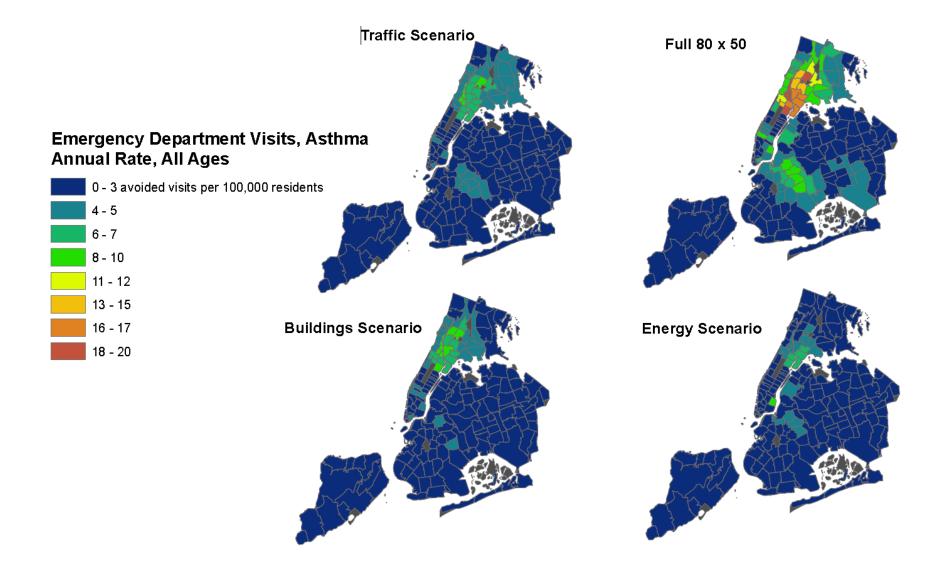



Figure S5. Spatial Pattern of avoided asthma ED visits by scenario.

