Supporting Information

Copper-Catalyzed C–H Fluorination/Functionalization Sequence Enabling Benzylic C–H Cross Coupling with Diverse Nucleophiles

Aristidis Vasilopoulos, Dung L. Golden, Joshua A. Buss, and Shannon S. Stahl*

Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue Madison, WI, 53706, United States

stahl@chem.wisc.edu

Table of Contents

I.	General Considerations	
II.	General Procedure for Benzylic C-H Fluorination and NMR Quantitation	S3
III.	General Procedure for Catalyzed Benzyl Fluoride Displacement	S4
IV.	Procedure for 3 mmol Scale Fluorination/Functionalization Sequence to Prepare 46	S5
V.	Screening Tables	S6
VI.	Additional Experiments and Observations	S10
VII.	Quantitative ¹ H and ¹⁹ F NMR Spectra for Benzyl Fluoride Products	S13
VIII.	Characterization Data for Isolated Cross Coupling Products	
IX.	References	
X.	¹ H NMR and ¹³ C NMR Spectra of Isolated Compounds	

I. General Considerations

All reagents were purchased from commercial sources and used as received. Nearly identical performance was observed when using reagents from different commercial sources. Cu salts were purchased from Strem Chemicals and Sigma-Aldrich. C–H substrates and nucleophiles were purchased from Oakwood, Combi-Blocks, Enamine, AK Scientific, TCI America, Ark-Pharm, Ambeed, or Sigma-Aldrich. Nosyl protected amines were synthesized from the corresponding primary amines according to a literature procedure.¹ 3-Phenylpropyl trifluoroacetamide was synthesized according to a literature procedure.² NFSI was purchased from Ark-Pharm and Oakwood. Bathophenanthroline and other ligands were purchased from Aldrich, Ambeed, or Strem. The boron reagents were purchased from Sigma-Aldrich, Oakwood, or Combi-Blocks.

All fluorination reaction solids were weighed out on the benchtop, while liquids were added in an inert atmosphere (N₂) glovebox. Retention in performance can be obtained by setting up the fluorination reaction on the benchtop with backfilling or sparging of the reaction vessel with N₂. The fluorine displacement reactions were all set-up on the benchtop under air. The displacement step can produce catalytic quantities of HF (quenches on the reaction vial), so it is recommended to have ready access to a tube of calcium gluconate in case of accidental exposure to the reaction mixture. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on a Bruker Avance III 400 spectrometer at 25 °C (¹H 400.1 MHz, ¹³C 100.6 MHz, ¹⁹F 376.5 MHz) or a Bruker Avance III 500 spectrometer at 25 °C (¹H 500.1 MHz, ¹³C 125.7 MHz, ¹⁹F 470.6 MHz), except where noted otherwise, and chemical shifts are reported in parts per million (ppm). NMR spectra were referenced to residual CHCl₃ at 7.26 ppm (¹H) and CDCl₃ at 77.16 ppm (¹³C). All ¹⁹F NMR spectra were absolutely referenced to their respective solvent peaks in the ¹H NMR spectrum. Chromatography was performed using an automated Biotage Isolera® with reusable 25 g Biotage® Sfär Silica HC D cartridges for normal phase or 60 g Biotage® SNAP Ultra C18 cartridges for reversed phase. Highresolution mass spectra were obtained using a Thermo Q ExactiveTM Plus via (ASAP-MS) by the mass spectrometry facility at the University of Wisconsin.

II. General Procedure for Benzylic C–H Fluorination and NMR Quantitation

Warning: This reaction evolves gas from protonation of Li₂CO₃, which is able to pressurize the reaction vial. Be sure to take appropriate safety precautions.

Set-up: On the benchtop, a disposable 4 mL glass vial was charged with MeB(OH)₂ (0.6 mmol, 35.9 mg, 2 equiv), Li₂CO₃ (0.9 mmol, 66.5 mg, 3 equiv), N-fluorobenzenesulfonimide (NFSI; 0.75 mmol, 236.5 mg, 2.5 equiv), and a Teflon stir bar. The vial was sealed by a PTFE-lined pierceable cap. Bathophenanthroline (BPhen, 0.0216 mmol, 7.2 mg, 0.072 equiv) was weighed into a secondary vial with a Teflon stir bar. Both vials were then transferred to a purging glovebox under N₂(g). In the glovebox, CuOAc (0.018 mmol, 2.2 mg, 0.06 equiv) was weighed into the vial containing BPhen. Chlorobenzene (1.8 mL) was added to this vial and the vial is stirred to form a deep red 0.01 M stock solution of copper catalyst. The C–H substrate (0.3 mmol, 1 equiv) was weighed into the vial containing the rest of the reaction components, and then 0.6 mL of the copper catalyst solution was transferred to the reaction vial to give a 0.5 M mixture with a 2 mol% catalyst loading. The solution color changes from red to blue/green. This reaction vial is then removed from the glovebox and set to stir at 45 °C on a stirring hotplate in an aluminum block at 600 rpm for 16 h.

Work-up: At the end of the reaction, the mixture often becomes a light blue paste. The cap of the vial is loosened to vent the pressure build-up from the reaction. Dibromomethane (0.3 mmol, 21 μ L, 1 equiv) and trifluorotoluene (0.3 mmol, 37 μ L, 1 equiv) are then added as ¹H and ¹⁹F NMR standards, respectively. The mixture is then diluted with CDCl₃ (0.6 mL), mixed, and a 30 μ L aliquot is taken and filtered over a 1-inch celite plug directly into an NMR tube using CDCl₃ (in a few cases, dilution was done with dichloromethane or CHCl₃). The amount of benzyl fluoride product is then quantified relative to the two added internal standards. For more information on the quantitation method, see Section VII.

Reaction tip:

- The fluorination reaction is highly temperature sensitive, so it is recommended to use a hot plate with a thermocouple.
- For scale up reactions, it may be beneficial to use DCM or acetone as the solvent to improve homogeneity of the reaction.

III. General Procedure for Catalyzed Benzyl Fluoride Displacement

Warning: This reaction gradually produces HF, which is seemingly quenched via etching of the inside of the borosilicate vial. This reaction could degrade glass reaction vessels.

Set-up: Following NMR quantitation of the benzyl fluoride product, sodium dithionite (1 equiv with respect to the amount of NFSI used, ~150-250 mg) is added with 100 µL water directly to the reaction vial. The reaction is then stirred for 15 min to quench the remaining NFSI (warning: dithionite oxidation results in protonation of remaining Li2CO3,³ leading to further pressure buildup). This typically changes the reaction to a red color. The chunky mixture is then filtered over a 3-inch pad of silica or celite into a disposable 15 mL glass vial using dichloromethane as the eluent (silica is preferred if the benzyl fluoride tolerates it). After flushing to a filtrate volume of 5 mL, MgSO₄ (3-7 equiv, ~300 mg) is added to the vial and it is allowed to dry for 10 min. Meanwhile, the nucleophile (0.75 mmol, 2.5 equiv) is weighed into another disposable 15 mL glass vial with a Teflon coated stir bar. The benzyl fluoride-containing solution is filtered over a 1-inch celite plug into the 15 mL vial containing the nucleophile, and then 1 mL of additional dichloromethane is used to flush the plug and bring the final reaction volume to 6 mL (0.05 M). The vessel is then sealed with a PTFE-lined pierceable cap and hexafluoroisopropanol (HFIP; 3 mmol, 315 µL, 10 equiv) and/or BF₃•Et₂O (0.03 mmol, 3.7 µL, 0.1 equiv) is added to catalyze fluoride displacement. The reaction is stirred overnight. An aliquot of this reaction solution is then taken for ¹H NMR analysis to determine whether it is complete. Reactions showing incomplete fluoride conversion are subjected to harsher displacement conditions (i.e., heated to 45 °C in an aluminum block on a hotplate or additional BF₃•Et₂O is added). The final solution is concentrated on a rotovap and purified using automated flash column chromatography to yield the desired functionalization product.

Reaction tips:

- Lewis basic functional groups disrupt fluoride displacement. When using coupling partners with Lewis basic groups, it is typically required to use additional BF₃ to enact displacement (>0.25 equiv BF₃ is common, *cf.* Substrates **37** and **42**).
- Protonation of Lewis basic groups may also be helpful for enabling displacement reactivity (*cf.* Substrate **31**)

IV. Procedure for 3 mmol Scale Fluorination/Functionalization Sequence to Prepare 46

Fluorination: On the benchtop, a disposable 20 mL glass vial was charged with MeB(OH)₂ (6 mmol, 359 mg, 2 equiv), Li₂CO₃ (9 mmol, 665 mg, 3 equiv), NFSI (7.5 mmol, 2.365 g, 2.5 equiv), and a Teflon stir bar. The vial was sealed by a PTFE-lined pierceable cap. Bathophenanthroline (BPhen, 0.072 mmol, 23.9 mg, 0.024 equiv) was weighed into a secondary vial with a Teflon stir bar. Both vials were then transferred to a purging glovebox under N₂(g). In the glovebox, CuOAc (0.06 mmol, 7.4 mg, 0.02 equiv) was weighed into the vial containing BPhen followed by addition of chlorobenzene (6 mL, 0.5 M). This solution was allowed to stir for 3 minutes to form a deep red solution. 1-chloro-3-phenylpropane (3 mmol, 429 μ L, 1 equiv) was then weighed into the vial containing the rest of the reaction components and the copper catalyst solution was transferred to the reaction vial. The reaction vial was then sealed, removed from the glovebox, and set to stir at 45 °C in an aluminum block on a heated stir plate at 600 rpm for 16 h.

Functionalization: The cap was carefully opened to release built-up pressure (the septum may have been pierced with a needle instead). Dibromomethane was then added as an NMR standard (1 mmol, 70.2 μ L, 0.33 equiv) and a 50 uL aliquot was taken and filtered over celite with 450 uL CDCl₃ directly into an NMR tube for NMR quantitation. To the reaction vial was added sodium dithionite (7.5 mmol, 1.305 g, 2.5 equiv) and water (500 uL) and this mixture was allowed to stir for 10 minutes uncapped. After quenching NFSI, the now chunky red-white mixture was filtered over a 3-inch pad of silica directly into a 250 mL round bottom flask using dichloromethane (54 mL, final concentration of 0.05 M). *p*-Cresol (7.5 mmol, 811 mg, 2.5 equiv) was added to the round bottom flask followed by HFIP (30 mmol, 3.159 mL, 10 equiv) and after initial agitation, the reaction was left to sit at room temperature for 16 h.

Work-up: A 100 μ L aliquot was taken from the now light gold solution for NMR analysis to detect formation of product and consumption of benzyl fluoride (¹H and ¹⁹F). If any residual fluoride were detected, the vessel would have been warmed to 40 °C on an aluminum block or catalytic BF₃•Et₂O would have been added. The reaction was concentrated on the rotovap at 40 °C to remove the solvent (chlorobenzene, dichloromethane, and HFIP) and the concentrated residue was purified by reverse phase chromatography using a 65% \rightarrow 100% MeOH in water gradient. The product fractions were collected and concentrated on the rotovap at 50 °C to yield 445 mg of the desired diarylalkane product 46, corresponding to 57% yield with respect to the starting C–H substrate).

V. Screening Tables

Table S1. Control Experiments Table

\sim			2 mol% CuOAc 2.4 mol% BPhen 2 equiv MeB(OH) ₂ 3 equiv Li ₂ CO ₃	F	
	UAC + (FIK	0.	.5 M PhCl, 45 °C, 16 h		OAC
	1 equiv 2.	0 equiv			
entry	control	MB	% SM	% C-N	% C-F(F ₂) ^a
1	No CuOAc	102	102		
2	No BPhen	101	77		24
3	No NFSI	102	102		
4	No Li ₂ CO ₃	70	70		
5	No MeB(OH) ₂	103	103		
6	Under Air	66	42		24

^aReactions run at 0.2 mmol scale. Calibrated ¹H NMR yields using mesitylene as an internal standard.

Table S2. Solvent Screening Table

H	∽OAc + (PhO ₂ S	2) ₂ N-F 0.5 M	2 mol% CuOAc 2.4 mol% BPher equiv MeB(OH) 3 equiv Li ₂ CO ₃ 1 solvent, 45 °C,	16 h	F OAc
1 eq	uiv 2.0 e	quiv			
entry	solvent	MB	% SM	% C-N	% C-F(F ₂) ^a
1	DCM	76	9		64(3)
2	DCE	87	16		69(2)
3	MeCN	25	2		23
4	EtOAc	80	26		53(1)
5	acetone	71			68(3)
6	PhF	94	38		55(1)
7	PhCF ₃	89	38		50(1)
8	PhCl	98	19		76(3)
9	PhCI (0.4 M)	79	7		68(4)
10	PhCI (0.3 M)	85	9		72(4)
11	PhCI (0.2 M)	77	18		59
12	PhCI (0.1 M)	77	21		56

^aReactions run at 0.2 mmol scale. Calibrated ¹H NMR yields using mesitylene as an internal standard.

Table S3. Cu Salt Screening Table

H OAc + (PhO ₂ S) ₂ N=F		5)₂N−F	2 mol% [Cu] 2.4 mol% BPhen 2 equiv MeB(OH) ₂ 3 equiv Li ₂ CO ₃		
	0.10 (1.102	0.9	5 M PhCl, 45 °C,	16 h	0.110
1	equiv 2.0	equiv			
entry	Cu salt	MB	% SM	% C-N	% C-F(F ₂) ^a
1	Cul•DMS	74	5		64(5)
2	CuBr•DMS	80	9		68(3)
3	CuCl	88	17		68(3)
4	CuOAc	82	2		73(7)
5	Cu(MeCN) ₄ PF ₆	94	31		63
6	CuCN	102	92		10
7	Cu(OAc) ₂	90	9	5	76
8	Cu(OTf) ₂	100	100		

 a Reactions run at 0.2 mmol scale. Calibrated $^1\mathrm{H}$ NMR yields using mesitylene as an internal standard.

Table S4. Ligand Screening Table

^aReactions run at 0.2 mmol scale. Calibrated ¹H NMR yields using mesitylene as an internal standard. *In an experiment with 2-(S)acetoxy-4-phenylbutane, these three ligands formed the fluorinated product with an identical d.r. of 2:1 (avg yield 50%). It is unlikely that enantioselectivity would be observed in fluorination of achiral benzylic substrates when using the chiral ligands in entries 3 or 4.

Table S5. Base Screening Table

\land			2 mol% CuOA 2.4 mol% BPh 2 equiv MeB(Ol 3 equiv base/ado	ac en H) ₂ litive	F L OAC
		1020/21	0.5 M PhCl, 45 °C	16 h	0/10
	1 equiv	2.0 equiv			
entry	base/additive	MB	% SM	% C-N	% C-F(F ₂) ^a
1	K ₂ CO ₃	92	75		17
2	Na ₂ CO ₃	84	30		54
3	Li ₂ CO ₃	97	13		78(6)
4	LiOAc	97	40		57
5	NaHCO ₃	70	12		58
6	LiO ^t Bu	100	100		
7	LiOTf	82	82		
8	K ₃ PO ₄	99	99		

^aReactions run at 0.2 mmol scale. Calibrated ¹H NMR yields using mesitylene as an internal standard.

Table S6. Reductant Screening Table

H 1 equiv	OAc + (PhO₂S); v 2.0 eq	2N−F 0.5 uiv	2 mol% 2.4 mol ⁶ x equiv 3 equiv M PhCl,	CuOAc % BPhen reductant r Li ₂ CO ₃ 45 °C, 16	→ h	F OAc
entry	reductant	equiv	MB	% SM	% C-N	% C-F(F ₂) ^a
1	ОН Me—В́ ОН	2	88	5		77(6)
2	0 ^{- B} 0 - B 0 - B	2	40			37(3)
3	ОН НО-В ОН	2	103	103		
4	HO OH B-B OH HO OH	2	64	10		54
5		2	61	9		52

"Reactions run at 0.2 mmol scale. Calibrated ¹H NMR yields using mesitylene as an internal standard.

\langle	H OAc + (PbOoS)o	N-F	2 mol% CuOAc 2.4 mol% BPhen 2 equiv MeB(OH) ₂ 3 equiv Li ₂ CO ₃		
	1 equiv 2.0 equ	0 Jiv	.5 M PhCl, 45 °C, 16 h		0/10
entry	variation	MB	% SM	% C-N	% C-F(F ₂) ^a
1	standard cond.	95	2		80(5)
2	35 °C	93	44		48(1)
3	55 °C	92	3		74(10)
4	1 equiv. NFSI	90	34		52(2)
5	3 equiv. NFSI	98	7		89(5)
6	1 equiv. Li ₂ CO ₃	95	13		78(4)
7	2 equiv. Li ₂ CO ₃	93	5		82(6)
8	1 equiv. MeB(OH) ₂	95	12		79(4)
9	2.5 equiv. MeB(OH) ₂	97	3		87(7)
10	1 mol% BPhen	100	12		83(5)
11	4 mol% BPhen	103	103		0
12	1 mol% CuOAc/ 1 mol% BPhen	96	12		80(4)
13	10 mol% CuOAc/ 10 mol% BPhen	83	13		47(3)
14	10 mol% CuOAc/ 5 mol% BPhen	92	18		63(2)

Table S7. Reaction Stoichiometry Screening Table

^{*a*}Reactions run at 0.2 mmol scale. Calibrated ¹H NMR yields using mesitylene as an internal standard. Mass balance in this table also accounts for formation of the benzyl ketone.

Table S8. HFIP Loading Screening Table

	F CI +	Nuc-H -	x equiv 0.05 M 9:1 I rt, 16	HFIP DCM:PhCI	Nuc Cl
76% f	rom C–H	3.0 equiv			
entry	Nuc-H	equiv	/ HFIP	% SM	% C-Nuc ^a
1	HO	:	2	-	69
2	Me	, 1	0	-	100
3	н	2	.7		90
4	Me	:	2	100	-
5	O ² IIIO H	1	0	-	96
6		2	.7		95
7	O	:	2	-	60
8	o l	1	0	-	90
9	Ĥ	2	:7	-	78

^{*a*}Reactions run at 0.3 mmol scale. Calibrated ¹H NMR yields with respect to the benzyl fluoride using CH_2Br_2 as an internal standard. HFIP ether product is observed in reactions with 27 equiv HFIP.

VI. Additional Experiments and Observations

Less Successful C-H Fluorination Substrates

Table S9. Benzylic C–H fluorination results for substrates not included in Scheme 2.

^aCalibrated ¹H NMR yields using dibromomethane as the internal standard. Reactions with (Y) indicates that remaining starting material was the major remaining mass balance component. Reactions with (N) indicates that all starting material was consumed. ^bHalf Cu/L loading, 1 equiv B₂pin₂ no MeB(OH)₂

Discussion:

The collection of molecules in Table S9 includes products omitted from the manuscript, typically because of low yields and observed deleterious side-reactivity (except for the alkylcyanide substrate, which was omitted because propylbenzene analogs are well-represented in Scheme 2). The lactone substrate suffers from low yield because more forcing conditions result in a competitive dehydrogenation pathway to afford the α,β -unsaturated ester. The thiophene substrate showed very poor mass balance and no product was formed when BPhen was used as the ligand. Nabumetone (the ketone with a naphthalene ring) underwent complete conversion of starting material, but the only fluorination products observed were aryl fluorides. An aryl aldehyde substrate was tested for fluorination, but aldehydic C-H fluorination was observed, which agrees with a recently reported method for acyl fluoride generation.⁴ 4-Ethyl anisole oxidation resulted in complete conversion to *p*-methoxy acetophenone. The origin of ketone products likely traces back to C-F displacement by water from Li₂CO₃ to form the benzyl alcohol, which is oxidized in situ to the ketone $(MeB(OH)_2$ can also serve as a hydroxide source). It is also possible that the more electron-rich substrate oxidizes directly from the benzyl radical to a carbocation in solution, which is trapped by water and oxidized.⁵ 2-Ethyl pyridine fluorination resulted in a low yield of heterobenzylic fluoride. The nucleophilic pyridine likely coordinates to an electrophile in situ, which deactivates the C-H site to HAT. Ionic chemistries are typically more effective for fluorination of these types of heterobenzylic substrates.⁶ Benzylic substrates bearing an amide or ether functionality were not successfully fluorinated despite complete conversion of starting material. It is likely that the weak α-hetero C-H bonds compete for oxidation with the benzylic C-H site under these mildly basic conditions. A benzylic substrate with a TBS-protected alcohol was also tested in the fluorination reaction (92% conversion), but the TBS group is removed in situ, leading to an alcohol that is oxidized to an aldehyde (major observed product).

Observations Regarding Nucleophilic Coupling Partners

Table S10. Comparisons between ineffective and effective conditions for forming desired product.

^aCalibrated ¹H NMR yields using dibromomethane as the internal standard. Yield calculated based on the starting C–H substrate. 2.5 equiv H–Nuc used, solvent is 9:1 DCM:PhCl at 0.05 M, and reactions run at room temperature unless otherwise noted. Product formation and conversion of starting material is improved from top to bottom.

Discussion:

Table S10 shows how changes in conditions could be used to make certain classes of nucleophiles effective for the functionalization reaction. When using Boc proline as the nucleophile, HFIP was not able to catalyze product formation. In general, Lewis basic functional groups like carbamates resulted in obstruction of C-F activation reactivity. For Boc proline, product formation could be enabled by using 50 mol% BF3•Et2O as the catalyst. 2-Phenethylacetate has a C-F bond that is relatively recalcitrant towards activation (likely due to having an electron withdrawing group at the homobenzylic position). In order to activate the C-F bond for substitution by chloride, the reaction needed to be heated to 45 °C in an aluminum block on a hotplate. If *tert*-butanol is used as the nucleophile for displacement, HFIP does not catalyze displacement and BF₃•Et₂O must be used. This may support an S_N2-like pathway for displacement under HFIP-catalyzed conditions.⁷ If no precautions are taken to remove water when using *tert*butanol as the nucleophile, the benzyl alcohol is formed as the product. If the reaction is dried with MgSO₄ and filtered before BF₃•Et₂O is added, the *tert*-butyl ether product is formed instead. In Scheme 3, benzyl fluorides can be displaced by phenols like ethyl paraben in excellent yields when using HFIP as the catalyst. The benzyl fluoride from 4-ethyl benzonitrile is not activated under these conditions. In order to displace this electronically deactivated fluoride, BF₃•Et₂O must also be added as a catalyst. This result suggests that electron-deficient aryl rings can stabilize benzyl fluorides. It is possible to protonate Lewis basic groups (like amines), so they do not interfere with C-F activation. This allows an amino alcohol to be used as an effective coupling partner (or a pyridine, cf. 31). An acid with a DCM-soluble non-nucleophilic counterion should be used to avoid formation of side products (for example, TFA is able to compete for fluoride displacement, so TFA salts should not be used).

Table S11. Benzylic C–F displacement results for less effective C–H substrate/nucleophile pairs.

^aCalibrated ¹H NMR yields using dibromomethane as the internal standard. Yield calculated based on the starting C-H substrate.

Discussion:

Tertiary fluorides can be activated with $BF_3 \cdot Et_2O$ for trapping by nucleophilic species, albeit the resulting products may have stability issues (the tertiary ether, S11-A, decomposed after 2 days in DCM). For poor nucleophiles like water, it is possible for chlorobenzene to compete in fluoride displacement (S11-B and D). To avoid this issue, the fluorination reaction can be run in DCM. Another issue observed when using water as a nucleophile is that the resulting benzyl alcohol can serve as a nucleophile to form ethereal dimers of the starting material (this led to the relatively low yield of the benzyl alcohol **27** from 6-bromochromane). Ortho-nitro sulfonamide protecting groups can be used to protect primary amines to make competent nucleophiles, but the ortho-nosyl amines tend to have worse reactivity than para-nosyl amines in this reaction (compare S11-C to **43**). Nucleophiles with very Lewis basic groups like amines can completely shut down displacement of the benzyl fluoride (S11-E, F, G, H). It is possible that these groups compete with the fluoride for hydrogen-bond donors and for BF₃•Et₂O. Efforts to drive these reactions forward with heat (45 °C in an aluminum block on a hotplate) were unsuccessful (testing at higher temperature would need to be done in a different solvent).

Site Selectivity for Fluorination of Benzylic C-H Bonds

Fluorination reactions were set up under standard conditions (see the general procedure in section II) except 5 equiv of each C–H substrate was employed (160 μ L PhMe, 1.5 mmol, 5 equiv; 185 μ L PhEt, 1.5 mmol, 5 equiv; 210 μ L cumene, 1.5 mmol, 5 equiv). Reactions were worked up in the standard fashion and analyzed via ¹H and ¹⁹F{¹H} NMR spectroscopy. Product yields were determined relative to ¹H (CH₂Br₂, 21 μ L, 0.3 mmol, 1 equiv) and ¹⁹F (PhCF₃, 37 μ L, 0.3 mmol, 1 equiv) internal standards.

Figure S1. Competition experiment for 1° vs. 2° benzylic C–H bond functionalization reactivity.

Figure S2. Competition experiment for 2° vs. 3° benzylic C–H bond functionalization reactivity.

Similar selectivity preferences have been reported for photochemical benzylic fluorination reactions employing benzophenone and Selectfluor.⁸

VII. Quantitative ¹H and ¹⁹F NMR Spectra for Benzyl Fluoride Products

Processed (phase and baseline corrected) NMR spectra for the crude reaction mixtures of each of the benzyl fluoride products are shown below in red below. Peaks relevant to species of interest (monofluorides, difluorides, and starting material) have been picked, using the multiplet analysis tool in MestreNova. The dark blue overlays show idealized peak curves; inset spectra enlarging important resonances are included where appropriate. See figure captions for additional details.

(1) 1-bromo-4-(1-fluoroethyl)benzene: Prepared from 1-bromo-4-ethylbenzene (0.3 mmol, 42 μ L, 1.0 equiv) according to the general procedure in section II.

Spectra Available in the Literature (CAS): Yes⁹ (159298-87-0)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 5.59 (dq, ²*J*_(H,F) = 47.4 Hz, ³*J*_(H,H) = 6.4 Hz)

Calibrated ¹H NMR Yield from Benzylic Proton: 81%

Benzylic Fluoride Shift: ¹⁹F NMR (CDCl₃, 377 MHz): δ -168.05 (dq, ²*J*_(H,F) = 48.2 Hz, ³*J*_(H,F) = 24.6 Hz)

Calibrated ¹⁹F NMR Yields from Benzyl Fluorides: 86% (CF₂ - 11%)

Figure S3. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.93 ppm). The resolved benzylic and methyl protons are labeled and integrated.

Figure S4. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.73 ppm). The mono- and di-fluoride (-168.05 and -87.86 ppm, respectively) are labeled and integrated. The inset shows an enlargement of the proton-coupled mono-fluoride.

(2) 1-bromo-2-(1-fluoroethyl)benzene: Prepared from 1-bromo-2-ethylbenzene (0.3 mmol, 41 μ L, 1.0 equiv) according to the general procedure in section II with the following variations: 1 mol% CuOAc, 1.2 mol% BPhen, 1 equiv B₂pin₂ (in place of 2 equiv MeB(OH)₂), and 4 equiv NFSI operating at 55 °C.

Spectra Available in the Literature (CAS): Yes¹⁰ (1027513-77-4)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 5.91 (dq, ²*J*_(H,F) = 46.5 Hz, ³*J*_(H,H) = 6.3 Hz)

Calibrated ¹H NMR Yield from Benzyl Fluoride Methyl Group: 50%

Benzylic Fluoride Shift: ¹⁹F NMR (CDCl₃, 377 MHz): δ -173.76 (dq, ²*J*_(H,F) = 48.3 Hz, ³*J*_(H,F) = 24.4 Hz)

Calibrated ¹⁹F NMR Yields from Benzyl Fluoride: 44%

Figure S5. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.93 ppm). The resolved product and starting material benzylic protons are labeled and integrated.

Figure S6. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.73 ppm). The mono-fluoride (-173. 76 ppm) is labeled and integrated; the inset shows an enlargement of the proton-coupled mono-fluoride.

(3) (1-fluoroethyl)benzene: Prepared from ethylbenzene (0.3 mmol, 37 μ L, 1.0 equiv) according to the general procedure in section II.

Spectra Available in the Literature (CAS): Yes¹¹ (7100-97-2)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 5.62 (dq, ²*J*_(H,F) = 47.8 Hz, ³*J*_(H,H) = 6.5 Hz)

Calibrated ¹H NMR Yield from Benzylic Proton: 67%

Benzylic Fluoride Shift: ¹⁹F NMR (CDCl₃, 377 MHz): δ -167.02 (dq, ²*J*_(H,F) = 47.8 Hz, ³*J*_(H,F) = 23.9 Hz)

Calibrated ¹⁹F NMR Yields from Benzyl Fluoride: 64% (CF₂ – 11%)

Figure S7. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.92 ppm). The resolved product benzylic and methyl protons are labeled and integrated.

Figure S8. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.73 ppm). The mono- and di-fluoride (-167.02 and -87.62 ppm, respectively) are labeled and integrated. The inset shows an enlargement of the proton-coupled mono-fluoride.

(4) 1-(3-(1-fluoroethyl)phenyl)ethan-1-one: Prepared from 1-(3-ethylphenyl)ethan-1-one (0.3 mmol, 49.9 mg, 1.0 equiv) according to the general procedure in section II with the following variations: 1 mol% CuOAc, 1.2 mol% BPhen, 1 equiv B_2pin_2 (in place of 2 equiv MeB(OH)₂), and 4 equiv NFSI operating at 55 °C.

Spectra Available in the Literature (CAS): No (1550969-43-1)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 5.61 (dq, ²*J*_(H,F) = 47.5 Hz, ³*J*_(H,H) = 6.5 Hz)

Calibrated ¹H NMR Yield from Benzyl Fluoride Methyl Group: 83%

Decoupled Benzylic Fluoride Shift: ¹⁹F NMR (CDCl₃, 377 MHz): δ -168.89 (s)

Calibrated ¹⁹F NMR Yields from Benzyl Fluoride: 75% ($CF_2 - 20\%$)

Figure S9. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.84 ppm). The resolved product benzylic and methyl protons are labeled and integrated.

Figure S10. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.70 ppm). The mono- and di-fluoride (-168.89 and -87.79 ppm, respectively) are labeled and integrated.

(5) 4-(1-fluoroethyl)benzonitrile: Prepared from 4-ethylbenzonitrile (0.3 mmol, 41 μ L, 1.0 equiv) according to the general procedure in section II with the following variations: 1 mol% CuOAc, 1.2 mol% BPhen, 1 equiv B₂pin₂ (in place of 2 equiv MeB(OH)₂), and 4 equiv NFSI operating at 75 °C.

Spectra Available in the Literature (CAS): Yes⁸ (155671-14-0)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 5.70 (dq, ²*J*_(H,F) = 47.4 Hz, ³*J*_(H,H) = 6.5 Hz)

Calibrated ¹H NMR Yield from Benzyl Fluoride Methyl Group: 56% **Decoupled Benzylic Fluoride Shift:** ¹⁹F NMR (CDCl₃, 377 MHz): δ -172.67 (s)

Figure S11. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.96 ppm). The resolved product benzylic and methyl protons are labeled and integrated. The residual starting material benzylic protons are likewise labeled and integrated.

Figure S12. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture. The mono- and difluoride (-172.67 and -89.32 ppm, respectively) are labeled and integrated.

(6) 4-(1-fluoroethyl)phenyl acetate: Prepared from 4-ethylphenyl acetate (0.3 mmol, 48 µL, 1.0 equiv) according to the general procedure in section II with the following variations: 1 mol% CuOAc, 1.2 mol% BPhen, 1 equiv B₂pin₂ (in place of 2 equiv MeB(OH)₂), and 4 equiv NFSI operating at 55 °C.

Spectra Available in the Literature (CAS): Yes¹² (1487496-31-0)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 5.62 (dq, ²*J*_(H,F) = 47.5 Hz, ³*J*_(H,H) = 6.4 Hz)

Calibrated ¹H NMR Yield from Benzyl Fluoride Methyl Group: 66%

Benzylic Fluoride Shift: ¹⁹F NMR (CDCl₃, 377 MHz): δ -166.40 (dg, ²*J*_(HF) = 47.7 Hz, ³*J*_(HF) = 23.9 Hz)

Calibrated ¹⁹F NMR Yields from Benzyl Fluoride: 63% (CF₂ - 7%)

Figure S13. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 µL) of CH₂Br₂ as an internal standard (4.92 ppm). The resolved product benzylic and methyl protons are labeled and integrated.

Figure S14. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 µL) of PhCF₃ as an internal standard (-62.69 ppm). The mono- and di-fluoride (-166.40 and -87.11 ppm, respectively) are labeled and integrated.

(7) (3-chloro-1-fluoropropyl)benzene: Prepared from (3-chloropropyl)benzene (0.3 mmol, 45 μ L, 1.0 equiv) according to the general procedure in section II. When the reaction was repeated on 3 mmol scale, it was conducted in a 15 mL vial.

Spectra Available in the Literature (CAS): Yes¹³ (1487496-36-5)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 5.68 (ddd, ²*J*_(H,F) = 47.8 Hz, ³*J*_(H,H) = 8.9 & 3.8 Hz)

Calibrated ¹H NMR Yield from Benzyl Proton: 82% (0.3 mmol scale) or 68% (3 mmol scale) **Benzylic Fluoride Shift:** ¹⁹F NMR (CDCl₃, 377 MHz): δ -179.43 (ddd, ²*J*_(H,F) = 46.9 Hz, ³*J*_(H,F) = 31.3 & 14.0 Hz)

Calibrated ¹⁹F NMR Yield from Benzyl Fluoride: 75% (CF₂ – 5%)

Figure S15. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.93 ppm). The resolved product and starting material benzylic protons are labeled and integrated.

Figure S16. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.73 ppm). The mono- and di-fluoride (-179.43 and -95.91 ppm, respectively) are labeled and integrated. The inset shows an enlargement of the proton-coupled mono-fluoride.

(8) (3-bromo-1-fluoropropyl)benzene: Prepared from (3-bromopropyl)benzene (0.3 mmol, 46 μ L, 1.0 equiv) according to the general procedure in section II. When the reaction was repeated on 3 mmol scale, it was conducted in a 15 mL vial.

Spectra Available in the Literature (CAS): Yes¹¹ (1428331-73-0)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 5.66 (ddd, ²*J*_(H,F) = 47.7 Hz, ³*J*_(H,H) = 8.8 & 3.9 Hz)

Calibrated ¹H NMR Yield from Benzyl Proton: 71% (0.3 mmol scale) or 67% (3 mmol scale) **Benzylic Fluoride Shift:** ¹⁹F NMR (CDCl₃, 377 MHz): δ -179.33 (ddd, ²*J*_(H,F) = 46.9 Hz, ³*J*_(H,F) = 31.3 & 14.0 Hz)

Calibrated ¹⁹F NMR Yield from Benzyl Fluoride: 68%

Figure S17. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.93 ppm). The resolved product and starting material benzylic protons are labeled and integrated.

Figure S18. Crude ¹⁹F NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.73 ppm). The mono-fluoride (-179.33) is labeled and integrated. The inset shows an enlargement of the proton-coupled mono-fluoride.

(9) Methyl 3-fluoro-3-phenylpropanoate: Prepared from methyl 3-phenylpropanoate (0.75 mmol, 47 μ L, 1.0 equiv) that was formed according to the general procedure in section II with the following variations: 1 mol% CuOAc, 1.2 mol% BPhen, 1 equiv B₂pin₂ (in place of 2 equiv MeB(OH)₂), and 4 equiv NFSI operating at 55 °C.

Spectra Available in the Literature (CAS): Yes⁸ (188941-05-1)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 5.93 (ddd, ²*J*_(H,F) = 46.9 Hz, ³*J*_(H,H) = 9.2 & 4.1 Hz)

Calibrated ¹H NMR Yield from Benzyl Proton: 58%

Benzylic Fluoride Shift: ¹⁹F NMR (CDCl₃, 377 MHz): δ -173.16 (ddd, ²*J*_(H,F) = 46.4 Hz, ³*J*_(H,F) = 32.6 & 13.4 Hz)

Calibrated ¹⁹F NMR Yield from Benzyl Fluoride: 51% (CF₂ – 2%)

Figure S19. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.92 ppm). The resolved product benzylic protons are labeled and integrated.

Figure S20. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.72 ppm). The mono- and di-fluoride (-173.16 and -92.36 ppm, respectively) are labeled and integrated. The inset shows an enlargement of the proton-coupled mono-fluoride.

(10) (fluoromethylene)dibenzene: Prepared from diphenylmethane (0.3 mmol, 50.5 mg, 1.0 equiv) according to the general procedure in section II.

Spectra Available in the Literature (CAS): Yes⁸ (579-55-5)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 6.47 (d, ²*J*_(H,F) = 47.4 Hz) Calibrated ¹H NMR Yield from Benzyl Proton: 40%

Benzylic Fluoride Shift: ¹⁹F NMR (CDCl₃, 377 MHz): δ -166.73 (d, ²*J*_(H,F) = 47.5 Hz)

Calibrated ¹⁹F NMR Yield from Benzyl Fluoride: 40%

Figure S21. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.92 ppm). The resolved product and starting material benzylic protons are labeled and integrated.

Figure S22. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.70 ppm). The mono-fluoride (-166.73) is labeled and integrated. The inset shows an enlargement of the proton-coupled mono-fluoride.

(11) (1-fluoro-3-methylbutyl)benzene: Prepared from isopentylbenzene (0.3 mmol, 52 μ L, 1.0 equiv) according to the general procedure in section II.

Spectra Available in the Literature (CAS): No (N/A)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 5.50 (ddd, ²*J*_(H,F) = 48.2 Hz, ³*J*_(H,H) = 9.2 & 4.3 Hz)

Calibrated ¹H NMR Yield from Benzyl Proton: 70%

Benzylic Fluoride Shift: ¹⁹F NMR (CDCl₃, 377 MHz): δ -174.31 (ddd, ²*J*_(H,F) = 48.4 Hz, ³*J*_(H,F) = 33.6 & 14.6 Hz)

Calibrated ¹⁹F NMR Yield from Benzyl Fluoride: 65% (CF₂ – 6%)

Figure S23. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.93 ppm). The resolved product benzylic and methyl protons are labeled and integrated.

Figure S24. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.73 ppm). The mono- and di-fluoride (-174.31 and -93.27 ppm, respectively) are labeled and integrated. The inset shows an enlargement of the proton-coupled mono-fluoride.

(12) 3-fluoro-3-phenylpropyl acetate: Prepared from 3-phenylpropyl acetate (0.3 mmol, 53 µL, 1.0 equiv) according to the general procedure in section II.

Spectra Available in the Literature (CAS): Yes⁸ (412026-80-3)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 5.57 (ddd, ²*J*_(H,F) = 47.8 Hz, ³*J*_(H,H) = 8.8 & 4.3 Hz)

Calibrated ¹H NMR Yield from Benzyl Proton: 79%

Benzylic Fluoride Shift: ¹⁹F NMR (CDCl₃, 377 MHz): δ -177.40 (ddd, ²*J*_(H,F) = 46.1 Hz, ³*J*_(H,F) = 30.1 & 15.4 Hz)

Calibrated ¹⁹F NMR Yield from Benzyl Fluoride: 74% ($CF_2 - 3\%$)

Figure S25. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 µL) of CH₂Br₂ as an internal standard (4.93 ppm). The resolved product and starting material benzylic protons are labeled and integrated.

Figure S26. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 µL) of PhCF₃ as an internal standard (-62.73 ppm). The mono- and di-fluoride (-177.40 and -94.79 ppm, respectively) are labeled and integrated. The inset shows an enlargement of the proton-coupled mono-fluoride.

(13) 2-fluoro-2-phenylethyl acetate: Prepared from phenethyl acetate (0.3 mmol, 54.6 mg, 1.0 equiv) according to the general procedure in section II with the following variations: 1 mol% CuOAc, 1.2 mol% BPhen, 1 equiv B₂pin₂ (in place of 2 equiv MeB(OH)₂), and 4 equiv NFSI operating at 55 °C in acetone.

Spectra Available in the Literature (CAS): Yes¹⁴ (33315-78-5)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 5.58 (ddd, ²*J*_(H,F) = 48.6 Hz, ³*J*_(H,H) = 7.2 & 3.6 Hz)

Calibrated ¹H NMR Yield from Benzylic Proton: 53%

Decoupled Benzylic Fluoride Shift:¹⁹F NMR (CDCl₃, 377 MHz): δ -184.35 (s)

Figure S27. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.87 ppm). The resolved product and starting material benzylic protons are labeled and integrated.

Figure S28. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture. The mono-fluoride (-184.35) is labeled and integrated.

(14) 2,2,2-trifluoro-*N*-(3-fluoro-3-phenylpropyl)acetamide: Prepared from 2,2,2-trifluoro-*N*-(3-phenylpropyl)acetamide (0.3 mmol, 70 mg, 1.0 equiv) according to the general procedure in section II.

Spectra Available in the Literature (CAS): No (N/A)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 5.60 (ddd, ²*J*_(H,F) = 48.2 Hz, ³*J*_(H,H) = 8.7 & 3.0 Hz)

Calibrated ¹H NMR Yield from Benzyl Proton: 63%

Benzylic Fluoride Shift: ¹⁹F NMR (CDCl₃, 377 MHz): δ -183.75 (ddd, ²*J*_(H,F) = 48.0 Hz, ³*J*_(H,F) = 30.2 & 17.3 Hz)

Calibrated ¹⁹F NMR Yield from Benzyl Fluoride: 63%

Figure S29. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.93 ppm). The resolved product and starting material benzylic protons are labeled and integrated.

Figure S30. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.73 ppm). The benzylic fluoride (-183.75 ppm) and CF₃ groups (starting material and product) are labeled and integrated; the inset shows an enlargement of the proton-coupled mono-fluoride.

(15) 1-fluoro-2,3-dihydro-1*H*-indene: Prepared from indane (0.3 mmol, 37 μ L, 1.0 equiv) according to the general procedure in section II with the following variations: 0.5 equiv MeB(OH)₂ operating at 35 °C.

Spectra Available in the Literature (CAS): Yes¹⁵ (62393-01-5)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 5.99 (ddd, ²*J*_(H,F) = 58.1 Hz, ³*J*_(H,H) = 6.1 & 2.8 Hz)

Calibrated ¹H NMR Yield from Benzyl Proton: 60%

Benzylic Fluoride Shift: ¹⁹F NMR (CDCl₃, 377 MHz): δ -159.91 (dt, ² $J_{(H,F)}$ = 56.3 Hz, ³ $J_{(H,F)}$ = 27.2 Hz)

Calibrated ¹⁹F NMR Yield from Benzyl Fluoride: 49%

Figure S31. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.91 ppm). The resolved product benzylic proton is labeled and integrated.

Figure S32. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.68 ppm). The mono-fluoride (-159.91) is labeled and integrated. The inset shows an enlargement of the proton-coupled mono-fluoride.

(16) 1-fluoro-1,2,3,4-tetrahydronaphthalene: Prepared from 1,2,3,4-tetrahydronaphthalene (0.3 mmol, 41 μ L, 1.0 equiv) according to the general procedure in section II with the following variations: 0.5 equiv MeB(OH)₂ operating at 35 °C.

Spectra Available in the Literature (CAS): No (62462-11-7)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 5.54 (dt, ²*J*_(H,F) = 51.8 Hz, ³*J*_(H,H) = 3.9 Hz)

Calibrated ¹H NMR Yield from Benzyl Proton: 61%

Benzylic Fluoride Shift: ¹⁹F NMR (CDCl₃, 377 MHz): δ -155.88 (m)

Calibrated ¹⁹F NMR Yield from Benzyl Fluoride: 57%

Figure S33. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.91 ppm). The resolved product benzylic proton is labeled and integrated.

Figure S34. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.68 ppm). The mono-fluoride (-155.88) is labeled and integrated. The inset shows an enlargement of the proton-coupled mono-fluoride.

(17) 3-(2-(3-chlorophenyl)-2-fluoroethyl)picolinonitrile: Prepared from 3-(3-chlorophenethyl)picolinonitrile (0.3 mmol, 73 mg, 1.0 equiv) according to the general procedure in section II with the following variations: 1 mol% CuOAc, 1.2 mol% BPhen, 1 equiv B₂pin₂ (in place of 2 equiv MeB(OH)₂), and 4 equiv NFSI operating at 75 °C.

Spectra Available in the Literature (CAS): No (N/A)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 5.71 (ddd, ²*J*_(H,F) = 53.6 Hz, ³*J*_(H,H) = 5.4 Hz)

Calibrated ¹H NMR Yield from Benzyl Proton: 45%

Benzylic Fluoride Shift: ¹⁹F NMR (CDCl₃, 377 MHz): δ -178.75 (ddd, ²*J*_(H,F) = 47.9 Hz, ³*J*_(H,F) = 29.9 & 19.0 Hz)

Calibrated ¹⁹F NMR Yield from Benzyl Fluoride: 39%

Figure S35. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.92 ppm). The resolved product benzylic proton is labeled and integrated.

Figure S36. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.70 ppm). The mono-fluoride (-178.75) is labeled and integrated. The inset shows an enlargement of the proton-coupled mono-fluoride.

(18) 1-(6-(tert-butyl)-3-fluoro-1,1-dimethyl-2,3-dihydro-1H-inden-4-yl)ethan-1-one:

Prepared from celestolide (0.3 mmol, 73 mg, 1.0 equiv) according to the general procedure in section II.

Spectra Available in the Literature (CAS): Yes⁹ (1500096-10-5)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 6.45 (dd, ²J_(H,F) = 53.6 Hz, ³J_(H,H) = 5.4 Hz)

Calibrated ¹H NMR Yield from Benzyl Proton: 86%

Benzylic Fluoride Shift: ¹⁹F NMR (CDCl₃, 377 MHz): δ -158.62 (ddd, ² $J_{(H,F)} = 54.2$ Hz, ³ $J_{(H,F)} = 34.1$ & 23.5 Hz)

Calibrated ¹⁹F NMR Yield from Benzyl Fluoride: 90% (CF₂ – 6%)

Figure S37. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.92 ppm). The resolved product benzylic proton is labeled and integrated.

Figure S38. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.70 ppm). The mono-fluoride (-158.62) is labeled and integrated. The inset shows an enlargement of the proton-coupled mono-fluoride.

(19) 4-fluoro-3,4-dihydronaphthalen-1(2*H*)-one: Prepared from 1-tetralone (0.3 mmol, 41 μ L, 1.0 equiv) formed according to the general procedure in section II with the following variations: 1 mol% CuOAc, 1.2 mol% BPhen, 1 equiv B₂pin₂ (in place of 2 equiv MeB(OH)₂), and 4 equiv NFSI operating at 75 °C in acetone.

Spectra Available in the Literature (CAS): Yes¹⁶ (587853-65-4)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 5.74 (dt, ²*J*_(H,F) = 50.5 Hz, ³*J*_(H,H) = 5.0 Hz)

Calibrated ¹H NMR Yield from Benzyl Proton: 38%

Benzylic Fluoride Shift: ¹⁹F NMR (CDCl₃, 377 MHz): δ -170.59 (m)

Calibrated ¹⁹F NMR Yield from Benzyl Fluoride: 44%

Figure S39. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.94 ppm). The resolved product benzylic proton is labeled and integrated.

Figure S40. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.74 ppm). The mono-fluoride (-170.59) is labeled and integrated. The inset shows an enlargement of the proton-coupled mono-fluoride.

(20) 6-bromo-4-fluorochromane: Prepared from 6-bromochromane (0.3 mmol, 44 μ L, 1.0 equiv) according to the general procedure in section II with the following variations: 0.5 equiv MeB(OH)₂ operating at 35 °C.

Spectra Available in the Literature (CAS): No (1780938-64-8)

Benzyl Fluoride C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 5.43 (dt, ²*J*_(H,F) = 52.4 Hz, ³*J*_(H,H) = 3.4 Hz)

Calibrated ¹H NMR Yield from Benzylic Proton: 62%

Benzylic Fluoride Shift: ¹⁹F NMR (CDCl₃, 377 MHz): δ -153.79 (ddd, ²*J*_(H,F) = 50.6 Hz, ³*J*_(H,F) = 34.3 & 16.4 Hz)

Calibrated ¹⁹F NMR Yields from Benzyl Fluoride: 60%

Figure S41. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.91 ppm). The resolved product and starting material benzylic protons are labeled and integrated.

Figure S42. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.68 ppm). The mono-fluoride (-153.79) is labeled and integrated. The inset shows an enlargement of the proton-coupled mono-fluoride.

(21) (fluoromethyl)benzene: Prepared from toluene (0.3 mmol, 32 μ L, 1.0 equiv) according to the general procedure in section II with the following variations: 1 mol% CuOAc, 1.2 mol% BPhen, 1 equiv B₂pin₂ (in place of 2 equiv MeB(OH)₂), and 4 equiv NFSI operating at 55 °C in acetone.

Spectra Available in the Literature (CAS): Yes¹⁷ (70869-03-3), Yes⁸ (350-50-5) **Benzyl Fluoride C–H Shift:** ¹H NMR (CDCl₃, 400 MHz): δ 5.37 (d, ²*J*_(H,F) = 47.9 Hz) Calibrated ¹H NMR Yield from Benzylic Proton(s): 59% (C–N), 12% (C–F), 6% (C–F₂) **Benzylic Fluoride Shift:** ¹⁹F NMR (CDCl₃, 377 MHz): δ -206.64 (t, ²*J*_(H,F) = 47.3 Hz) Calibrated ¹⁹F NMR Yields from Benzyl Fluoride(s): 8% (C–F), 8% (C–F₂)

Figure S43. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.91 ppm). The resolved product and starting material benzylic protons are labeled and integrated.

Figure S44. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.67 ppm). The mono-fluoride (-206.64 ppm) and di-fluoride (-110.52 ppm) are labeled and integrated. The insets show enlargements of the proton-coupled resonances.

(22) 1-bromo-4-(fluoromethyl)benzene: Prepared from 4-bromotoluene (0.3 mmol, 37 μ L, 1.0 equiv) according to the general procedure in section II with the following variations: 1 mol% CuOAc, 1.2 mol% BPhen, 1 equiv B₂pin₂ (in place of 2 equiv MeB(OH)₂), and 4 equiv NFSI operating at 55 °C.

Spectra Available in the Literature (CAS): Yes¹⁷ (1361033-82-0), Yes¹⁴ (459-49-4) **Benzyl Fluoride C–H Shift:** ¹H NMR (CDCl₃, 400 MHz): δ 5.32 (d, ²*J*_(H,F) = 47.7 Hz) Calibrated ¹H NMR Yield from Benzylic Proton(s): 44% (C–N), 8% (C–F), 10% (C–F₂) **Benzylic Fluoride Shift:** ¹⁹F NMR (CDCl₃, 377 MHz): δ -208.09 (t, ²*J*_(H,F) = 47.7 Hz) Calibrated ¹⁹F NMR Yields from Benzyl Fluoride: 7% (C–F), 10% (C–F₂)

Figure S45. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.91 ppm). The resolved product and starting material benzylic protons are labeled and integrated.

Figure S46. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.69 ppm). The mono-fluoride (-208.09 ppm) and the di-fluoride (-111.05 ppm) are labeled and integrated. The insets show enlargements of the proton-coupled resonances.

(23) (2-fluoropropan-2-yl)benzene: Prepared from cumene (0.3 mmol, 42 μ L, 1.0 equiv) according to the general procedure in section II.

Spectra Available in the Literature (CAS): Yes⁸ (74185-81-2)

Fluoride Product Methyl C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 1.68 (d, ³*J*_(H,F) = 21.9 Hz) Calibrated ¹H NMR Yield from Benzyl Fluoride Methyl Protons: 92%

Benzylic Fluoride Shift: ¹⁹F NMR (CDCl₃, 377 MHz): δ -137.39 (hept, ³ $J_{(H,F)} = 21.8$ Hz) Calibrated ¹⁹F NMR Yields from Benzyl Fluoride: 85%

Figure S47. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.91 ppm). The resolved product aromatic and methyl protons are labeled and integrated.

Figure S48. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.69 ppm). The benzyl-fluoride (-137.39) is labeled and integrated. The inset shows an enlargement of the proton-coupled fluorine resonance.

(24) 1-bromo-4-fluoro-5-(2-fluoropropan-2-yl)-2-methoxybenzene: Prepared from 1-bromo-4-fluoro-5-isopropyl-2-methoxybenzene (0.3 mmol, 74 mg, 1.0 equiv) according to the general procedure in section II.

Spectra Available in the Literature (CAS): No (N/A)

Fluoride Product Aromatic C–H Shift: ¹H NMR (CDCl₃, 400 MHz): δ 6.61 (d, ³J_(H,F) = 12.8 Hz)

Calibrated ¹H NMR Yield from Benzyl Fluoride Aromatic Proton: 84%

Benzyl Fluoride Product Fluorine Shifts: ¹⁹F NMR (CDCl₃, 377 MHz): δ -112.96 (dt, ³*J*_(H,F) = 14.4 Hz, ⁴*J*_(H,F) = 7.6 Hz), -135.16 (hd, ³*J*_(H,F) = 22.8 Hz, ⁴*J*_(H,F) = 6.7 Hz)

Calibrated ¹⁹F NMR Yields from Benzyl Fluoride: 82%

Figure S49. Crude ¹H NMR Spectrum (CDCl₃, 400 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (21 μ L) of CH₂Br₂ as an internal standard (4.91 ppm). The resolved product aromatic and methyl protons are labeled and integrated.

Figure S50. Crude ¹⁹F{¹H} NMR Spectrum (CDCl₃, 377 MHz, 25 °C) of the reaction mixture following the addition of 0.3 mmol (37 μ L) of PhCF₃ as an internal standard (-62.69 ppm). The aryl-fluoride (-112.96) and benzyl-fluoride (-135.16) are labeled and integrated. The inset shows an enlargement of the proton-coupled fluorine resonances.

VIII. Characterization Data for Isolated Cross Coupling Products

(25) 3-bromo-1-phenylpropan-1-ol: Prepared from benzyl fluoride 8 (0.3 mmol scale, 65% NMR yield) that was formed according to the general procedure in section II. The ensuing displacement step followed the general procedure in section III and used water (0.75 mmol, 13.5 μ L, 2.5 equiv) as the nucleophile with HFIP (3.0 mmol, 315 μ L, 10 equiv) as the displacement catalyst.

Purification: Normal phase silica gel chromatography was used with a gradient of $0\% \rightarrow 10\%$ EtOAc in pentane.

Isolated Yield from Benzyl Fluoride: 64%, 27.4 mg of yellow oil

Spectra Available in the Literature (CAS): Yes¹⁸ (34052-63-6)

¹**H** NMR (CDCl₃, 500 MHz): δ 7.39 – 7.35 (m, 4H), 7.33 – 7.28 (m, 1H), 4.92 (dd, J = 8.4, 4.7 Hz, 1H), 3.59 (ddd, J = 10.0, 8.2, 6.0 Hz, 1H), 3.42 (dt, J = 10.0, 6.1 Hz, 1H), 2.32 (ddt, J = 14.3, 8.3, 5.9 Hz, 1H), 2.18 (dddd, J = 14.5, 8.2, 6.3, 4.6 Hz, 1H), 2.03 (bs, 1H).

¹³C NMR (CDCl₃, 126 MHz): δ 143.6, 128.7, 127.9, 125.8, 72.3, 41.6, 30.2.

(26) 1-(2-bromophenyl)ethan-1-ol: Prepared from benzyl fluoride 2 (0.3 mmol scale, 44% NMR yield) that was formed according to the general procedure in section II with the following variations: 1 mol% CuOAc, 1.2 mol% BPhen, 1 equiv B_2pin_2 (in place of 2 equiv MeB(OH)₂), and 4 equiv NFSI operating at 75 °C. The ensuing displacement step followed the general procedure in section III and used water (0.75 mmol, 13.5 µL, 2.5 equiv) as the nucleophile with HFIP (3.0 mmol, 315 µL, 10 equiv) as the displacement catalyst.

Purification: Reverse phase silica gel chromatography was used with a gradient of $50\% \rightarrow 85\%$ MeOH in water. The product was extracted with 1:1 ether:pentane.

Isolated Yield from Benzyl Fluoride: 87%, 22.9 mg of colorless oil.

Spectra Available in the Literature (CAS): Yes¹⁹ (5411-56-3)

¹**H** NMR (CDCl₃, 500 MHz): δ 7.60 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.51 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.35 (td, *J* = 7.6, 1.2 Hz, 1H), 7.13 (td, *J* = 7.7, 1.7 Hz, 1H), 5.24 (q, *J* = 6.4 Hz, 1H), 1.49 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (CDCl₃, 126 MHz): δ 144.6, 132.7, 128.8, 127.9, 126.7, 121.7, 69.2, 23.6.

(27) 6-bromochroman-4-ol: Prepared from benzyl fluoride 20 (0.3 mmol scale, 57% NMR yield) that was formed according to the general procedure in section II with the following variations: 0.5 equiv MeB(OH)₂ operating at 35 °C. The ensuing displacement step followed the general procedure in section III and used water (0.75 mmol, 13.5 μ L, 2.5 equiv) as the nucleophile with HFIP (3.0 mmol, 315 μ L, 10 equiv) as the displacement catalyst.

Purification: Reverse phase silica gel chromatography was used with a gradient of $50\% \rightarrow 85\%$ MeOH in water. The product was extracted with 1:1 ether:pentane.

Isolated Yield from Benzyl Fluoride: 34%, 13.1 mg of colorless oil.

Spectra Available in the Literature (CAS): Yes²⁰ (18385-77-8)

¹**H** NMR (CDCl₃, 500 MHz): δ 7.45 (d, J = 2.5 Hz, 1H), 7.28 (dd, J = 8.7, 2.5 Hz, 1H), 6.73 (d, J = 8.7 Hz, 1H), 4.76 (t, J = 4.3 Hz, 1H), 4.31 – 4.21 (m, 2H), 2.18 – 1.98 (m, 2H), 1.87 (bs, 1H). ¹³C NMR (CDCl₃, 126 MHz): δ 153.7, 132.5, 132.1, 126.3, 119.0, 112.4, 63.0, 62.2, 30.6.

(28) (3-chloro-1-(neopentyloxy)propyl)benzene: Prepared from benzyl fluoride 7 (0.3 mmol scale, 76% NMR yield) that was formed according to the general procedure in section II. The ensuing displacement step followed the general procedure in section III and used neopentyl alcohol (0.75 mmol, 81.4 μ L, 2.5 equiv) as the nucleophile with BF₃•Et₂O (0.03 mmol, 3.7 μ L, 0.1 equiv) as the displacement catalyst. The nucleophile was dried in 1 mL DCM with MgSO₄ prior to use. Purification: Reverse phase silica gel chromatography was used with a gradient of 70% \rightarrow 100% MeOH in water. The product was extracted with 1:1 ether:pentane.

Isolated Yield from Benzyl Fluoride: 51%, 28.2 mg of light yellow oil.

Spectra Available in the Literature (CAS): No (2173346-35-3)

¹**H NMR** (CDCl₃, 500 MHz): δ 7.35 (t, J = 7.5 Hz, 2H), 7.32 – 7.26 (m, 3H), 4.42 (dd, J = 9.2, 4.1 Hz, 1H), 3.78 (ddd, J = 10.6, 8.6, 5.8 Hz, 1H), 3.59 (ddd, J = 11.0, 6.4, 5.1 Hz, 1H), 3.03 (d, J = 8.5 Hz, 1H), 2.90 (d, J = 8.5 Hz, 1H), 2.21 (ddt, J = 14.5, 9.2, 5.5 Hz, 1H), 2.00 (dddd, J = 14.6, 8.6, 6.4, 4.1 Hz, 1H), 0.91 (s, 9H).

¹³C NMR (CDCl₃, 126 MHz): δ 142.3, 128.4, 127.5, 126.4, 79.5, 78.9, 41.9, 41.6, 32.1, 26.7. HRMS (ESI) m/z: [M-H]⁺ Calcd for C₁₄H₂₀ClO 239.1197; Found 239.1197.

(29) 1-bromo-4-(1-(2-chloroethoxy)ethyl)benzene: Prepared from benzyl fluoride 1 (0.3 mmol scale, 74% NMR yield) that was formed according to the general procedure in section II. The ensuing displacement step followed the general procedure in section III and used 2-chloroethanol (0.75 mmol, 50.3 μ L, 2.5 equiv) as the nucleophile with HFIP (3.0 mmol, 315 μ L, 10 equiv) as the displacement catalyst.

Purification: Normal phase silica gel chromatography was used with a gradient of $0\% \rightarrow 20\%$ EtOAc in pentane.

Isolated Yield from Benzyl Fluoride: 60%, 35.3 mg of colorless amorphous solid. Spectra Available in the Literature (CAS): No (N/A)

¹**H** NMR (CDCl₃, 500 MHz): δ 7.48 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 4.43 (q, J = 6.5 Hz, 1H), 3.62 – 3.53 (m, 4H), 1.44 (d, J = 6.5 Hz, 3H).

¹³C NMR (CDCl₃, 126 MHz): δ 142.4, 131.7, 127.9, 121.4, 77.9, 68.7, 43.0, 23.9.

HRMS (ESI) m/z: [M+NH₄]⁺ Calcd for C₁₀H₁₆BrClNO 280.0098; Found 280.0100.

(30) ((2-bromoethoxy)methylene)dibenzene: Prepared from benzyl fluoride 10 (0.3 mmol scale, 46% NMR yield) that was formed according to the general procedure in section II. The ensuing displacement step followed the general procedure in section III and used 2-bromoethanol (0.75 mmol, 53.2 μ L, 2.5 equiv) as the nucleophile with HFIP (3.0 mmol, 315 μ L, 10 equiv) as the displacement catalyst.

Purification: Reverse phase silica gel chromatography was used with a gradient of $50\% \rightarrow 85\%$ MeOH in water. The product was extracted with 1:1 ether:pentane.

Isolated Yield from Benzyl Fluoride: 80%, 32.3 mg of white solid.

Spectra Available in the Literature (CAS): Yes²¹ (91-01-0)

¹**H** NMR (CDCl₃, 500 MHz): δ 7.40 – 7.31 (m, 8H), 7.30 – 7.24 (m, 2H), 5.44 (s, 1H), 3.79 (t, J = 6.3 Hz, 2H), 3.53 (t, J = 6.2 Hz, 2H).

¹³C NMR (CDCl₃, 126 MHz): δ 141.7, 128.4, 127.7, 127.0, 83.9, 68.9, 30.6.

(31) 3-(3-(3-chloro-1-phenylpropoxy)propyl)pyridine: Prepared from benzyl fluoride 7 (0.3 mmol scale, 78% NMR yield) that was formed according to the general procedure in section II. The ensuing displacement step followed the general procedure in section III and used 3-(3-pyridyl)-1-propanol (0.75 mmol, 43 μ L, 2.5 equiv) that was protonated with methanesulfonic acid (0.75 mmol, 48.7 μ L, 2.5 equiv) as the nucleophile with both HFIP (3.0 mmol, 315 μ L, 10 equiv) and BF₃•Et₂O (0.15 mmol, 18.5 μ L, 0.5 equiv) as the displacement catalysts. The nucleophile was dried in 1 mL DCM with MgSO₄

Purification: An extraction with DCM and sodium bicarbonate was used to remove MsOH and BF₃ from pyridine. The organic phase was collected, dried with MgSO₄, concentrated on the rotovap and then subjected to chromatography with a gradient of $20\% \rightarrow 60\%$ EtOAc in pentane. Isolated Yield from Benzyl Fluoride: 36%, 24.1 mg of slightly yellow oil.

Spectra Available in the Literature (CAS): No (N/A)

¹**H** NMR (CDCl₃, 500 MHz): δ 8.44 (t, J = 2.1 Hz, 2H), 7.47 (dt, J = 7.8, 2.0 Hz, 1H), 7.38 – 7.33 (m, 2H), 7.33 – 7.28 (m, 3H), 7.19 (dd, J = 7.8, 4.8 Hz, 1H), 4.47 (dd, J = 8.7, 4.6 Hz, 1H), 3.75 (ddd, J = 10.7, 8.5, 5.4 Hz, 1H), 3.54 (dt, J = 11.0, 5.7 Hz, 1H), 3.38 (dt, J = 9.5, 6.1 Hz, 1H), 2.76 – 2.61 (m, 2H), 2.25 (ddt, J = 14.3, 8.8, 5.5 Hz, 1H), 2.02 (dddd, J = 14.4, 8.5, 5.9, 4.6 Hz, 1H), 1.87 (tt, J = 8.0, 6.2 Hz, 2H).

¹³C NMR (CDCl₃, 126 MHz): δ 149.9, 147.3, 141.7, 137.2, 135.9, 128.6, 127.8, 126.5, 123.3, 78.7, 67.7, 41.7, 41.0, 31.2, 29.6.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₁ClNO 290.1306; Found 290.1302.

(32) *tert*-butyl (2R)-2-((3-methyl-1-phenylbutoxy)methyl)pyrrolidine-1-carboxylate:

Prepared from benzyl fluoride **11** (0.3 mmol scale, 76% NMR yield) that was formed according to the general procedure in section II. The ensuing displacement step followed the general procedure in section III and used N-Boc-DL-prolinol (0.75 mmol, 151 mg, 2.5 equiv) as the nucleophile with BF_3 •Et₂O (0.15 mmol, 18.5 µL, 0.5 equiv) as the displacement catalyst.

Purification: Silica gel chromatography was used with a gradient of $0\% \rightarrow 20\%$ EtOAc in pentane. Isolated Yield from Benzyl Fluoride: 49%, 38.8 mg of colorless oil.

Spectra Available in the Literature (CAS): No (N/A)

¹**H NMR** (CDCl₃, 500 MHz): δ 7.34 – 7.29 (m, 2H), 7.28 – 7.23 (m, 3H), 4.34 – 4.16 (m, 1H), 4.04 – 3.73 (m, 1H), 3.43 – 3.01 (m, 4H), 2.06 – 1.85 (m, 3H), 1.86 – 1.65 (m, 4H), 1.47 – 1.42 (m, 2H), 1.44 – 1.31 (m, 9H), 0.96 – 0.85 (m, 6H).

¹³C NMR (CDCl₃, 126 MHz): δ 154.4, 143.3, 128.3, 127.3, 126.4, 81.2, 80.6, 79.1, 70.0, 69.6, 68.8, 56.8, 56.5, 47.9, 47.8, 46.7, 46.4, 29.1, 28.5, 24.8, 24.8, 23.2, 23.0, 22.2.

HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₃₃NNaO₃ 370.2353; Found 370.2348.

(33) 1-(3-(1-(*tert*-butoxy)ethyl)phenyl)ethan-1-one: Prepared from benzyl fluoride 4 (0.3 mmol scale, 80% NMR yield) that was formed according to the general procedure in section II with the following variations: 1 mol% CuOAc, 1.2 mol% BPhen, 1 equiv B₂pin₂ (in place of 2 equiv MeB(OH)₂), and 4 equiv NFSI operating at 55 °C. The ensuing displacement step followed the general procedure in section III and used *tert*-butanol (0.75 mmol, 71.7 μ L, 2.5 equiv) as the nucleophile with BF₃•Et₂O (0.03 mmol, 3.7 μ L, 0.1 equiv) as the displacement catalyst. The nucleophile was dried in 1 mL DCM with MgSO₄ prior to use.

Purification: Reverse phase silica gel chromatography was used with a gradient of $70\% \rightarrow 100\%$ MeOH in water. The product was extracted with 1:1 ether:pentane.

Isolated Yield from Benzyl Fluoride: 66%, 35.5 mg of colorless oil.

Spectra Available in the Literature (CAS): No (N/A)

¹**H** NMR (CDCl₃, 500 MHz): δ 7.93 (s, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 4.72 (q, J = 6.5 Hz, 1H), 2.61 (s, 3H), 1.38 (d, J = 6.5 Hz, 3H), 1.16 (s, 9H).

¹³C NMR (CDCl₃, 126 MHz): δ 198.3, 148.2, 137.1, 130.4, 128.4, 126.7, 125.3, 83.5, 74.4, 69.5, 28.5, 26.7, 26.6, 25.0.

HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₄H₂₀NaO₂ 243.1356; Found 243.1353.

(34) 1-(4-bromophenyl)ethyl cyclopent-3-ene-1-carboxylate: Prepared from benzyl fluoride 1 (0.3 mmol scale, 72% NMR yield) that was formed according to the general procedure in section II. The ensuing displacement step followed the general procedure in section III and used cyclopent-3-ene-1-carboxylic acid (0.75 mmol, 77.6 μ L, 2.5 equiv) as the nucleophile with BF₃•Et₂O (0.03 mmol, 3.7 μ L, 0.1 equiv) as the displacement catalyst.

Purification: Normal phase silica gel chromatography was used with a gradient of $0\% \rightarrow 20\%$ EtOAc in pentane.

Isolated Yield from Benzyl Fluoride: 57%, 36.1 mg of clear, colorless liquid.

Spectra Available in the Literature (CAS): No (N/A)

¹**H NMR** (CDCl₃, 500 MHz): δ 7.47 (d, *J* = 8.5 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 5.84 (q, *J* = 6.6 Hz, 1H), 5.69 – 5.60 (m, 2H), 3.13 (tt, *J* = 9.0, 7.5 Hz, 1H), 2.73 – 2.54 (m, 4H), 1.51 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (CDCl₃, 126 MHz): δ 175.2, 140.9, 131.6, 128.9, 127.8, 121.7, 71.5, 41.6, 36.2, 22.1. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₄H₁₅BrNaO₂ 317.0148; Found 317.0147.

(35) 1-(3-acetylphenyl)ethyl acetate: Prepared from benzyl fluoride 4 (0.3 mmol scale, 76% NMR yield) that was formed according to the general procedure in section II with the following variations: 1 mol% CuOAc, 1.2 mol% BPhen, 1 equiv B₂pin₂ (in place of 2 equiv MeB(OH)₂), and 4 equiv NFSI operating at 55 °C. The ensuing displacement step followed the general procedure in section III and used acetic acid (0.75 mmol, 43 μ L, 2.5 equiv) as the nucleophile with HFIP (3.0 mmol, 315 μ L, 10 equiv) as the displacement catalyst.

Purification: Normal phase silica gel chromatography was used with a gradient of $0\% \rightarrow 20\%$ EtOAc in pentane.

Isolated Yield from Benzyl Fluoride: 80%, 37.8 mg of colorless oil.

Spectra Available in the Literature (CAS): No (N/A)

¹**H NMR** (CDCl₃, 500 MHz): δ 7.95 (s, 1H), 7.88 (dd, J = 7.7, 1.4 Hz, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.45 (t, J = 7.7 Hz, 1H), 5.92 (q, J = 6.7 Hz, 1H), 2.62 (s, 3H), 2.09 (s, 3H), 1.56 (d, J = 6.7 Hz, 3H).

¹³C NMR (CDCl₃, 126 MHz): δ 197.8, 170.2, 142.4, 137.4, 130.8, 128.8, 127.9, 125.8, 71.9, 26.7, 22.2, 21.3.

HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₂H₁₄NaO₃ 229.0835; Found 229.0832.

(36) 3-chloro-1-phenylpropyl 2-(2-bromophenyl)acetate: Prepared from benzyl fluoride 7 (0.3 mmol scale, 72% NMR yield) that was formed according to the general procedure in section II. The ensuing displacement step followed the general procedure in section III and used 2-(2-bromophenyl)acetic acid (0.75 mmol, 161.3 mg, 2.5 equiv) as the nucleophile with HFIP (3.0 mmol, 315 μ L, 10 equiv) as the displacement catalyst.

Purification: Normal phase silica gel chromatography was used with a gradient of $0\% \rightarrow 20\%$ EtOAc in pentane.

Isolated Yield from Benzyl Fluoride: 64%, 50.5 mg of yellow solid.

Spectra Available in the Literature (CAS): No (N/A)

¹**H NMR** (CDCl₃, 500 MHz): δ 7.58 (d, J = 7.9 Hz, 1H), 7.38 – 7.23 (m, 7H), 7.15 (ddd, J = 8.8, 6.0, 3.0 Hz, 1H), 5.98 (dd, J = 8.4, 5.3 Hz, 1H), 3.89 – 3.78 (m, 2H), 3.52 (dt, J = 10.9, 7.0 Hz, 1H), 3.43 (dt, J = 10.9, 6.4 Hz, 1H), 2.38 (ddt, J = 14.5, 8.3, 6.2 Hz, 1H), 2.18 (dtd, J = 14.3, 7.1, 5.3 Hz, 1H).

¹³C NMR (CDCl₃, 126 MHz): δ 169.5, 139.3, 134.1, 132.8, 131.4, 129.0, 128.6, 128.3, 127.6, 126.4, 125.0, 73.8, 41.9, 40.6, 39.1.

HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₁₆BrClNaO₂ 390.9893; Found 390.9886.

(37) *tert*-butyl benzhydrylcarbamate: Prepared from benzyl fluoride 10 (0.3 mmol scale, 44% NMR yield) that was formed according to the general procedure in section II. The ensuing displacement step followed the general procedure in section III and used Boc carbamate (0.75 mmol, 87.9 mg, 2.5 equiv) as the nucleophile with BF₃•Et₂O (0.15 mmol, 18.5 μ L, 0.5 equiv) as the displacement catalyst.

Purification: Normal phase silica gel chromatography was used with a gradient of $0\% \rightarrow 20\%$ EtOAc in pentane.

Isolated Yield from Benzyl Fluoride: 70%, 26.2 mg of white solid.

Spectra Available in the Literature (CAS): Yes²² (21420-61-1)

¹**H** NMR (CDCl₃, 500 MHz): δ 7.35 – 7.30 (m, 4H), 7.29 – 7.22 (m, 6H), 5.92 (bs, 1H), 5.15 (bs, 1H), 1.44 (bs, 9H).

¹³C NMR (CDCl₃, 126 MHz): δ 155.0, 142.1, 128.6, 127.3, 127.2, 79.8, 58.4, 28.4.

(38) N-(1-(4-bromophenyl)ethyl)-N-ethyl-4-methylbenzenesulfonamide: Prepared from benzyl fluoride 1 (0.3 mmol scale, 56% NMR yield) that was formed according to the general procedure in section II with the following variations: 1 mol% CuOAc, 1.2 mol% BPhen, 1 equiv B₂pin₂ (in place of 2 equiv MeB(OH)₂), and 4 equiv NFSI operating at 45 °C with DCM as the solvent instead of PhCl. The ensuing displacement step followed the general procedure in section III and used N-ethyl-4-methylbenzenesulfonamide (0.75 mmol, 149.4 mg, 2.5 equiv) as the nucleophile with BF₃.Et₂O (0.03 mmol, 3.7 μ L, 0.1 equiv) as the displacement catalyst.

Purification: Reverse phase chromatography was used with a gradient of $65\% \rightarrow 100\%$ MeOH in water. Solvent was removed directly on the rotovap at elevated temperatures.

Isolated Yield from Benzyl Fluoride: 78%, 50 mg of white solid.

Spectra Available in the Literature (CAS): No (N/A)

¹**H NMR** (CDCl₃, 500 MHz): δ 7.73 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.5 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 8.5 Hz, 2H), 5.14 (q, *J* = 7.1 Hz, 1H), 3.20 – 3.02 (m, *J* = 7.3 Hz, 2H), 2.44 (s, 3H), 1.37 (d, *J* = 7.1 Hz, 3H), 0.93 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (CDCl₃, 126 MHz): δ 143.1, 139.7, 138.4, 131.4, 129.7, 129.2, 127.1, 121.5, 54.7, 38.9, 21.5, 16.7, 16.6.

HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₂₀BrNNaO₂S 404.0290; Found 404.0287.

(39) N-methyl-N-(3-methyl-1-phenylbutyl)naphthalene-2-sulfonamide: Prepared from benzyl fluoride 11 (0.3 mmol scale, 70% NMR yield) that was formed according to the general procedure in section II. The ensuing displacement step followed the general procedure in section III and used N-methyl-2-naphthylsulfonamide (0.75 mmol, 166 mg, 2.5 equiv) as the nucleophile with BF₃.Et₂O (0.03 mmol, 3.7 μ L, 0.1 equiv) as the displacement catalyst.

Purification: Normal phase silica gel chromatography was used with a gradient of $0\% \rightarrow 20\%$ EtOAc in pentane.

Isolated Yield from Benzyl Fluoride: 82%, 63.1 mg of white solid.

Spectra Available in the Literature (CAS): No (N/A)

¹**H** NMR (CDCl₃, 500 MHz): δ 8.32 (s, 1H), 7.89 (t, J = 8.4 Hz, 3H), 7.71 (dd, J = 8.7, 1.9 Hz, 1H), 7.66 – 7.55 (m, 2H), 7.28 – 7.21 (m, 5H), 5.29 (dd, J = 8.4, 7.0 Hz, 1H), 2.69 (s, 3H), 1.84 – 1.74 (m, 1H), 1.56 – 1.43 (m, 2H), 0.90 (dd, J = 13.0, 6.3 Hz, 6H).

¹³C NMR (CDCl₃, 126 MHz): δ 138.5, 137.1, 134.6, 132.1, 129.1, 129.1, 128.5, 128.4, 128.4, 128.1, 127.8, 127.7, 127.4, 122.7, 58.2, 39.6, 28.8, 24.8, 22.7, 22.4.

HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₅NNaO₂S 390.1498; Found 390.1495.

(40) N-(3-bromo-1-phenylpropyl)-N-butyl-4-nitrobenzenesulfonamide: Prepared from benzyl fluoride 8 (0.3 mmol scale, 67% NMR yield) that was formed according to the general procedure in section II with DCM as the solvent instead of PhCl. The ensuing displacement step followed the general procedure in section III and used N-butyl-4-nitrobenzenesulfonamide (0.75 mmol, 193.7 mg, 2.5 equiv) as the nucleophile with BF₃.Et₂O (0.03 mmol, 3.7 μ L, 0.1 equiv) as the displacement catalyst. The nucleophile was dried in 1 mL DCM with MgSO₄ prior to use.

Purification: Reverse phase chromatography was used with $65\% \rightarrow 100\%$ MeOH in water. Solvent was removed directly on the rotovap at elevated temperatures.

Isolated Yield from Benzyl Fluoride: 62%, 56.3 mg of colorless oil.

Spectra Available in the Literature (CAS): No (N/A)

¹**H** NMR (CDCl₃, 500 MHz): δ 8.26 (d, J = 8.7 Hz, 2H), 7.88 (d, J = 8.7 Hz, 2H), 7.31 – 7.25 (m, 3H), 7.20 – 7.14 (m, 2H), 5.15 (dd, J = 8.9, 6.3 Hz, 1H), 3.43 (dt, J = 10.3, 6.0 Hz, 1H), 3.26 (ddd, J = 10.4, 8.4, 5.9 Hz, 1H), 3.14 (ddd, J = 9.8, 6.0, 3.7 Hz, 2H), 2.67 (ddt, J = 14.6, 8.9, 5.8 Hz, 1H), 2.37 (dt, J = 14.7, 7.3 Hz, 1H), 1.56 – 1.45 (m, 1H), 1.41 – 1.29 (m, 1H), 1.18 (h, J = 7.4 Hz, 2H), 0.83 (t, J = 7.4 Hz, 3H).

¹³C NMR (CDCl₃, 126 MHz): δ 149.7, 146.8, 136.3, 128.9, 128.7, 128.3, 128.2, 124.1, 60.1, 46.1, 35.3, 32.7, 29.7, 20.1, 13.6.

HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₂₃BrN₂NaO₄S 477.0454; Found 477.0448.

(41) N-(1-(4-bromophenyl)ethyl)-4-nitro-N-phenethylbenzenesulfonamide: Prepared from benzyl fluoride 1 (0.3 mmol scale, 83% NMR yield) that was formed according to the general procedure in section II with DCM as the solvent instead of PhCl. The ensuing displacement step followed the general procedure in section III and used N-phenethyl-4-nitrobenzenesulfonamide (0.75 mmol, 229.8 mg, 2.5 equiv) as the nucleophile with BF₃.Et₂O (0.03 mmol, 3.7 μ L, 0.1 equiv) as the displacement catalyst. The nucleophile was dried in 1 mL DCM with MgSO₄ prior to use. Purification: Reverse phase chromatography was used with 65% \rightarrow 100% MeOH in water. Solvent was removed directly on the rotovap at elevated temperatures.

Isolated Yield from Benzyl Fluoride: 42%, 51.4 mg of white solid.

Spectra Available in the Literature (CAS): No (N/A)

¹**H** NMR (CDCl₃, 500 MHz): δ 8.34 (d, J = 8.8 Hz, 2H), 8.02 (d, J = 8.9 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H), 7.27 – 7.22 (m, 2H), 7.22 – 7.16 (m, 3H), 6.96 (d, J = 7.0 Hz, 2H), 5.22 (q, J = 7.1 Hz, 1H), 3.31 (ddd, J = 14.8, 11.4, 5.5 Hz, 1H), 3.19 (ddd, J = 14.8, 11.3, 5.2 Hz, 1H), 2.80 (td, J = 12.8, 11.3, 5.5 Hz, 1H), 2.38 (td, J = 12.8, 11.3, 5.5 Hz, 1H), 1.39 (d, J = 7.1 Hz, 3H).

¹³C NMR (CDCl₃, 126 MHz): δ 149.9, 146.7, 138.5, 138.1, 131.8, 129.2, 128.7, 128.6, 128.2, 126.7, 124.4, 122.3, 55.6, 46.4, 37.6, 16.8.

HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₁BrN₂NaO₄S 511.0298; Found 511.0295.

Boc from the Nuc–H piperidine was removed under displacement conditions

(42) *tert*-butyl 3-((N-(3-bromo-1-phenylpropyl)-4-nitrophenyl)sulfonamido)piperidine-1carboxylate: Prepared from benzyl fluoride 8 (0.3 mmol scale, 63% NMR yield) that was formed according to the general procedure in section II with DCM as the solvent instead of PhCl. The ensuing displacement step followed the general procedure in section III and used 3-((4nitrophenyl)sulfonamido)-N-Boc-piperidine (0.75 mmol, 289.1 mg, 2.5 equiv) as the nucleophile with BF₃.Et₂O (0.45 mmol, 55.5 μ L, 1.5 equiv) as the displacement catalyst.

Purification: Reverse phase chromatography was used with $65\% \rightarrow 100\%$ MeOH in water. Solvent was removed directly on the rotovap at elevated temperatures.

Isolated Yield from Benzyl Fluoride: 23%, 21.0 mg of yellow oil.

Spectra Available in the Literature (CAS): No (N/A)

¹**H NMR** (CDCl₃, 500 MHz): δ 8.43 – 8.25 (m, 2H), 8.12 – 7.96 (m, 2H), 7.40 – 7.28 (m, 5H), 5.82 (t, *J* = 6.6 Hz, 1H), 4.90 (bs, 1H), 3.56 – 3.18 (m, 7H), 2.55 – 2.44 (m, 1H), 2.39 – 2.20 (m, 1H), 1.86 – 1.70 (m, 1H), 1.70 – 1.62 (m, 1H), 1.53 – 1.43 (m, 2H).

¹³C NMR (CDCl₃, 126 MHz): δ 150.1, 146.5, 139.7, 139.7, 128.8, 128.4, 128.4, 128.3, 126.2, 124.6, 124.6, 75.8, 49.6, 39.6, 39.5, 30.9, 28.7, 28.6, 22.4.

HRMS (ESI) m/z: [M+CO₂+Na]⁺ Calcd for C₂₁H₂₄BrN₃NaO₆S 548.0461; Found 548.0462.

(43) N-(3-bromo-1-phenylpropyl)-N-(4-ethylphenyl)-4-nitrobenzenesulfonamide: Prepared from benzyl fluoride 8 (0.3 mmol scale, 68% NMR yield) that was formed according to the general procedure in section II with DCM as the solvent instead of PhCl. The ensuing displacement step followed procedure in section and used N-4-ethvlphenvl-4the general III nitrobenzenesulfonamide (0.75 mmol, 229.8 mg, 2.5 equiv) as the nucleophile with BF₃•Et₂O (0.15 mmol, 18.5 µL, 0.5 equiv) as the displacement catalyst. The nucleophile was dried in 1 mL DCM with MgSO₄ prior to use.

Purification: Reverse phase chromatography was used with $65\% \rightarrow 100\%$ MeOH in water. Isolated Yield from Benzyl Fluoride: 70%, 72 mg of yellow oil.

Spectra Available in the Literature (CAS): No (N/A)

¹**H** NMR (CDCl₃, 500 MHz): δ 8.25 (d, J = 8.8 Hz, 2H), 7.84 (d, J = 8.8 Hz, 2H), 7.29 (t, J = 7.3 Hz, 1H), 7.24 (t, J = 7.4 Hz, 2H), 7.03 (t, J = 7.0 Hz, 4H), 6.48 (d, J = 7.9 Hz, 2H), 5.74 (t, J = 7.6 Hz, 1H), 3.38 (dt, J = 10.3, 6.2 Hz, 1H), 3.23 (dt, J = 10.3, 7.1 Hz, 1H), 2.63 (q, J = 7.6 Hz, 2H), 2.43 – 2.27 (m, 2H), 1.22 (t, J = 7.6 Hz, 3H).

¹³C NMR (CDCl₃, 126 MHz): δ 149.8, 146.5, 145.7, 136.9, 132.3, 131.5, 128.8, 128.7, 128.7, 128.5, 128.4, 123.9, 61.7, 35.7, 29.4, 28.4, 15.1.

HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₂₃BrN₂NaO₄S 525.0454; Found 525.0452.

(44) 3-(1-(2-bromophenyl)ethyl)-4-hydroxy-ethylbenzoate: Prepared from benzyl fluoride 2 (0.3 mmol scale, 48% NMR yield) that was formed according to the general procedure in section II with the following variations: 1 mol% CuOAc, 1.2 mol% BPhen, 1 equiv B₂pin₂ (in place of 2 equiv MeB(OH)₂), and 4 equiv NFSI operating at 75 °C. The ensuing displacement step followed the general procedure in section III and used ethyl paraben (0.75 mmol, 124.7 mg, 2.5 equiv) as the nucleophile with HFIP (3.0 mmol, 315 μ L, 10 equiv) as the displacement catalyst.

Purification: Reverse phase silica gel chromatography was used with a gradient of $50\% \rightarrow 85\%$ MeOH in water. The product was extracted with 1:1 ether:pentane.

Isolated Yield from Benzyl Fluoride: 75%, 37.5 mg of colorless oil.

Spectra Available in the Literature (CAS): No (N/A)

¹**H** NMR (CDCl₃, 500 MHz): δ 7.90 (d, *J* = 8.9 Hz, 2H), 7.55 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.41 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.25 (t, *J* = 7.6 Hz, 1H), 7.11 (td, *J* = 7.7, 1.7 Hz, 1H), 6.80 (d, *J* = 8.9 Hz, 2H), 5.69 (q, *J* = 6.3 Hz, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 1.64 (d, *J* = 6.3 Hz, 3H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (CDCl₃, 126 MHz): δ 166.3, 161.2, 141.4, 132.8, 132.8, 131.5, 129.1, 129.1 128.2, 126.8, 123.0, 121.5, 115.1, 74.9, 60.5, 22.6, 14.3.

HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₁₇BrNaO₃ 371.0253; Found 371.0251.

(45) 2-(1-(4-bromophenyl)ethyl)-4,5-dichlorophenol: Prepared from benzyl fluoride 1 (0.3 mmol scale, 75% NMR yield) that was formed according to the general procedure in section II. The ensuing displacement step followed the general procedure in section III and used 3,4-dichlorophenol (0.75 mmol, 122.3 mg, 2.5 equiv) as the nucleophile with HFIP (3.0 mmol, 315 μ L, 10 equiv) as the displacement catalyst.

Purification: Reverse phase chromatography was used with a gradient of $65\% \rightarrow 100\%$ MeOH in water.

Isolated Yield from Benzyl Fluoride: 83%, 64.3 mg of yellow solid.

Spectra Available in the Literature (CAS): No (N/A)

¹**H** NMR (CDCl₃, 500 MHz): δ 7.42 (d, J = 8.7 Hz, 2H), 7.24 (s, 1H), 7.09 (d, J = 8.6 Hz, 2H), 6.84 (s, 1H), 4.97 (s, 1H), 4.29 (q, J = 7.2 Hz, 1H), 1.57 (d, J = 7.3 Hz, 3H).

¹³C NMR (CDCl₃, 126 MHz): δ 152.1, 143.4, 132.4, 132.4 131.8, 130.5, 129.2, 124.2, 120.5, 117.6, 37.7, 20.6.

HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₄H₁₀BrCl₂O 342.9298; Found 342.9300.

(46) 2-(3-chloro-1-phenylpropyl)-4-methylphenol: Prepared from benzyl fluoride 7 (0.3 mmol scale, 77% NMR yield) that was formed according to the general procedure in section II. The ensuing displacement step followed the general procedure in section III and used *p*-cresol (0.75 mmol, 81 mg, 2.5 equiv) as the nucleophile with HFIP (3.0 mmol, 315 μ L, 10 equiv) as the displacement catalyst.

Purification: Reverse phase silica gel chromatography was used with a gradient of $70\% \rightarrow 100\%$ MeOH in water. The product was extracted with 1:1 ether:pentane.

Isolated Yield from Benzyl Fluoride: 87%, 52.6 mg of off-white oil.

Isolated Yield from Benzyl Fluoride on 3 mmol Scale (see section IV): 84%, 445 mg of gold oil. Spectra Available in the Literature (CAS): No (926890-10-0)

¹**H** NMR (CDCl₃, 500 MHz): δ 7.33 – 7.27 (m, 4H), 7.21 (tt, *J* = 5.5, 2.5 Hz, 1H), 7.02 (d, *J* = 2.1 Hz, 1H), 6.91 (dd, *J* = 8.1, 2.2 Hz, 1H), 6.64 (d, *J* = 8.1 Hz, 1H), 4.48 (s, 1H), 4.46 (t, *J* = 7.8 Hz, 1H), 3.54 – 3.44 (m, 2H), 2.60 – 2.44 (m, 2H), 2.28 (s, 3H).

¹³C NMR (CDCl₃, 126 MHz): δ 151.1, 142.8, 130.2, 129.4, 128.7, 128.6, 128.2, 128.0, 126.7, 116.0, 43.3, 41.4, 37.2, 20.7.

HRMS (ESI) m/z: [M-Cl]⁺ Calcd for C₁₆H₁₇O 225.1274; Found 225.1271.

(47) 3-(1-(4-bromophenyl)ethyl)-1-(phenylsulfonyl)-1H-indole: Prepared from benzyl fluoride 1 (0.3 mmol scale, 78% NMR yield) that was formed according to the general procedure in section II. The ensuing displacement step followed the general procedure in section III and used 1-(phenylsulfonyl)indole (0.75 mmol, 193 mg, 2.5 equiv) as the nucleophile with HFIP (3.0 mmol, 315 μ L, 10 equiv) as the displacement catalyst.

Purification: Reverse phase silica gel chromatography was used with a gradient of $70\% \rightarrow 100\%$ MeOH in water. The product was extracted with 1:1 ether:pentane.

Isolated Yield from Benzyl Fluoride: 78%, 80.4 mg of white solid.

Spectra Available in the Literature (CAS): No (N/A)

¹**H** NMR (CDCl₃, 500 MHz): δ 7.97 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 7.2 Hz, 2H), 7.55 (t, J = 7.5 Hz, 1H), 7.45 (t, J = 7.9 Hz, 2H), 7.42 (d, J = 1.3 Hz, 1H), 7.36 (d, J = 8.5 Hz, 2H), 7.27 (ddd, J = 8.5, 6.9, 1.5 Hz, 1H), 7.15 – 7.07 (m, 2H), 7.02 (d, J = 8.5 Hz, 2H), 4.18 (q, J = 7.6 Hz, 1H), 1.64 (d, J = 7.1 Hz, 3H).

¹³C NMR (CDCl₃, 126 MHz): δ 143.9, 138.2, 135.7, 133.7, 131.6, 130.1, 129.2, 129.0, 127.2, 126.7, 124.8, 123.2, 122.9, 120.2, 113.8, 36.4, 21.8.

HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₁₈BrNNaO₂S 462.0134; Found 462.0131.

(48) 3-phenyl-3-(1-(phenylsulfonyl)-1H-indol-3-yl)propylacetate: Prepared from benzyl fluoride 12 (0.3 mmol scale, 76% NMR yield) that was formed according to the general procedure in section II. The ensuing displacement step followed the general procedure in section III and used 1-(phenylsulfonyl)indole (0.75 mmol, 193 mg, 2.5 equiv) as the nucleophile with HFIP (3.0 mmol, 315 μ L, 10 equiv) as the displacement catalyst.

Purification: Reverse phase silica gel chromatography was used with a gradient of $70\% \rightarrow 100\%$ MeOH in water. The product was extracted with 1:1 ether:pentane.

Isolated Yield from Benzyl Fluoride: 50%, 49.5 mg of white solid.

Spectra Available in the Literature (CAS): No (N/A)

¹**H** NMR (CDCl₃, 500 MHz): δ 7.96 (d, J = 8.3 Hz, 1H), 7.86 (d, J = 7.3 Hz, 2H), 7.53 (t, J = 7.5 Hz, 1H), 7.49 (d, J = 1.1 Hz, 1H), 7.44 (t, J = 7.9 Hz, 2H), 7.29 – 7.21 (m, 4H), 7.22 – 7.16 (m, 3H), 7.10 (td, J = 7.6, 7.1, 1.0 Hz, 1H), 4.21 – 4.16 (m, 1H), 4.10 – 3.97 (m, 2H), 2.48 (dq, J = 13.6, 6.8 Hz, 1H), 2.29 (ddt, J = 13.7, 9.0, 6.0 Hz, 1H), 2.03 (s, 3H).

¹³C NMR (CDCl₃, 126 MHz): δ 170.9, 142.0, 138.1, 135.6, 133.7, 130.3, 129.2, 128.7, 127.7, 126.9, 126.7, 126.1, 124.9, 123.2, 122.7, 120.1, 113.8, 62.4, 39.2, 34.1, 20.9.

HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₂₃NNaO₄S 456.1240; Found 456.1234.

(49) 5-methyl-1,3-diphenylhexan-1-one: Prepared from benzyl fluoride 11 (0.3 mmol scale, 70% NMR yield) that was formed according to the general procedure in section II. The ensuing displacement step followed the general procedure in section III and used 1-phenyl-1-trimethylsiloxyethylene (0.75 mmol, 153.8 μ L, 2.5 equiv) as the nucleophile with BF₃•Et₂O (0.03 mmol, 3.7 μ L, 0.1 equiv) as the displacement catalyst.

Purification: Normal phase silica gel chromatography was used with a gradient of $0\% \rightarrow 20\%$ EtOAc in pentane.

Isolated Yield from Benzyl Fluoride: 68%, 38.3 mg of colorless oil.

Spectra Available in the Literature (CAS): No (N/A)

¹**H** NMR (CDCl₃, 500 MHz): δ 7.89 (dd, J = 8.4, 1.4 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.8 Hz, 2H), 7.31 – 7.22 (m, 4H), 7.17 (t, J = 7.0 Hz, 1H), 3.45 (dtd, J = 10.3, 6.9, 4.9 Hz, 1H), 3.31 – 3.13 (m, 2H), 1.66 (ddd, J = 13.4, 10.3, 4.7 Hz, 1H), 1.50 (ddd, J = 13.7, 9.3, 5.0 Hz, 1H), 1.36 (dpd, J = 9.3, 6.6, 4.8 Hz, 1H), 0.91 (d, J = 6.5 Hz, 3H), 0.83 (d, J = 6.7 Hz, 3H).

¹³C NMR (CDCl₃, 126 MHz): δ 199.1, 144.9, 137.3, 132.8, 128.5, 128.4, 128.0, 127.6, 126.2, 46.5, 45.5, 39.1, 25.4, 23.6, 21.6.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₂₃O 267.1743; Found 267.1740.

CI

(50) (1-chlorohex-5-en-3-yl)benzene: Prepared from benzyl fluoride 7 (0.3 mmol scale, 77% NMR yield) that was formed according to the general procedure in section II. The ensuing displacement step followed the general procedure in section III and used allyltrimethylsilane (0.75 mmol, 119.2 μ L, 2.5 equiv) as the nucleophile with both HFIP (3.0 mmol, 315 μ L, 10 equiv) and BF₃•Et₂O (0.03 mmol, 3.7 μ L, 0.1 equiv) as the displacement catalysts.

Purification: Reverse phase silica gel chromatography was used with a gradient of $70\% \rightarrow 100\%$ MeOH in water. The product was extracted with 1:1 ether:pentane.

Isolated Yield from Benzyl Fluoride: 43%, 19.2 mg of colorless oil.

Spectra Available in the Literature (CAS): Yes²³ (276254-98-9)

¹**H** NMR (CDCl₃, 500 MHz): δ 7.31 (t, J = 7.5 Hz, 2H), 7.22 (t, J = 7.4 Hz, 1H), 7.17 (d, J = 6.7 Hz, 2H), 5.67 (ddt, J = 17.1, 10.1, 7.0 Hz, 1H), 5.06 – 4.88 (m, 2H), 3.42 (ddd, J = 10.8, 7.1, 4.8 Hz, 1H), 3.26 (ddd, J = 10.8, 8.7, 6.5 Hz, 1H), 2.96 – 2.81 (m, 1H), 2.50 – 2.32 (m, 2H), 2.16 (dddd, J = 13.4, 8.7, 7.1, 4.4 Hz, 1H), 2.06 – 1.93 (m, 1H).

¹³C NMR (CDCl₃, 126 MHz): δ 143.3, 136.3, 128.5, 127.6, 126.5, 116.4, 43.1, 42.8, 40.9, 38.6.

IX. References

1) Gonçalves, C. R.; Lemmerer, M.; Teskey, C. J.; Adler, P.; Kaiser, D.; Maryasin, B.; González, L.; Maulide, N. A Unified Approach to the Chemoselective α-Functionalization of Amides with Heteroatom Nucleophiles. *J. Am. Chem. Soc.* **2019**, *46*, 18437-18443.

2) Piszel, P. E.; Vasilopoulos, A.; Stahl, S. S. Oxidative Amide Coupling from Functionally Diverse Alcohols and Amines using Aerobic Copper/Nitroxyl Catalysis. *Angew. Chem. Int. Ed.* **2019**, *58*, 12211-12215.

3) Mayhew, S. G. The Redox Potential of Dithionite and SO; from Equilibrium Reactions with Flavodoxins, Methyl Viologen and Hydrogen Plus Hydrogenase. *Eur. J. Biochem.* **1978**, *85*, 535-547.

4) Meanwell, M.; Lehmann, J.; Eichenberger, M.; Martin, R. E.; Britton, R. Synthesis of Acyl Fluorides *via* Photocatalytic Fluorination of Aldehydic C–H Bonds. *Chem. Commun.* **2018**, *54*, 9985-9988.

5) Lee, B. J.; DeGlopper, K. S.; Yoon, T. P. Site-Selective Alkoxylation of Benzylic C–H Bonds by Photoredox Catalysis. *Angew. Chem. Int. Ed.* **2020**, *59*, 197-202.

6) Meanwell, M.; Adluri, B. S.; Yuan, Z.; Newton, J.; Prevost, P.; Nodwell, M. B.; Friesen, C. M.; Schaffer, P.; Martin, R. E.; Britton, R. Direct Heterobenzylic Fluorination, Difluorination and Trifluoromethylthiolation with Dibenzenesulfonamide Derivatives. *Chem. Sci.* **2018**, *9*, 5608-5613.

7) Champagne, P. A.; Pomarole, J.; Thérien, M.-E.; Benhassine, Y.; Beaulieu, S.; Legault, C. Y.; Paquin, J.-F. Enabling Nucleophilic Substitution Reactions of Activated Alkyl Fluorides Through Hydrogen Bonding. *Org. Lett.* **2013**, *15*, 2210-2213.

8) Xia, J.-B.; Zhu, C.; Chen, C. Visible Light-Promoted Metal-Free C–H Activation: Diarylketone-Catalyzed Selective Benzylic Mono- and Difluorination. *J. Am. Chem. Soc.* **2013**, *135*, 17494-17500.

9) Liu, W.; Groves, J.T. Manganese-Catalyzed Oxidative Benzylic C–H Fluorination by Fluoride Ions. *Angew. Chem. Int. Ed.* **2013**, *52*, 6024-6027.

10) Huang, X.; Liu, W.; Ren, H.; Neelamegam, R.; Hooker, J. M.; Groves, J. T. Late Stage Benzylic C–H Fluorination with [¹⁸F]Fluoride for PET Imaging. *J. Am. Chem. Soc.* **2014**, *136*, 6842-6845.

11) Bloom, S.; Pitts, C. R.; Woltornist, R.; Griswold, A.; Holl, M. G.; Lectka, T. Iron(II)-Catalyzed Benzylic Fluorination. *Org. Lett.* **2013**, *15*, 1722-1724.

12) Nodwell, M. B.; Bagai, A.; Halperin, S. D.; Matin, R. E.; Knust, H.; Britton, R. Direct Photocatalytic Fluorination of Benzylic C–H Bonds with *N*-Fluorobenzenesulfonimide. *Chem. Commun.* **2015**, *51*, 11783-11786.

13) Cantillo, D.; de Frutos, O.; Rincón, J. A.; Mateos, C.; Kappe, C. O. A Continuous-Flow Protocol for Light-Induced Benzylic Fluorinations. *J. Org. Chem.* **2014**, *79*, 8486-8490.

14) Bloom, S.; McCann, M.; Lectka, T. Photocatalyzed Benzylic Fluorination: Shedding "Light" on the Involvement of Electron Transfer. *Org. Lett.* **2014**, *16*, 6338-6341.

15) Sood, D. E.; Champion, S.; Dawson, D. M.; Chabbra, S.; Bode, B. E.; Sutherland, A.; Watson, A. J. B. Deoxyfluorination with CuF₂: Enabled by Using a Lewis Base Activating Group. *Angew. Chem. Int. Ed.* **2020**, *59*, 8460-8463.

16) Dinoiu, V.; Fukuhara, T.; Miura, K.; Yoneda, N. Electrochemical Partial Fluorination of Phenylacetic Acids Esters and 1-Tetralone. *J. Fluor. Chem.* **2003**, *121*, 227-231.

17) Ni, Z.; Zhang, Q.; Xiong, T.; Zheng, Y.; Li, Y.; Zhang, H.; Zhang, J.; Liu, Q. Highly Regioselective Copper-Catalyzed Benzylic C–H Amination by *N*-Fluorobenzenesulfonimide. *Angew. Chem. Int. Ed.* **2012**, *51*, 1244-1247.

18) Trahanovsky, W. S.; Fox, N. S. Oxidation of Organic Compounds with Cerium(IV). XIX. Effect of Alkyl Substitution on the Oxidative Cleavage of Alkylphenylmethanols. *J. Am. Chem. Soc.* **1974**, *96*, 7968-7974.

19) Bosson, J.; Nolan, S. P. N-Heterocyclic Carbene–Ruthenium Complexes for the Racemization of Chiral Alcohols. *J. Org. Chem.* **2010**, *75*, 2039-2043.

20) Ramadas, S.; Krupadanam, G. L. D. Enantioselective Acylation of Chroman-4-ols Catalyzed by Lipase from *Pseudomonas Cepecia* (Amano PS). *Tetrahedron: Asymmetry* **1997**, *8*, 3059-3066.

21) Darwish, K. M.; Salama, I.; Mostafa, S.; Gomaa, M. S.; Khafagy, E.-S.; Helal, M. A. Synthesis, Biological Evaluation, and Molecular Docking Investigation of Benzhydrol- and Indole-Based Dual PPAR-γ/FFAR1 Agonists. *Bioorg. Med. Chem. Lett.* **2018**, *28*, 1595-1602.

22) Dastbaravardeh, N.; Schnürch, M.; Mihovilovic, M. D. Ruthenium(0)-Catalyzed sp³ C–H Bond Arylation of Benzylic Amines Using Arylboronates. *Org. Lett.* **2012**, *14*, 1930-1933.

23) Yasuda, M.; Saito, T.; Ueba, M.; Baba, A. Direct Substitution of the Hydroxy Group in Alcohols with Silyl Nucleophiles Catalyzed by Indium Trichloride. *Angew. Chem. Int. Ed.* **2004**, *43*, 1414-1416.

A combination of diastereomers and Boc rotamers make these spectra complex (*tert*-butyl peak above is 3 peaks with 1:1.7:1.4 ratio). Grouped ¹³C peaks below represent the 16 affected carbons (aided with prediction software).

Diastereomers make these spectra complex. Diastereomeric ¹³C peaks are grouped below within the numbered boxes (aided with prediction software).

S71

