Supporting Information

Visible Light Induced Beckmann Rearrangement by Organic Photoredox Catalysis

Li Tang, Zhi-Lv Wang, Hai-Lan Wan, Yan-Hong He,* and Zhi Guan*

Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China

E-mails: heyh@swu.edu.cn (for Y.-H. He); guanzhi@swu.edu.cn (for Z. Guan)

Contents

Supporting Information 1

1. General Experimental Details 3
2. Experimental Procedures 4
2.1. General Procedure for The Synthesis of Products 2 4
2.2. Procedure for Gram Scale Reaction. 4
2.3. Determination of Quantum Yield. 5
3. Unsuccessful Substrates 6
4. UV-Vis experiments 7
5. Emission Quenching Experiments 7
6. Radical Trapping Experiments 8
7. Experiments of light and dark 9
8. HRMS of ${ }^{18} \mathrm{O}$-Labeling experiments 10
9. Characterization Data of the Products. 13
10. References 23
11. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR Spectra of the Products 24

1. General Experimental Details

The solvents were purchased from Adamas Reagent, Ltd. The acetophenone oxime were purchased from shanghai aladdin biochemical technology Co., Ltd. The 10-methyl-9-phenylacridinium perchlorate (PC-3) was purchased from Tokyo Chemical industry Co., Ltd.The ketoximes were prepared according to the literature ${ }^{1}$. The solvents were dried by molecular sieves. The 9 W blue LEDs was purchased from Epistar, and the detail information has been showed on Table S1. No filters are used in this reaction. The distance from the light source to the irradiation vessel (Beijing Synthware Glass) about 3 cm . Unless otherwise noted, all reagents were purchased from commercial suppliers and used without further purification. Reactions were monitored by thin-layer chromatography (TLC) with Hailang GF 254 silica gel plates (Qingdao Hailang chemical industry Co Ltd, Qingdao, China) using UV light and phosphomolybdic acid as visualizing agents. Flash column chromatography was performed using 200-300 mesh silica gel at increased pressure. ${ }^{1} \mathrm{H}$ NMR spectra and ${ }^{13} \mathrm{C}$ NMR spectra were recorded respectively on 600 MHz and 150 MHz NMR spectrometers. Chemical shifts (δ) were expressed in ppm with TMS as the internal standard and coupling constants (J) were reported in Hz. High-resolution mass spectra were obtained by using ESI ionization sources (Varian 7.0 T FTICR-MS) and ESI-TOF. Melting points were taken on a WPX-4 apparatus (Yice instrument equipment Co Ltd, Shanghai) and were uncorrected.

Table S1 The detail information of 9W blue LEDs

Spectrum distribution
chromaticity diagram

Chromaticity	$\mathrm{x}=0.1466$	$\mathrm{y}=0.0363$	$\mathrm{u}=0.1865$	$\mathrm{v}=0.1040$
Coordinates				

Temperature	$>25000 \mathrm{~K}$	Peak Wavelength	456 nm
SDCM	0	Main Wavelength	460 nm
Color Shift	0.000000 duv	Wavelength Width	0 nm
Red Ratio	0	Color Purty	98.00%

2. Experimental Procedures

2.1. General Procedure for The Synthesis of Products 2

Ketoxime $1(0.50 \mathrm{mmol})$, 10-methyl-9-phenylacridinium (PC-3) perchlorate (3.7 mg), DCE $(2.5 \mathrm{~mL})$ and HFIP $(2.5 \mathrm{~mL})$ were combined and added into a tube equipped with a magnetic stirring bar, and the tube was sealed. After the reaction mixture was irradiated by 9 W blue LEDs for 5 hours, it was concentrated in vacuo. The desired amide 2 was obtained after purification of the concentrate by flash chromatography on silica gel with petroleum ether/ethyl acetate ($9: 1$ to $1: 1$) as the eluent.

2.2. Procedure for Gram Scale Reaction.

Acetophenone oxime 1a (10.0 mmol), 10-methyl-9-phenylacridinium (PC-3) perchlorate (73.7 mg), DCE (50.0 mL), and HFIP (50.0 mL) were combined and added into a round bottom flask equipped with a magnetic stirring bar. The reaction mixture was irradiated under 9 W blue LEDs until 1a was consumed up. Then, the reaction mixture was concentrated in vacuo. The desired amide $\mathbf{2 a}$ was obtained ($1.26 \mathrm{~g}, 93 \%$ yield) after purification of the concentrate by flash chromatography on silica gel with petroleum ether/ethyl acetate (2:1 to 1:1) as the eluent.

2.3. Determination of Quantum Yield.

Kessil LED PR160-456 nm (25 W) was used for measurement of quantum yield.
According to a procedure previously reported by Yoon, ${ }^{2}$ the photon flux of the blue LED was determined by standard ferrioxalate actinometry. A 0.15 M solution of ferrioxalate was prepared by dissolving 0.737 g of potassium ferrioxalate hydrate in 10 mL of $0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. A buffered solution of phenanthroline was prepared by dissolving 5.0 mg of phenanthroline and 1.13 g of sodium acetate in 5.0 mL of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. Both solutions were stored in the dark. To determine the photon flux of the spectrophotometer, 2.0 mL of the ferrioxalate solution was placed in a cuvette and irradiated for 90.0 seconds at $\lambda=455 \mathrm{~nm}$. After irradiation, 0.35 mL of the phenanthroline solution was added to the cuvette. The solution was then allowed to rest for 1 h to allow the ferrous ions to completely coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm . A non-irradiated sample was also prepared and the absorbance at 510 nm measured. Conversion was calculated using Eq 1,

$$
\begin{gathered}
\text { mol of } \mathrm{Fe}^{2+}=\frac{\mathrm{V} \cdot \Delta \mathrm{~A}}{\mathrm{l} \cdot \varepsilon} \\
\text { mol of } \mathrm{Fe}^{2+}=\frac{0.00235 \mathrm{~L} \cdot 0.51}{1.000 \mathrm{~cm} \cdot 11100 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}}=1.08 \times 10^{-7} \mathrm{~mol}
\end{gathered}
$$

where V is the total volume $(0.00235 \mathrm{~L})$ of the solution after addition of phenanthroline, $\Delta \mathrm{A}$ is the difference in absorbance at 510 nm between the irradiated and non-irradiated
solutions, 1 is the path length $(1.000 \mathrm{~cm})$, and ε is the molar absorptivity at $510 \mathrm{~nm}(11100 \mathrm{~L}$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1}$). The photon flux can be calculated using Eq 2,

$$
\begin{equation*}
\text { photon } f l u x=\frac{\mathrm{mol} \mathrm{Fe}^{2+}}{\Phi \bullet t \bullet f} \tag{Eq 2}
\end{equation*}
$$

$$
\text { photon flux }=\frac{1.08 \times 10^{-7} \mathrm{~mol}}{0.84 \bullet 90 \mathrm{~s} \bullet 0.967}=1.48 \times 10-9 \text { einstein } / \mathrm{s}
$$

where Φ is the quantum yield for the ferrioxalate actinometer $(0.84 \text { at } \lambda=455 \mathrm{~nm})^{3}, \boldsymbol{t}$ is the time (90 s), and $\boldsymbol{f}(f=0.967)$ is the fraction of light absorbed reported by Lakhdar ${ }^{4}$.

A cuvette was charged with Acetophenone oxime 1a (0.2 mmol), 10-methyl-9-phenylacridinium (PC-3) perchlorate (1.5 mg), DCE (1.0 mL), and HFIP (1.0 mL). The cuvette was stirred and irradiated (Kessil LED PR160-456 nm (25 W)) for $2400 \mathrm{~s}(40 \mathrm{~min})$. After irradiation, the yield was obtained by column chromatography in $9.8 \mathrm{mg}(0.000725 \mathrm{~mol}$, yield: 36%,), The quantum yield was determined using Eq 3 . Essentially all incident light (f $>$ 0.999 , vide infra) is absorbed by the 10-methyl-9-phenylacridinium (PC-3) perchlorate at the reaction conditions described above.

$$
\begin{gather*}
\Phi=\frac{\text { mol product }}{\text { photon flux } \bullet \mathrm{t} \bullet \mathrm{f}} \tag{Eq 3}\\
\Phi=\frac{7.25 \times 10^{-5} \mathrm{~mol}}{1.48 \times 10^{-9}{\text { einstein } \mathrm{s}^{-1} \cdot 2400 \mathrm{~s} \bullet 1.00}^{2}}=20.4
\end{gather*}
$$

3. Unsuccessful Substrates

Despite the success of photoredox Beckmann rearrangement for most oximes, there were some particular types of oximes that were not observed for rearrangement. Under standard conditions, aromatic oximes with strong electron-withdrawing groups (such as $\mathrm{CN}, \mathrm{CF}_{3}$, ester, carboxylic acid and amide) as well as dialkyl ketones did not work.

unsuccessful substrates

4. UV-Vis experiments

The UV-Vis experiments of acetophenone oxime 1a \& PC-3 showed that 1a solution $($ DCE/HFIP $=10: 1)$ has no absorption peak in the visible wavelength range while $\mathbf{P C}-\mathbf{3}$ has absorption at $420 \mathrm{~nm}-490 \mathrm{~nm}$. This result indicates that $\mathbf{P C} \mathbf{- 3}$ is necessary in this reaction.

Figure S1. UV-Vis experiments of acetophenone oxime 1a \& PC-3.

5. Emission Quenching Experiments

The quenching of the excited state $\mathrm{Ph}-\mathrm{Acr}-\mathrm{Me}^{+} \mathrm{ClO}_{4}{ }^{-}\left(\mathbf{P C}-3^{*}\right)$ by the acetophenone oxime 1a was conducted in a mixed solvent of DCE/HFIP $=1: 1$ (Figures $\mathbf{S 2}$). The results revealed that 1a could significantly quench PC-3*. (excitation wavelength 451 nm ; emission wavelength 467-690nm.)

Figure S2. Fluorescence quenching of $5 \mu \mathrm{M}$ PC-3 (DCE/HFIP=1:1) by increasing concentration of 1a.

The quenching of the excited state $\mathrm{Ph}-\mathrm{Acr}-\mathrm{Me}^{+} \mathrm{ClO}_{4}{ }^{-}\left(\mathbf{P C}-3^{*}\right)$ by the acetophenone oxime 1a was set up in DCE (Figures S3). The results revealed that 1a also significantly quench PC-3*. (excitation wavelength 437 nm ; emission wavelength $450-600 \mathrm{~nm}$.)

Figure S3. Fluorescence quenching of $5 \mu \mathrm{M} \mathrm{PC-3}$ (DCE) by increasing concentration of $\mathbf{1 a}$.

6. Radical Trapping Experiments

To verify whether the reaction undergoes a radical mechanism, radical trapping and inhibition experiments were performed. The commonly used radical scavengers 2,2,6,6-tetramethylpiperidinooxy (TEMPO), 2,6-di-tert-butyl-4-methylphenol (BHT) and 1,1-diphenylethylene (DDNU) were used in the model reaction, respectively. It was found that in the presence of these radical scavengers, no amide product 2 a was formed, starting material was not consumed, and no any side product from coupling with TEMPO or other radical scavenger was detected by high resolution mass spectrometry (HRMS) (Scheme S1). This result indicated that the reaction was completely inhibited by the free radical scavengers, suggesting that a radical process may be involved.

Scheme S1. Radical Trapping Experiments.

7. Experiments of light and dark

The light/dark experiments (Figure S3) showed that there is chain propagation involved in this visible light-induced Beckmann rearrangment.

\#	Light (h)	Dark (h)	Yield						
1	$0-0.5$								5%
2	$0-0.5$	$0.5-1$							12%
3	$0-0.5$	$0.5-1$	$1-1.5$						22%
4	$0-0.5$	$0.5-1$	$1-1.5$	$1.5-2$					33%
5	$0-0.5$	$0.5-1$	$1-1.5$	$1.5-2$	$2-2.5$				44%
6	$0-0.5$	$0.5-1$	$1-1.5$	$1.5-2$	$2-2.5$	$2.5-3$			62%
7	$0-0.5$	$0.5-1$	$1-1.5$	$1.5-2$	$2-2.5$	$2.5-3$	$3-3.5$		67%
8	$0-0.5$	$0.5-1$	$1-1.5$	$1.5-2$	$2-2.5$	$2.5-3$	$3-3.5$	$3.5-4$	78%

Figure S4. Time profile of model reaction with light on/off.

8. HRMS of ${ }^{18} \mathrm{O}$-Labeling experiments

a) $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ experiment

1a
$M: M+2=100.0: 0.7$
standard conditions

2a, 34\%
$M: M+2=100.0: 14.5$

The HRMS of product $\mathbf{2 a}$:

b) ${ }^{18} \mathrm{O}$-oxime experiment

The HRMS of product 2a:

c) ${ }^{18} \mathrm{O}$-oxime \& ${ }^{16} \mathrm{O}$-oxime cross-over experiment

The HRMS of product $\mathbf{2 a}$:

The HRMS of product $\mathbf{2 a b}$:

9. Characterization Data of the Products

N-phenylacetamide (2a) ${ }^{5}$: 61.4 mg of pale yellow solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=2 / 1$ to $1 / 1$), yield: 91%; m.p. $113.3-115.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 1H), $2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl3) δ 168.6, 138.0, 129.0, 124.3, 120.0, 24.5.

N-(o-tolyl)acetamide (2b) ${ }^{5}$: 17.2 mg of white solid, purified by flash column chromatography (petroleum ether : EtOAc $=2 / 1$ to $1 / 1$), yield: 23%; m.p. $100.2-105.3{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\mathrm{CDCl} 3) \delta 7.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl3) $\delta 168.4,135.7,130.5,129.4,126.7,125.4,123.6,24.2,17.8$.

\boldsymbol{N}-(m-tolyl)acetamide (2c) ${ }^{5}: 67.6 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\operatorname{EtOAc}=2 / 1$ to $1 / 1$), yield: 91%; m.p. $65.5-67.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}, \mathrm{CDCl} 3)$ $\delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.27(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 169.0,138.8,138.0,128.7,125.09,120.9$, 117.3, 24.4, 21.4

N-(p-tolyl)acetamide (2d) ${ }^{5}: 67.0 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : EtOAc $=2 / 1$ to $1 / 1$), yield: 90%; m.p. $147.4-149.6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , CDCl3) $\delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl3) $\delta 168.5,135.4,133.9,129.4,120.2,24.4,20.8$

N-(4-methoxyphenyl)acetamide (2e) ${ }^{5}: 76.7 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=2 / 1$ to $1 / 1$), yield: 93%; m.p. $127.8-129.6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.38(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 168.3,156.5,131.0,122.0,114.2,55.5,24.3$.

N-(4-ethylphenyl)acetamide (2f) ${ }^{6}: 77.7 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : EtOAc $=3 / 1$ to $3 / 2$), yield: 95%; m.p. $89.0-91.7{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{q}, J=7.6 \mathrm{~Hz}$, 2H), $2.14(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 168.4,140.4,135.6,128.3$, 120.2, 28.3, 24.4, 15.6.

N-(4-isopropylphenyl)acetamide (2g) ${ }^{8}: 85.8 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=3 / 1$ to $3 / 2$), yield: 97%; m.p. $102.5-103.8{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.86$ (hept, $J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl3) $\delta 168.5,145.0,135.6$, 126.8, 120.3, 33.6, 24.4, 24.0.

N-(4-(tert-butyl)phenyl)acetamide (2h) ${ }^{5}: 87.9 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=5 / 1$ to $2 / 1$), yield: 92%; m.p. $170.6-171.6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl} 3\right) ~ \delta \delta 168.3,147.3,135.2,125.8,119.8,34.4,31.4,24.5$.

N-(4-fluorophenyl)acetamide (2i) ${ }^{5}$: 51.2 mg of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=2 / 1$ to $1 / 1$), yield: 67%; m.p. $152.3-153.5{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR
(600 MHz, CDCl3) $\delta 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 168.5(\mathrm{~d}, J=15.2 \mathrm{~Hz}), 159.4(\mathrm{~d}, J=243.4 \mathrm{~Hz}), 133.9,121.9(\mathrm{t}, J=7.1 \mathrm{~Hz}), 115.6$ (dd, $J=22.6,3.0 \mathrm{~Hz}), 24.3(\mathrm{~d}, J=5.3 \mathrm{~Hz})$.

N-(4-chlorophenyl)acetamide (2j) ${ }^{5}: 29.8 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=2 / 1$ to $1 / 1$), yield: 35%; m.p. $175.9-177.6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 MHz, CDCl3) $\delta 7.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (150 MHz , (DCl3) $\delta 168.3,136.5,129.3,129.0,121.1,24.5$.

N-(4-bromophenyl)acetamide (2k) ${ }^{5}: 16.6 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=2 / 1$ to $1 / 1$), yield: 16%; m.p. $167.1-168.3{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta 10.05(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}) $\delta 168.9,139.1,131.9,121.4,114.9,24.5$.

N-(4-iodophenyl)acetamide (21) ${ }^{5}: 17.8 \mathrm{mg}$ of brown solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=2 / 1$ to $1 / 1$), yield: 14%; m.p. $180.7-181.5{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.01(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}) $\delta 168.9,139.6,137.7,121.7,86.7,24.5$.

\boldsymbol{N}-(4-(dimethylamino)phenyl)acetamide (2m) ${ }^{8}: 61.1 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\operatorname{EtOAc}=1 / 1$ to $1 / 3$), yield: 69%; m.p. $128.2-129.7^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}) \delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 6 \mathrm{H})$, $1.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO) $\delta 167.8,147.4,129.8,121.0,113.2,41.0,24.2$.

N-(4-hydroxyphenyl)acetamide (2n) ${ }^{1}: 19.8 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=2 / 1$ to $1 / 3$), yield: 26%; m.p. $155.0-156.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 9.14(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.99$ ($\mathrm{s}, 3 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 168.0,153.6,131.5,121.4,115.5,24.2$.

N-(4-phenoxyphenyl)acetamide (20) ${ }^{9}: 103.3 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=3 / 1$ to $3 / 2$), yield: 91%; m.p. $129.7-130.7{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00-6.86(\mathrm{~m}, 4 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7,157.5,153.6,133.5,129.7$, 123.1, 121.9, 119.5, 118.5, 24.3.

N-([1,1'-biphenyl]-4-yl)acetamide (2p) ${ }^{10}: 87.0 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=5 / 1$ to $2 / 1$), yield: 82%; m.p. $169.5-170.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.46(\mathrm{~m}, 7 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4,140.5,137.2,128.8,127.6,127.1,126.8,120.3,24.6$.

N-(3,4-dimethylphenyl)acetamide (2q) ${ }^{7}: 76.0 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=5 / 1$ to $2 / 1$), yield: 93%; m.p. $96.8-97.6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$, $2.21(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.2,137.2,135.6,132.7,129.9,121.4,117.6$, 24.5, 19.9, 19.1.

N-(3,5-dimethylphenyl)acetamide (2r) ${ }^{8}: 74.6 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=5 / 1$ to $2 / 1$), yield: 91%; m.p. $139.7-141.0{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=21.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 2 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.4,138.6,137.8,126.1,117.7,24.6,21.3$.

N-(4-fluoro-3-methylphenyl)acetamide (2s): 59.0 mg of white solid, purified by flash column chromatography (petroleum ether $: \operatorname{EtOAc}=5 / 1$ to $2 / 1$), yield: 71%; m.p. $75.0-76.0{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.23(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,158.0(\mathrm{~d}, J=242.1 \mathrm{~Hz}), 133.5,125.3$ $(\mathrm{d}, J=18.4 \mathrm{~Hz}), 123.4(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 119.2(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 115.1(\mathrm{~d}, J=23.6 \mathrm{~Hz}), 24.3,14.6(\mathrm{~d}, J=3.2$ Hz). HRMS (ESI) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{FNO} 168.0819$; Found 168.0819.

N-(benzo[d][1,3]dioxol-5-yl)acetamide (2t) ${ }^{11}: 65.2 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=9 / 1$ to $3 / 1$), yield: 73%; m.p. $135.7-137.0{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,147.8,144.3,132.2,113.4$, 108.0, 103.1, 101.2, 24.3.

N-(5,6,7,8-tetrahydronaphthalen-2-yl)acetamide (2u) ${ }^{12}: 91.8 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=9 / 1$ to $3 / 1$), yield: 97%; m.p. $104.7-105.5$ ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 1H), $2.74-2.67(\mathrm{~m}, 4 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.3,137.8$, 135.3, 133.4, 129.4, 120.6, 117.7, 29.5, 28.9, 24.5, 23.2, 23.1.

N-(naphthalen-2-yl)acetamide (2v) ${ }^{13}: 79.7 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=9 / 1$ to $3 / 1$), yield: 86%; m.p. $130.5-131.3{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.32(\mathrm{~m}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7,135.4,133.8,130.7,128.7,127.6,127.5,126.5,125.0,120.00,116.8,24.6$.

N-(naphthalen-1-yl)acetamide (2w) ${ }^{13}: 25.8 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=9 / 1$ to $3 / 1$), yield: 28%; m.p. $157.0-158.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}) \delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO) $\delta 169.4,134.2,134.2,128.6,128.2,126.4,126.2,126.0,125.5,123.2,122.0,24.0$.

N-(1H-pyrrol-3-yl)acetamide (2x): 43.3 mg of white solid, purified by flash column chromatography (petroleum ether : EtOAc $=2 / 1$ to $1 / 2$), yield: 70%; m.p. $90.3-91.7{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.37(\mathrm{~s}, 1 \mathrm{H}), 9.58(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.57-6.47(\mathrm{~m}, 1 \mathrm{H}), 5.92(\mathrm{~d}$, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO) $\delta 166.3,123.7,115.9,107.8,100.5,23.5$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N} 2 \mathrm{O}$ 125.0709; Found 125.0710.

N-(1H-indol-3-yl)acetamide (2y) ${ }^{11}: 75.8 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=2 / 1$ to $1 / 2$), yield: 87%; m.p. $159.9-160.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO-d d_{6}) $\delta 10.74(\mathrm{~s}, 1 \mathrm{H}), 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{DMSO}\right) \delta$ 167.4, 134.0, 121.8, 120.9, 118.5, 118.3, 115.7, 115.6, 111.8, 23.5. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}$ 175.0866; Found 175.0865.

N-(thiophen-3-yl)acetamide (2z): 51.5 mg of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=5 / 1$ to $2 / 1$), yield: 73%; m.p. $146.7-147.6^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15$ ($\mathrm{s}, 3 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7,135.7,124.5,121.1,110.4,23.8$. HRMS (ESI) $m / z:[\mathrm{M}+$ $\mathrm{H}]+$ Calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NOS}$ 142.0321; Found 142.0321.

N-phenylpropionamide (2aa) ${ }^{1}: 71.5 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=5 / 1$ to $2 / 1$), yield: 96%; m.p. $106.3-107.3{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{q}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0,138.0,129.0,124.2,119.8$, 30.8, 9.7.

N-phenylbutyramide (2ab) ${ }^{6}: 75.2 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=9 / 1$ to $3 / 1$), yield: 92%; m.p. $95.6-96.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.52(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 2H), $1.75(\mathrm{~h}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.4,138.0$, 129.0, 124.2, 119.9, 39.7, 19.1, 13.7.

N-phenylpent-4-enamide (2ac) ${ }^{14}: 57.8 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : EtOAc $=9 / 1$ to $3 / 1$), yield: 66%; m.p. $89.5-91.0{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.97-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{p}, J=6.1 \mathrm{~Hz}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.7,137.9,136.9,129.0,124.3,120.0,115.9,36.8,29.5$.

N,2-diphenylacetamide (2ad) ${ }^{6}: 91.9 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=9 / 1$ to $3 / 1$), yield: 87%; m.p. $114.7-115.5{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.45-7.18(\mathrm{~m}, 10 \mathrm{H}), 7.07(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.2,137.7,134.5,129.5,129.2,128.9,127.6,124.5,119.9,44.8$

N-phenyl-2-(p-tolyl)acetamide (2ae) ${ }^{15}: 83.8 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=9 / 1$ to $3 / 1$), yield: 74%; m.p. $142.1-143.1{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.07$ (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.3,137.7,137.4,131.4$, $130.0,129.4,128.9,124.4,119.8,44.5,21.1$.

N-phenylbenzamide (2af) ${ }^{5}: 85.1 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=9 / 1$ to $3 / 1$), yield: 86%; m.p. $160.8-161.5{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, DMSO) $\delta 10.23(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO) δ $166.0,139.7,135.5,132.0,129.1,128.8,128.1,124.1,120.9$

N-phenylcyclopropanecarboxamide (2ag) ${ }^{5}: 63.6 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=9 / 1$ to $3 / 1$), yield: 79%; m.p. $109.5-110.7^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO) $\delta 10.15(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=7.3 \mathrm{~Hz}$ $1 \mathrm{H}), 1.86-1.70(\mathrm{~m}, 1 \mathrm{H}), 0.90-0.70(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO) $\delta 172.0,139.9,129.1$, 123.3, 119.5, 15.0, 7.5.

N-phenylisobutyramide (2ah-1) ${ }^{5}$: 32.6 mg of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=9 / 1$ to $3 / 1$), yield: 40%; m.p. $105.1-106.1{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dt}$, $J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.3,138.1,129.0,124.1$, 119.9, 36.7, 19.6.

N-phenylisobutyramide (2ah-2) ${ }^{16}$: 12.9 mg of white solid, purified by flash column chromatography (petroleum ether : EtOAc $=9 / 1$ to $3 / 1$), yield: 16%; m.p. $97.0-98.8{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.00(\mathrm{~s}$, $1 \mathrm{H}), 4.29(\mathrm{dd}, J=13.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.7$, 135.1, 131.2, 128.5, 126.8, 42.0, 22.8.

N-phenylcyclohexanecarboxamide (2ai-1) ${ }^{13}: 35.9 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=9 / 1$ to $3 / 1$), yield: 35%; m.p. $146.1-148.0{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.23(\mathrm{t}, \mathrm{J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.46$ $(\mathrm{m}, 2 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.5,138.2,128.9,124.1,119.8,46.5$, 29.7, 25.7.

N-cyclohexylbenzamide (2ai-2) ${ }^{16}: 31.7 \mathrm{mg}$ of white solid, purified by flash column chromatography (petroleum ether : $\mathrm{EtOAc}=9 / 1$ to $3 / 1$), yield: 31%; m.p. $145.1-146.3{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.06(\mathrm{~s}$,
$1 \mathrm{H}), 4.04-3.92(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.37(\mathrm{~m}$, $2 \mathrm{H}), 1.29-1.15(\mathrm{~m}, 4 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.7,135.2,131.2,128.5,126.8,48.7,33.2$, 25.6, 24.9.

10. References

1. Mo, X.; Morgan, T. D. R.; Ang, H. T.; Hall, D. G., J. Am. Chem. Soc. 2018, 140, 5264-5271.
2. Cismesia, M. A.; Yoon, T. P., Chem. Sci. 2015, 6, 5426-5434.
3. Walkinshaw, A. J.; Xu, W.; Suero, M. G.; Gaunt, M. J., J. Am. Chem. Soc. 2013, 135, 12532-12535.
4. Inial, A.; Morlet-Savary, F.; Lalevée, J.; Gaumont, A. C.; Lakhdar, S., Org. Lett. 2020, 22, 4404-4407.
5. Tang, L.; Matuska, J. H.; Huang, Y. H.; He, Y. H.; Guan, Z., ChemSusChem 2019, 12, 2570-2575.
6. Nie, Q.; Yi, F.; Huang, B.; Cai, M., Adv. Synth. Catal. 2017, 359, 3968-3976.
7.Vodnala, N.; Gujjarappa, R.; Hazra, C. K.; Kaldhi, D.; Kabi, A. K.; Beifuss, U.; Malakar, C. C., Adv. Synth. Catal. 2019, 361, 135-145.
7. Zhang, X. L.; Liu, Z. Q.; Gao, Y.; Li, F.; Tian, Y. M.; Li, C. J.; Jia, X. S.; Li, J., Adv. Synth. Catal. 2018, 360, 272-277
8. Iguchi, D.; Erra-Balsells, R.; Bonesi, S. M., Photochem. Photobiol. Sci. 2016, 15, 105-116.
9. Kumar, L. M.; Bhat, B. R., J. Organomet. Chem. 2017, 827, 41-48.
10. Kiely-Collins, H. J.; Sechi, I.; Brennan, P. E.; McLaughlin, M. G., Chem. Commun. 2018, 54, 654-657
11. Hay, M. P.; Hicks, K. O.; Pchalek, K.; Lee, H. H.; Blaser, A.; Pruijn, F. B.; Anderson, R. F.; Shinde, S. S.; Wilson, W. R.; Denny, W. A., J. Med. Chem. 2008, 51, 6853-6865.
12. Hyodo, K.; Hasegawa, G.; Oishi, N.; Kuroda, K.; Uchida, K., J. Org. Chem. 2018, 83, 13080-13087.
13. Musacchio, A. J.; Nguyen, L. Q.; Beard, G. H.; Knowles, R. R., J. Am. Chem. Soc. 2014, 136, 12217-12220.
14. Ling, L.; Chen, C.; Luo, M.; Zeng, X., Org. Lett. 2019, 21, 1912-1916.
15. Feng, C.; Yan, B.; Yao, W.; Chen, J.; Ji, M., ChemistrySelect 2018, 3, 11775-11778.

11. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Spectra of the Products

${ }^{1} \mathrm{H}$-NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 a}$

${ }^{1} \mathrm{H}$-NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2b

${ }^{13} \mathrm{C}$-NMR $\operatorname{Spectrum}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 2b

${ }^{1} \mathrm{H}$-NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2c

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2c

${ }^{1} \mathrm{H}$-NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2d

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2d

${ }^{1} \mathrm{H}$-NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2e

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2e

${ }^{1} \mathrm{H}$-NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 f}$

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 f}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 g}$

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 g}$

${ }^{1} \mathrm{H}$-NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 h}$

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 h}$

${ }^{1} \mathrm{H}$-NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 i}$

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 i}$

${ }^{1} \mathrm{H}$-NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2} \mathbf{j}$

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2} \mathbf{j}$

${ }^{1} \mathrm{H}$-NMR Spectrum (600 MHz , DMSO) of $\mathbf{2 k}$

${ }^{13} \mathrm{C}$-NMR Spectrum (150 MHz , DMSO) of $\mathbf{2 k}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum (600 MHz , DMSO of 21

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{DMSO}$) of $2 \mathbf{I}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum (600 MHz , DMSO) of $\mathbf{2 m}$

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{DMSO}$) of $\mathbf{2 m}$

${ }^{1} \mathrm{H}$-NMR Spectrum (600 MHz , DMSO) of 2n

${ }^{13}$ C-NMR Spectrum (150 MHz, DMSO) of 2n

${ }^{1} \mathrm{H}$-NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 o}$

${ }^{13} \mathrm{C}-$ NMR $\operatorname{Spectrum}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 o}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2p

${ }^{13} \mathrm{C}$-NMR $\operatorname{Spectrum}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 p}$

${ }^{1} \mathrm{H}$-NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 q}$

${ }^{13} \mathrm{C}$-NMR $\operatorname{Spectrum}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 q}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2r

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 r}$

${ }^{1} \mathrm{H}$-NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2s
(
${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2s

${ }^{1} \mathrm{H}$-NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 t}$

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 t}$

${ }^{1} \mathrm{H}$-NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 u}$

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 u}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 v}$

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 v}$

${ }^{1} \mathrm{H}$-NMR Spectrum (600 MHz , DMSO) of 2w

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{DMSO}$) of $\mathbf{2 w}$

${ }^{1} \mathrm{H}$-NMR Spectrum (600 MHz , DMSO) of $\mathbf{2 x}$
(
${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{DMSO}$) of $\mathbf{2 x}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum (600 MHz , DMSO) of $\mathbf{2 y}$

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{DMSO}$) of $\mathbf{2 y}$

${ }^{1} \mathrm{H}$-NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 z}$

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 z}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2aa

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2aa

${ }^{1} \mathrm{H}-\mathrm{NMR} \operatorname{Spectrum}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 a b}$

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 a b}$

${ }^{1} \mathrm{H}$-NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 a c}$

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 a c}$

${ }^{1} \mathrm{H}-\mathrm{NMR} \operatorname{Spectrum}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 a d}$

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 a d}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2ae

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2ae

${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum (600 MHz , DMSO) of 2af

${ }^{13} \mathrm{C}$-NMR Spectrum (150 MHz , DMSO) of 2af

${ }^{1} \mathrm{H}$-NMR Spectrum (600 MHz , DMSO) of $\mathbf{2 a g}$

${ }^{13} \mathrm{C}$-NMR Spectrum (150 MHz , DMSO) of 2ag

${ }^{1} \mathrm{H}$-NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2ah-1

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2} \mathbf{a h}-\mathbf{1}$

${ }^{1} \mathrm{H}$-NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 a h - 2}$

${ }^{13} \mathrm{C}$-NMR Spectrum ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2ah-2

${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2ai-1

${ }^{13} \mathrm{C}-\mathrm{NMR} \operatorname{Spectrum}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 2ai-1

${ }^{1} \mathrm{H}$-NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2ai-2

${ }^{13} \mathrm{C}$-NMR $\operatorname{Spectrum}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 2ai-2

