Supporting Information

Nano-confinement effects on enhanced reversibility of redox reactions coupled with an irreversible chemical process by electrolysis acceleration in nanoporous carbon electrodes for redoxenhanced electrochemical capacitor

Jaehyun Jeon^{\dagger , \diamond , \ddagger}, Jihye Lee^{\dagger , \ddagger} Kyu Yeon Jang^{\diamond ,\$} Hana Yoon^{*, \diamond}, and Jinho Chang^{*, \dagger}

[†]Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

⁶Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea

[§] Department of Advanced Energy Technologies and System Engineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea

[‡]J. Jeon and J. Lee contributed equally to this work.

*Jinho Chang: jhcechem@hanyang.ac.kr

*Hana Yoon: hanayoon@kier.re.kr

KEYWORDS: electrochemical capacitor, irreversible chemical reaction, enhanced reversibility, nanoporous carbon electrode, nanoconfinement effect

Contents

Calculation of the specific capacitanceS-5
Figure S1. ······S-6
The chemical structures of hexahydroxybenzene (HHB), tetrahydroxy-1, 4-benzoquinone (THQ),
rhodizonic acid (RDZ), rhodizonic acid dihydrate (RDZ·2H2O), cyclohexanehexone (CHH),
cyclohexanehexone dihydrate (CHH·2H ₂ O), cyclohexanehexone octahydrate (CHH·8H ₂ O).
Figure S2
(a) Simulated CVs based on $E_1E_2C_1E_3C_2$, which are the same as shown in Figure 1e, and (b)
dimensionless concentration profiles of all chemical species in the simulation as a function of the
distance from an electrode surface at various values of H , which are designated on the CV of Figure
S2a.
Figure S3
2D axial symmetric domain of the simulation for electrolysis rate.
Figure S4. ······S-9
FE-SEM images of (a) micro-C, (b) meso-C and (c) PG.
Figure S5
The contact angles of a droplet composed of an aqueous electrolyte with $1 \text{ M H}_2\text{SO}_4$ on (a) micro-
and (b) meso-C for the estimation of wettability.
Figure S6
De-convoluted high-resolution C1s XPS spectra of (a) micro- and (b) meso-C.
Figure S7
CVs exhibiting integrated areas for the estimation of Q_{red} and Q_{ox} in Figure 6.

CVs measured in (a) $1M H_2SO_4$ aqueous solutions with/without 5 mM HHB on PG electrode and (b) $1M H_2SO_4$ aqueous solutions on HHB-absorbed PG electrode at 5 mV s⁻¹.

Simulated *i*-*t* curves based on the EC scheme at the constantly applied potential, in which current is limited by mass transfer in micro- and meso-C with $r_{pore} = 1.072$ nm and 1.9 nm, with different kinetic parameters: (a) $k_f = 1$ and 5000 s⁻¹ with constant $k_b = 1$ s⁻¹, (b) $k_b = 0.1$, 1, and 1.5 s⁻¹ with constant $k_f = 5000$ s⁻¹; other parameters for the simulation are detailed in Table S2.

The successive CV from HHB adsorbed micro-C electrode in either (a) a conventional three electrodes cell containing *ca*. 10 mL of an aqueous solution or (b) a compact cell composed of micro-C coated with HHB|1M H₂SO₄|micro-C.

CVs measured in 1M H₂SO₄ aqueous solution on micro- and meso-C electrodes.

The cell voltage vs. time for open-circuit (t_{oc}) after measured from the two asymmetric electrochemical cells composed of either micro- (black) or meso-C (red) after a constant 0.5 A g⁻¹ was applied to render the cell voltage of 1 V during the charging process.

Comparison of cycle stability of pristine cells and RDZ-coated asymmetric cells. Cycle stability tested at 0.1 V s⁻¹.

 Table S1.
 S-19

Reactions and corresponding parameters for the simulation shown in Figure 1.

Table S2.	S-20
Reactions and corresponding parameters for the simulation shown in Figure 2 and Figure	S9.
References	S-21

Calculation of the specific gravimetric capacitance in electrochemical capacitors.

The specific gravimetric capacitance, $C_{\text{spec, cell}}$ (F g⁻¹) was calculated from the charge/discharge curve using Equation S1.^{1,2}

$$C_{spec,cell} = i \cdot \Delta t / (\Delta E \cdot m), \tag{1}$$

where ΔE is the voltage window, *i* is the charge/discharge current, and *m* is the mass of the active material; for the estimation of C_{spec} in the full cell.

Because the charges stored in each electrode are equal $(q_+ = q_-)$, the capacitance of each electrode was calculated by Equations S2 and S3.³

$$\boldsymbol{C}_{+}\Delta\boldsymbol{V}_{+} = \boldsymbol{C}_{-}\Delta\boldsymbol{V}_{-} \tag{2}$$

$$\frac{1}{c_{cell}} = \frac{1}{c_+} + \frac{1}{c_-}$$
(3)

 C_{spec} from the stability test in Figure S13 performed by cyclic voltammetry at 0.1 V s⁻¹ was estimated by Equation S4.^{4,5}

$$C_{spec,cell} = \frac{\int \frac{\int idV}{\Delta Ev}}{m},$$
(4)

where v is the scan rate.

Figure S1. Chemical structures of hexahydroxybenzene (HHB), tetrahydroxy-1, 4-benzoquino ne (THQ), rhodizonic acid (RDZ), rhodizonic acid dihydrate (RDZ·2H₂O), cyclohexanehexo ne (CHH), cyclohexanehexo ne dihydrate (CHH·2H₂O), cyclohexanehexo ne octahydrate (CHH·8H₂O).

Figure S2. (a) Simulated CVs based on $E_1E_2C_1E_3C_2$, which are the same as shown in Figure 1e, and (b) dimensionless concentration profiles of all chemical species in the simulation as a function of the distance from an electrode surface at various values of *H*, which are designated on the CV of Figure S2a.

Figure S3. 2D axial symmetric domain of the simulation for electrolysis rate.

Figure S4. FE-SEM images of (a) micro-C, (b) meso-C and (c) PG.

Figure S5. The contact angles of a droplet composed of an aqueous electrolyte with $1 \text{ M H}_2\text{SO}_4$ on (a) micro- and (b) meso-C for the estimation of wettability.

Figure S6. De-convoluted high-resolution C1s XPS spectra of (a) micro- and (b) meso-C. The C 1s spectrum of carbon powder exhibited a main peak at 284.7 eV, which is attributed to sp² C-C bonds in a graphite carbon.⁶ In addition, characteristic peaks at 285.7 eV, 286.5 eV, 288.3 eV, and 290.1 eV represent β -carbon,⁷ C-O,⁸ C=O,⁹ and π - π *,¹⁰ respectively.

Figure S7. CVs exhibiting integrated areas for the estimation of Q_{red} and Q_{ox} in Figure 6.

Figure S8. CVs measured in (a) $1M H_2SO_4$ aqueous solutions with/without 5 mM HHB on PG electrode and (b) $1M H_2SO_4$ aqueous solutions on HHB-absorbed PG electrode at 5 mV s⁻¹.

Figure S9. Simulated *i-t* curves based on the EC scheme at the constantly applied potential, in which current is limited by mass transfer in micro- and meso-C with $r_{pore} = 1.072$ nm and 1.9 nm, with different kinetic parameters: (a) $k_f = 1$ and 5000 s⁻¹ with constant $k_b = 1$ s⁻¹, (b) $k_b = 0.1$, 1, and 1.5 s⁻¹ with constant $k_f = 5000$ s⁻¹; other parameters for the simulation are detailed in Table S2.

Figure S10. The successive CV from HHB adsorbed micro-C electrode in either (a) a conventional three electrodes cell containing ca. 10 mL of an aqueous solution or (b) a compact cell composed of micro-C coated with HHB|1M H₂SO₄|micro-C.

Figure S11. CVs measured in 1M H₂SO₄ aqueous solution on micro- and meso-C electrodes.

Figure S12. The cell voltage vs. time for open-circuit (t_{oc}) after measured from the two asymmetric electrochemical cells composed of either micro- (black) or meso-C (red) after a constant 0.5 A g⁻¹ was applied to render the cell voltage of 1 V during the charging process.

Figure S13. Comparison of cycle stability of pristine cells and RDZ-coated asymmetric cells. Cycle stability tested at 0.1 V s^{-1} .

Charge transfer reaction								
	E^0	k_s (cm/s)						
$Ox_1 + e^- \rightleftharpoons Red$	0.1 1							
$Ox_2 + e^- \rightleftharpoons Ox_1$	C	0.5 1						
$Ox_3 + e^- \rightleftharpoons Product_1$	0.8 1							
Chemical reaction								
	$K_{\rm eq}$ $k_{\rm f}({\rm s}^{-1})$							
$Ox_2 \rightleftharpoons Product_1$	10	10000						
$Ox_3 \rightleftharpoons Product_2$	10000 10000							
	Concentration							
Species	$D (\text{cm}^2/\text{s})$	C_{anal} (mol/L)	Cini (mol/L)					
C _{Red}	5×10^{-5}	0.005	0.005					
<i>C</i> _{0<i>x</i>1}	5×10^{-5}	0	0					
<i>C</i> _{0<i>x</i>2}	5×10^{-5}	0	0					
$C_{Product_1}$	5×10^{-5}	0	0					
<i>C</i> _{0x3}	5×10^{-5}	0	0					
$C_{Product_2}$	5×10^{-5}	0	0					

Table S1. Reactions and corresponding parameters for the simulation shown in Figure 1.

Reactions	Parameters					
	<i>k</i> ⁰	$E_{ m eq}$	α	Applied potential		
$B + e^{-} \rightleftharpoons A$	0.1 cm/s	0.4 V	0.5	0 V		
$B \rightleftharpoons C$	$r_{\text{pore, }}k_{\text{f}}, k_{\text{b}}(\text{s}^{-1}) = \text{variable}$					
Relevant time-dependent diffusion equations						
(1) $\frac{\partial C_A}{\partial t} = D_A \Big[$	$\frac{\partial^2 C_A}{\partial r^2} + \frac{2}{r} \frac{\partial C_A}{\partial r} \bigg]$					
(2) $\frac{\partial C_B}{\partial t} = D_B \left[\frac{\partial^2 C_B}{\partial r^2} + \frac{2}{r} \frac{\partial C_B}{\partial r} \right] - k_f C_B + k_b C_C$						

Table S2. Reactions and corresponding parameters for the simulation shown in Figure 2 andFigure S9.

(3) $\frac{\partial C_c}{\partial t} = D_B \left[\frac{\partial^2 C_c}{\partial r^2} + \frac{2}{r} \frac{\partial C_c}{\partial r} \right] + k_f C_B - k_b C_c$

Initial condition, completing the definition of the problem

$$t = 0, \boldsymbol{C}_{\boldsymbol{A}} = \boldsymbol{C}_{\boldsymbol{B}} = 0 \text{ mM } \boldsymbol{C}_{\boldsymbol{C}} = 5 \text{mM}$$

 $D_A = D_B = D_C = 5 \times 10^{-6} \text{ cm}^2/\text{s}$

References

- (1) Wang, H.; Yi, H.; Zhu, C.; Wang, X.; Jin Fan, H. Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes. *Nano Energy* **2015**, *13*, 658-669.
- (2) Guo, B.; Yang, Y.; Hu, Z.; An, Y.; Zhang, Q.; Yang, X.; Wang, X.; Wu, H. Redox-active organic molecules functionalized nitrogen-doped porous carbon derived from metal-organic framework as electrode materials for supercapacitor. *Electrochim. Acta* **2017**, *223*, 74-84.
- (3) Roldán, S.; Granda, M.; Menéndez, R.; Santamaría, R.; Blanco, C. Mechanisms of Energy Storage in Carbon-Based Supercapacitors Modified with a Quinoid Redox-Active Electrolyte. *J. Phys. Chem. C* **2011**, *115* (35), 17606-17611.
- (4) Warren, R.; Sammoura, F.; Tounsi, F.; Sanghadasa, M.; Lin, L. Highly active ruthenium oxide coating via ALD and electrochemical activation in supercapacitor applications. *J. Mater. Chem. A* **2015**, *3* (30), 15568-15575.
- (5) Sheng, L.; Jiang, L.; Wei, T.; Liu, Z.; Fan, Z. Spatial Charge Storage within Honeycomb-Carbon Frameworks for Ultrafast Supercapacitors with High Energy and Power Densities. *Adv. Energy Mater.* **2017**, *7* (19), 1700668.
- (6) Sheng, Z.-H.; Zheng, X.-Q.; Xu, J.-Y.; Bao, W.-J.; Wang, F.-B.; Xia, X.-H. Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. *Biosens. Bioelectron.* **2012**, *34* (1), 125-131.
- (7) Le Comte, A.; Chhin, D.; Gagnon, A.; Retoux, R.; Brousse, T.; Bélanger, D. Spontaneous grafting of 9,10-phenanthrenequinone on porous carbon as an active electrode material in an electrochemical capacitor in an alkaline electrolyte. *J. Mater. Chem. A* 2015, *3* (11), 6146-6156.
 (8) Yen, M.-Y.; Teng, C.-C.; Hsiao, M.-C.; Liu, P.-I.; Chuang, W.-P.; Ma, C.-C. M.; Hsieh, C.-K.; Tsai, M.-C.; Tsai, C.-H. Platinum nanoparticles/graphene composite catalyst as a novel composite

counter electrode for high performance dye-sensitized solar cells. J. Mater. Chem. 2011, 21 (34), 12880-12888.

(9) Lin, Z.-Q.; Xie, J.; Zhang, B.-W.; Li, J.-W.; Weng, J.; Song, R.-B.; Huang, X.; Zhang, H.; Li, H.; Liu, Y.; Xu, Z. J.; Huang, W.; Zhang, Q. Solution-processed nitrogen-rich graphene-like holey conjugated polymer for efficient lithium ion storage. *Nano Energy* **2017**, *41*, 117-127.

(10) Puziy, A. M.; Poddubnaya, O. I.; Socha, R. P.; Gurgul, J.; Wisniewski, M. XPS and NMR studies of phosphoric acid activated carbons. *Carbon* **2008**, *46* (15), 2113-2123.