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Calculation of the specific gravimetric capacitance in electrochemical capacitors.  

The specific gravimetric capacitance, Cspec, cell (F g-1) was calculated from the charge/discharge 

curve using Equation S1.1,2  

𝑪𝒔𝒑𝒆𝒄,𝒄𝒆𝒍𝒍 = 𝒊 ∙ ∆𝒕 (∆𝑬 ∙ 𝒎)⁄ ,                 (1) 

where ΔE is the voltage window, i is the charge/discharge current, and m is the mass of the active 

material; for the estimation of Cspec in the full cell.  

Because the charges stored in each electrode are equal (𝒒+ = 𝒒− ), the capacitance of each 

electrode was calculated by Equations S2 and S3.3  

𝑪+∆𝑽+ = 𝑪−∆𝑽−        (2) 

𝟏

𝑪𝒄𝒆𝒍𝒍
=

𝟏

𝑪+
+

𝟏

𝑪−
        (3) 

Cspec from the stability test in Figure S13 performed by cyclic voltammetry at 0.1 V s-1 was 

estimated by Equation S4.4,5  

𝑪𝒔𝒑𝒆𝒄,𝒄𝒆𝒍𝒍  =  
∫ 𝒊𝒅𝑽

∆𝑬𝒗

𝒎
 ,       (4) 

where 𝑣 is the scan rate. 
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Figure S1. Chemical structures of hexahydroxybenzene (HHB), tetrahydroxy-1, 4-benzoquinone 

(THQ), rhodizonic acid (RDZ), rhodizonic acid dihydrate (RDZ·2H2O), cyclohexanehexone 

(CHH), cyclohexanehexone dihydrate (CHH·2H2O), cyclohexanehexone octahydrate 

(CHH·8H2O). 
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Figure S2. (a) Simulated CVs based on E1E2C1E3C2, which are the same as shown in Figure 1e, 

and (b) dimensionless concentration profiles of all chemical species in the simulation as a function 

of the distance from an electrode surface at various values of H, which are designated on the CV 

of Figure S2a. 
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Figure S3. 2D axial symmetric domain of the simulation for electrolysis rate. 
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Figure S4. FE-SEM images of (a) micro-C, (b) meso-C and (c) PG. 
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Figure S5. The contact angles of a droplet composed of an aqueous electrolyte with 1 M H2SO4 

on (a) micro- and (b) meso-C for the estimation of wettability. 
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Figure S6. De-convoluted high-resolution C1s XPS spectra of (a) micro- and (b) meso-C. The C 

1s spectrum of carbon powder exhibited a main peak at 284.7 eV, which is attributed to sp2 C-C 

bonds in a graphite carbon.6 In addition, characteristic peaks at 285.7 eV, 286.5 eV, 288.3 eV, and 

290.1 eV represent β-carbon,7 C-O,8 C=O,9 and π-π*,10 respectively. 
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Figure S7. CVs exhibiting integrated areas for the estimation of Qred and Qox in Figure 6.  
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Figure S8. CVs measured in (a) 1M H2SO4 aqueous solutions with/without 5 mM HHB on PG 

electrode and (b) 1M H2SO4 aqueous solutions on HHB-absorbed PG electrode at 5 mV s-1.  
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Figure S9. Simulated i-t curves based on the EC scheme at the constantly applied potential, in 

which current is limited by mass transfer in micro- and meso-C with rpore = 1.072 nm and 1.9 nm, 

with different kinetic parameters: (a) kf = 1 and 5000 s-1 with constant kb = 1 s-1, (b) kb = 0.1, 1, 

and 1.5 s-1 with constant kf = 5000 s-1; other parameters for the simulation are detailed in Table S2. 
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Figure S10. The successive CV from HHB adsorbed micro-C electrode in either (a) a conventiona l 

three electrodes cell containing ca. 10 mL of an aqueous solution or (b) a compact cell composed 

of micro-C coated with HHB|1M H2SO4|micro-C. 
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Figure S11. CVs measured in 1M H2SO4 aqueous solution on micro- and meso-C electrodes. 
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Figure S12. The cell voltage vs. time for open-circuit (toc) after measured from the two asymmetr ic 
electrochemical cells composed of either micro- (black) or meso-C (red) after a constant 0.5 A g-1 

was applied to render the cell voltage of 1 V during the charging process. 

  



 S-18 

Figure S13. Comparison of cycle stability of pristine cells and RDZ-coated asymmetric cells.  

Cycle stability tested at 0.1 V s-1. 
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Table S1. Reactions and corresponding parameters for the simulation shown in Figure 1.  

Charge transfer reaction 

 E0 (V) ks (cm/s) 

Ox1 + e- ⇌ Red 0.1 1 

Ox2 + e- ⇌ Ox1 0.5 1 

Ox3 + e- ⇌ Product1 0.8 1 

Chemical reaction 

 Keq kf (s-1) 

Ox2 ⇌ Product1 10000 10000 

Ox3 ⇌ Product2 10000 10000 

Concentration 

Species D (cm2/s) Canal (mol/L) Cini (mol/L) 

𝑪𝑹𝒆𝒅 5 × 10−5 0.005 0.005 

𝑪𝑶𝒙𝟏
 5 × 10−5 0 0 

𝑪𝑶𝒙𝟐
 5 × 10−5 0 0 

𝑪𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝟏
 5 × 10−5 0 0 

𝑪𝑶𝒙𝟑
 5 × 10−5 0 0 

𝑪𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝟐
 5 × 10−5 0 0 
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Table S2. Reactions and corresponding parameters for the simulation shown in Figure 2 and 

Figure S9. 

Reactions Parameters 

k0 Eeq 𝛼 Applied 

potential 

B + e- ⇌ A 

B ⇌ C 

0.1 cm/s 0.4 V 0.5 0 V 

rpore, kf, kb (s-1) = variable 

Relevant time-dependent diffusion equations 

(1) 
𝛛𝑪𝑨

𝛛𝐭
= 𝑫𝑨 [

𝝏𝟐𝑪𝑨

𝝏𝒓𝟐 +
𝟐

𝒓

𝝏𝑪𝑨

𝝏𝒓
]  

(2) 
𝛛𝑪𝑩

𝛛𝐭
= 𝑫𝑩 [

𝝏𝟐𝑪𝑩

𝝏𝒓𝟐 +
𝟐

𝒓

𝝏𝑪𝑩

𝝏𝒓
] − 𝒌𝐟𝑪𝑩 + 𝒌𝐛𝑪𝑪 

(3) 
𝛛𝑪𝑪

𝛛𝐭
= 𝑫𝑩 [

𝝏𝟐𝑪𝑪

𝝏 𝒓𝟐 +
𝟐

𝒓

𝝏𝑪𝑪

𝝏𝒓
] + 𝒌𝐟𝑪𝑩 − 𝒌𝐛𝑪𝑪  

Initial condition, completing the definition of the problem 

t = 0, 𝑪𝑨 = 𝑪𝑩 = 0 mM 𝑪𝑪 = 5mM 

𝑫𝑨 = 𝑫𝑩 = 𝑫𝑪 = 𝟓 × 𝟏𝟎−𝟔 cm2/s 
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