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Calculation of the specific gravimetric capacitance in electrochemical capacitors.

The specific gravimetric capacitance, Cspec,cen (F gt) was calculated from the charge/discharge

curve using Equation S1.12

C = i-At/(AE-m), 1)

speccell —
where AE is the voltage window, i is the charge/discharge current, and m is the mass of the active

material; for the estimation of Cspec in the full cell.

Because the charges stored in each electrode are equal (q, = q_), the capacitance of each

electrode was calculated by Equations S2 and S3.3

C.,AV, = C_AV_ )
1 1 1
Ccell B a + Z (3)

Cspec from the stability test in Figure S13 performed by cyclic voltammetry at 0.1 V s was
estimated by Equation S4.4°

[ iav

C — _AEv , (4)

spec,ell m

where v is the scan rate.
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Figure S1. Chemical structures of hexahydroxybenzene (HHB), tetrahydroxy-1, 4-benzoquinone
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Figure S2. (a) Simulated CVs based on Ei1E2C1E3C2, which are the same as shown in Figure 1e,

and (b) dimensionless concentration profiles of all chemical species in the simulation asa function

of the distance from an electrode surface at various values of H, which are designated on the CV

of Figure S2a.
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Figure S3. 2D axial symmetric domain of the simulation for electrolysis rate.
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Figure S4. FE-SEM images of (a) micro-C, (b) meso-C and (c) PG.
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Figure S5. The contact angles of a droplet composed of an aqueous electrolyte with 1 M H2SO4

on (a) micro- and (b) meso-C for the estimation of wettability.
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Figure S6. De-convoluted high-resolution C1s XPS spectra of (a) micro- and (b) meso-C. The C
1s spectrum of carbon powder exhibited a main peak at 284.7 eV, which is attributed to sp? C-C

bonds in a graphite carbon.® In addition, characteristic peaks at 285.7 eV, 286.5 eV, 288.3 eV, and

290.1 eV represent B-carbon,” C-0,8 C=0,° and n-n*,10 respectively.
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Figure S8. CVs measured in (a) 1M H2SO4 aqueous solutions with/without 5 mM HHB on PG

electrode and (b) 1M H2SO4 aqueous solutions on HHB-absorbed PG electrode at5 mV st
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Figure S9. Simulated i-t curves based on the EC scheme at the constantly applied potential, in
which current is limited by mass transfer in micro- and meso-C with rpore =1.072 nm and 1.9 nm,
with different kinetic parameters: (a) kf=1 and 5000 st with constant kp =1 s, (b) kn = 0.1, 1,

and 1.5s with constant k=5000s; other parameters for the simulation are detailed in Table S2.
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Figure S10. The successive CV from HHB adsorbed micro-C electrode in either (a) a conventional

three electrodes cell containing ca. 10 mL of an aqueous solution or (b) a compact cell composed

of micro-C coated with HHB|1M H2SO4|micro-C.
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Figure S11. CVs measured in 1M H2S04 aqueous solution on micro- and meso-C electrodes.
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Figure S12. The cell voltage vs. time for open-circuit (toc) after measured from the two asymmetric
electrochemical cells composed of either micro- (black) or meso-C (red) after a constant 0.5 A gt

was applied to render the cell voltage of 1 V during the charging process.
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Table S1. Reactions and corresponding parameters for the simulation shown in Figure 1.

Charge transfer reaction

EO (V) Ks (cn/s)
Ox1 + e = Red 0.1 1
Ox2 +e=0x 05 1
Ox3 + e = Product1 0.8 1
Chemical reaction
Keq ke(sh)
Oxz2 = Product: 10000 10000
Oxs = Product 10000 10000
Concentration
Species D (cm?/s) Canal (mol/L) Cini (mol/L)
Cred 5x107° 0.005 0.005
Co,, 5x107° 0 0
Co,, 5x107° 0 0
Chroduct, 5x10°° 0 0
Co,, 5x 1075 0 0
Cproduct, 5x107° 0 0




Table S2. Reactions and corresponding parameters for the simulation shown in Figure 2 and

Figure S9.
Reactions Parameters
kO Eeq a Applied
potential
Bre=A 0.1 cnvs 04V 0.5 (RY
B=C Fpore, kt, kb (s™1) = variable
Relevant time-dependent diffusion equations
acA ‘ach 20C,
(1) | ar? r or ]
ac [a%cy |, 2aC
(2) %2= Dy |22 + 22| — ki Cy + ki
aC 'a Cc , 20C
(3) —£ aT L + C] + kaB - kbCC

Initial condition, completing the definition of the problem

t=0,C,=Cp=0mM C, = 5mM

D,=Dp=D,=5x10"%cm’/s
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